Supporting Information

Tandem [5 + 1] Annulation-Isocyanide Cyclization: Efficient Synthesis of Hydroindolones

He Wang, Yu-Long Zhao, * Chuan-Qing Ren, Aboubacar Diallo, and Qun Liu* Department of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China

e-mail: <u>zhaoyl351@nenu.edu.cn</u>

Table of contents

I. General information	S2
II. Synthetic procedures and analytical data of compounds 1	S3-S6
III. Synthetic procedures and analytical data of compounds 2	. . S7-S13
IV. Synthetic procedures and analytical data of compounds 3 and 4	S14-S16
V. Crystal data and ORTEP drawing of compound 2m	S17
VI. Copies of ¹ H NMR and ¹³ C NMR spectra of compounds 1-4	S18-S42

I. General Information

All reagents were commercial and were used without further purification. Chromatography was carried on flash silica gel (300-400 mesh). All reactions were monitored by TLC, which was performed on precoated aluminum sheets of silica gel 60 (F254). Melting points were uncorrected. Unless noted, the ¹H NMR spectra were recorded at 500 or 600 MHz in CDCl₃ and the ¹³C NMR spectra were recorded at 125 or 150 MHz in CDCl₃ with TMS as internal standard. All coupling constants (J values) were reported in Hertz (Hz). High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI). The compound 2m with dimension 0.17 x 0.15 x 0.13 mm was glued on a glass fiber. Data were collected at 293 K using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) and IP technique in the range $2.19^{\circ} < \theta < 27.48^{\circ}$. Empirical absorption correction was applied. The structures were solved by the direct method and refined by the full-matrix least-squares method on P^2 using the SHELXS 97 crystallographic software package. Anisotropic thermal parameters were used to refine all non-hydrogen atoms. Hydrogen atoms were located from difference Fourier maps.

RS	S + SEV	Pd(C WG K2CC DN	DAc) ₂ (5%) D ₃ (2.0 equiv 1F, 100 ⁰ C	RS	EWG S 1
entry	R	EWG	time (min)	product	yield (%) ^a
1	$4-ClC_6H_4$	$\mathrm{CO}_2\mathrm{Bu}^n$	35	1a	84
2	C ₆ H ₅	$\mathrm{CO}_2\mathrm{Bu}^n$	40	1b	80
3	4-MeOC ₆ H ₄	$\mathrm{CO}_2\mathrm{Bu}^n$	50	1c	75
4	$2-ClC_6H_4$	$\mathrm{CO}_2\mathrm{Bu}^n$	45	1d	72
5	$4-BrC_6H_4$	$\mathrm{CO}_2\mathrm{Bu}^n$	40	1e	86
6	$4-NO_2C_6H_4$	$\mathrm{CO}_2\mathrm{Bu}^n$	50	1f	70
7	4-MeC ₆ H ₄	$\mathrm{CO}_2\mathrm{Bu}^n$	40	1g	83
8	$3,4-O_2CH_2C_6H_3$	$\mathrm{CO}_2\mathrm{Bu}^n$	50	1h	71
9	2-furyl	$\mathrm{CO}_2\mathrm{Bu}^n$	50	1i	82
10	2-thienyl	$\mathrm{CO}_2\mathrm{Bu}^n$	50	1j	84
11	PhCH=CH	$\mathrm{CO}_2\mathrm{Bu}^n$	50	1k	65
12	$4-ClC_6H_4$	CO ₂ Et	45	11	85
13	$4-ClC_6H_4$	CN	55	1m	76
^a Isolat	ed yield.				

II. General Procedure for the Preparation of 1 (1a as Example):

To a solution of (*E*)-4-(4-chlorophenyl)-1-(1,3-dithiolan-2-ylidene)-1-iodobut-3-en-2-one (1.0 mmol, 408 mg), butyl acrylate (2.0 mmol, 0.29 mL) and K₂CO₃ (2.0 mmol, 276 mg) in DMF (5.0 mL) was added Pd(OAc)₂ (0.05 mmol, 11.2 mg). The reaction mixture was heated to 100 0 C for 35 min. After completion of the reaction (monitored by TLC), the reaction mixture was poured into water (50 mL) and extracted with CH₂Cl₂ (3×10 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to yield the corresponding crude product, which was purified by chromatography (silica gel, petroleum ether/acetone = 10/1, V/V) to give **1a** (343 mg, 84%) as a yellow solid.

(2E,6E)-Butyl 7-(2-chlorophenyl)-4-(1,3-dithiolan-2-ylidene)-5-oxohepta-2,6-dienoate (1d):

Yellow solid; m. p. 75-77 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.96 (t, J = 7.5 Hz, 3H), 1.43 (q, J = 7.5 Hz, 2H), 1.68 (t, J = 7.5 Hz, 2H), 3.46 (s, 4H), 4.20 (t, J = 6.5 Hz, 2H), 6.03 (d, J = 16.0 Hz, 1H), 7.13 (d, J = 15.5 Hz, 1H), 7.28-7.30 (m, 2H), 7.42 (d, J = 7.5 Hz, 1H), 7.62 (q, J = 7.00 Hz, 1H), 7.81 (d, J = 16.0 Hz, 1H), 8.12 (d, J = 16.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.7, 19.2, 30.7, 36.5, 38.9, 64.5, 120.9, 123.0, 126.2, 127.0, 127.8, 130.2, 130.9, 133.3, 135.4, 139.3, 140.3, 166.9, 169.8, 185.5. HRMS (ESI-TOF) calcd for C₂₀H₂₂ClO₃S₂⁺ ([M + H]⁺): 409.0693, found: 409.0690.

(2E,6E)-Butyl 7-(4-bromophenyl)-4-(1,3-dithiolan-2-ylidene)-5-oxohepta-2,6-dienoate (1e):

Yellow solid; m. p. 108-110 °C; ¹H NMR (CDCl₃, 500 MHz) δ: 0.96 (t, *J* = 7.5 Hz, 3H), 1.43 (q, *J* = 7.5 Hz, 2H), 1.68 (t, *J* = 7.5 Hz, 2H), 3.46 (s, 4H), 4.21 (t, *J* = 6.5 Hz, 2H), 6.01 (d, *J* = 16.0 Hz, 1H), 7.12 (d, *J* = 15.0 Hz, 1H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 15.5 Hz, 1H), 7.81 (d, *J* = 15.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ: 13.8, 19.2, 30.7, 36.5, 38.9, 64.6, 120.8, 123.1, 124.3, 124.5, 129.8 (2C), 132.1 (2C), 133.9, 140.2, 142.2, 166.9, 169.4, 185.7.

(2E,6E)-Butyl 4-(1,3-dithiolan-2-ylidene)-7-(4-nitrophenyl)-5-oxohepta-2,6-dienoate (1f):

Yellow solid; m. p. 151-152 °C; ¹H NMR (CDCl₃, 500 MHz) δ: 0.96 (t, *J* = 7.5 Hz, 3H), 1.43 (q, *J* = 7.5 Hz, 2H), 1.68 (q, *J* = 7.5 Hz, 2H), 3.49 (s, 4H), 4.22 (t, *J* = 6.5 Hz, 2H), 6.02 (d, *J* = 16.0 Hz, 1H), 7.25 (d, *J* = 16.0 Hz, 1H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.72 (d, *J* = 16.0 Hz, 1H), 7.81 (d, *J* = 16.0 Hz, 1H), 8.24 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ: 13.7, 19.2, 30.7, 36.6, 39.0, 64.6, 121.2, 122.8, 124.1 (2C), 127.6, 128.8 (2C), 140.1, 140.2, 141.2, 148.3, 166.8, 171.3, 184.7.

(2E,6E)-Butyl 4-(1,3-dithiolan-2-ylidene)-5-oxo-7-p-tolylhepta-2,6-dienoate (1g):

Yellow solid; m. p. 92-94 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.96 (t, J = 7.5 Hz, 3H), 1.42 (q, J = 7.5 Hz, 2H), 1.68 (t, J = 7.0 Hz, 2H), 2.38 (s, 3H), 3.44 (s, 4H), 4.20 (t, J = 6.5 Hz, 2H), 6.01 (d, J = 16.0 Hz, 1H), 7.09 (d, J = 16.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 16.0 Hz, 1H), 7.81 (d, J = 16.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.7, 19.2, 21.5, 30.7, 36.5, 38.8, 64.5, 120.5, 122.8, 123.4, 128.4 (2C), 129.6 (2C), 132.2, 140.3, 140.8, 143.9, 167.0, 168.2, 186.3; HRMS (ESI-TOF) calcd for C₂₁H₂₅O₃S₂⁺ ([M + H]⁺): 389.1239, found: 389.1250.

(2E,6E)-Butyl7-(benzo[d][1,3]dioxol-5-yl)-4-(1,3-dithiolan-2-ylidene)-5-oxohepta-2,6dienoate (1h):

Yellow solid; m. p. 107-109 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.96 (t, J = 7.5 Hz, 3H), 1.43 (q, J = 7.5 Hz, 2H), 1.68 (t, J = 7.0 Hz, 2H), 3.44 (s, 4H), 4.21 (t, J = 6.5 Hz, 2H), 6.01 (s, 2H), 6.02 (d, J = 16.0 Hz, 1H), 6.82 (q, J = 6.0 Hz, 1H), 6.95 (d, J = 15.0 Hz, 1H), 7.05 (d, J = 6.0 Hz, 1H), 7.06 (s, 1H), 7.64 (d, J = 15.0 Hz, 1H), 7.80 (d, J = 16.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.7, 19.2, 30.7, 36.5, 38.8, 64.5, 101.6, 106.7, 108.6, 120.5, 121.9, 123.5, 125.1, 129.5, 140.4, 143.7, 148.3, 149.7, 167.0, 168.0, 186.2.

(2E,6E)-Ethyl 7-(4-chlorophenyl)-4-(1,3-dithiolan-2-ylidene)-5-oxohepta-2,6-dienoate (11):

Yellow solid; m. p. 113-115 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 1.33 (t, *J* = 7.0 Hz, 3H), 3.46 (s, 4H), 4.26 (q, *J* = 7.5 Hz, 2H), 6.01 (d, *J* = 15.5 Hz, 1H), 7.09 (d, *J* = 15.5 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.67 (d, *J* = 15.5 Hz, 1H), 7.81 (d, *J* = 15.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 14.3, 36.6, 38.9, 60.6, 120.8, 123.1, 124.2, 129.1 (2C), 129.6 (2C), 133.5, 136.1, 140.3, 142.2, 166.9, 169.3, 185.7; HRMS (ESI-TOF) calcd for C₁₈H₁₈ClO₃S₂⁺ ([M + H]⁺): 381.0380, found: 381.0379.

(2E,6E)-7-(4-Chlorophenyl)-4-(1,3-dithiolan-2-ylidene)-5-oxohepta-2,6-dienenitrile (1m):

Yellow solid; m. p. 194-196 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 3.45 (s, 4H), 5.47 (d, *J* = 16.5 Hz, 1H), 7.04 (d, *J* = 16.0 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 15.0 Hz, 1H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.67 (d, *J* = 15.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 36.8, 39.0, 98.2, 118.3, 122.8, 123.7, 127.3, 129.3 (2C), 129.6 (2C), 133.1, 136.6, 143.1, 146.0, 185.3; HRMS (ESI-TOF) calcd for C₁₆H₁₃ClNOS₂⁺ ([M + H]⁺): 334.0121, found: 334.0123.

Spectral data of compounds **1a-c** and **1i-k** match those previously reported.¹

^{1.} H. Yu, W. Jin, C. Sun, J. Chen, W. Du, S. He, Z. Yu, Angew. Chem., Int. Ed. 2010, 49, 5792

III. General Procedure for the Preparation of 1 (1a as Example):

To a solution of 5-oxohepta-2,6-dienoate **1a** (1.0 mmol, 408 mg) and ethyl isocyanoacetate (1.2 mmol, 0.13 mL) in DMF (4.0 mL) was added NaOH (0.2 mmol, 8 mg) in one portion. The reaction mixture was stired for 18 min at room temperature. After **1a** was consumed (monitored by TLC), the reaction mixture was poured into ice-water (45 mL) under stirring. The precipitated solid was collected by filtration, and dried in vacuo to afford the crude product, which was purified by flash chromatography (silica gel, petroleum ether/acetone = 5/1, V/V) to give **2a** (469 mg, 90 %) as a white solid.

3-Butyl 7a-ethyl 7-(4-chlorophenyl)-4-(1,3-dithiolan-2-ylidene)-5-oxo-3a,4,5,6,7,7ahexahydro-1*H*-indole-3,7a-dicarboxylate (2a):

White solid; m. p. 222-224 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.92 (t, *J* = 7.5 Hz, 3H), 1.29 (t, *J* = 7.0 Hz, 3H), 1.32-1.38 (m, 2H), 1.53-1.59 (m, 2H), 2.45 (d, *J* = 13.5 Hz, 1H), 3.04 (t, *J* = 14.5 Hz, 1H), 3.29-3.34 (m, 1H), 3.40-3.56 (m, 4H), 3.96 (tt, *J* = 14.0, 7.0 Hz, 1H), 4.06 (tt, *J* = 13.5, 7.0 Hz, 1H), 4.17 (qq, *J* = 14.0, 7.0 Hz, 1H), 4.28 (qq, *J* = 14.0, 7.5 Hz, 1H), 4.42 (s, 1H), 4.90 (s, 1H), 7.01 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.35 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 14.2, 19.2, 30.9, 36.1, 39.0, 39.3, 46.2, 52.8, 62.1, 63.3, 73.7, 104.6, 119.4, 128.7 (2C), 129.5 (2C), 133.8, 135.6, 148.0, 164.5, 164.7, 173.2, 194.9; HRMS (ESI-TOF) calcd for C₂₅H₂₉CINO₅S₂⁺ ([M + H]⁺): 522.1170, found: 522.1176.

3-Butyl 7a-ethyl 4-(1,3-dithiolan-2-ylidene)-5-oxo-7-phenyl-3a,4,5,6,7,7a-hexahydro-1*H*indole-3,7a-dicarboxylate (2b):

White solid; m. p. 210-212 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.91 (t, *J* = 7.5 Hz, 3H), 1.27 (t, *J* = 7.0 Hz, 3H), 1.30-1.38 (m, 2H), 1.53-1.58 (m, 2H), 2.50 (dd, *J* = 15.5, 13.5 Hz, 1H), 3.07 (t, *J* = 15.0 Hz, 1H), 3.30-3.34 (m, 1H), 3.43-3.56 (m, 4H), 3.97 (tt, *J* = 13.5, 6.5 Hz, 1H), 4.06 (tt, *J* = 13.0, 7.0 Hz, 1H), 4.18 (qq, *J* = 14.0, 7.0 Hz, 1H), 4.29 (qq, *J* = 14.5, 7.0 Hz, 1H), 4.48 (s, 1H), 4.90 (s, 1H), 7.06 (d, *J* = 6.5 Hz, 2H), 7.28 (d, *J* = 7.0 Hz, 2H), 7.29 (t, *J* = 6.0 Hz, 1H), 7.41 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 14.2, 19.2, 31.0, 36.0, 39.0, 39.3, 46.7, 52.7, 62.0, 63.2, 73.9, 104.1, 119.6, 127.8, 128.2 (2C), 128.6 (2C), 137.0, 148.0, 164.1, 164.9, 173.4, 195.3; HRMS (ESI-TOF) calcd for C₂₅H₃₀NO₅S₂⁺ ([M + H]⁺): 488.1559, found: 488.1571.

3-Butyl 7a-ethyl 4-(1,3-dithiolan-2-ylidene)-7-(4-methoxyphenyl)-5-oxo-3a,4,5,6,7,7ahexahydro-1*H*-indole-3,7a-dicarboxylate (2c):

White solid; m. p. 194-196 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.90 (t, J = 7.5 Hz, 3H), 1.29 (t, J = 7.0 Hz, 3H), 1.32-1.38 (m, 2H), 1.53-1.59 (m, 2H), 2.46 (dd, J = 16.0, 14.0 Hz, 1H), 3.03 (t, J = 15.5 Hz, 1H), 3.29-3.33 (m, 1H), 3.42-3.54 (m, 4H), 3.79 (s, 3H), 3.96 (tt, J = 13.5, 6.5 Hz, 1H), 4.06 (tt, J = 13.5, 7.0 Hz, 1H), 4.18 (qq, J = 14.5, 7.0 Hz, 1H), 4.28 (qq, J = 14.5, 7.5 Hz, 1H), 4.48 (s, 1H), 4.87 (s, 1H), 6.83 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H), 7.36 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 14.2, 19.2, 30.9, 36.0, 39.0, 39.6, 46.0, 52.5, 55.2, 61.9, 63.2, 74.0, 104.0, 114.0 (2C), 119.6, 128.9, 129.1 (2C), 148.0, 159.1, 163.9, 164.9, 173.5, 195.4; HRMS (ESI-TOF) calcd for C₂₆H₃₂NO₆S₂⁺ ([M + H]⁺): 518.1665, found: 518.1660.

3-Butyl 7a-ethyl 7-(2-chlorophenyl)-4-(1,3-dithiolan-2-ylidene)-5-oxo-3a,4,5,6,7,7ahexahydro-1*H*-indole-3,7a-dicarboxylate (2d):

White solid; m. p. 172-174 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.91 (t, J = 7.0 Hz, 3H), 1.25 (t, J = 7.0 Hz, 3H), 1.34 (q, J = 7.5 Hz, 2H), 1.55 (J = 7.0 Hz, 2H), 2.36 (d, J = 15.0 Hz, 1H), 3.09 (t, J = 15.0 Hz, 1H), 3.34-3.54 (m, 4H), 3.98 (t, J = 7.0 Hz, 2H), 4.08 (tt, J = 17.5, 7.0 Hz, 2H), 4.29 (dd, J = 11.0, 7.0 Hz, 1H), 4.59 (s, 1H), 5.10 (s, 1H), 7.22 (d, J = 7.5 Hz, 1H), 7.25-7.27 (m, 2H), 7.33 (d, J = 7.5 Hz, 1H), 7.37 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 13.9, 19.2, 31.0, 36.0, 39.1, 40.4, 43.0, 52.4, 62.2, 63.2, 72.4, 104.6, 119.1, 126.6, 128.8, 129.8, 129.9, 134.4, 134.7, 147.5, 164.8, 164.9, 172.9, 194.5. HRMS (ESI-TOF) calcd for C₂₅H₂₉ClNO₅S₂⁺ ([M + H]⁺): 522.1170, found: 522.1181.

3-Butyl 7a-ethyl 7-(4-bromophenyl)-4-(1,3-dithiolan-2-ylidene)-5-oxo-3a,4,5,6,7,7ahexahydro-1*H*-indole-3,7a-dicarboxylate (2e):

White solid; m. p. 192-194 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.91 (t, *J* = 7.5 Hz, 3H), 1.28 (t, *J* = 7.0 Hz, 3H), 1.31-1.36 (m, 2H), 1.53-1.57 (m, 2H), 2.44 (d, *J* = 14.0 Hz, 1H), 3.03 (t, *J* = 15.0 Hz, 1H), 3.32 (dd, *J* = 10.0, 6.0 Hz, 1H), 3.40-3.53 (m, 4H), 3.96 (tt, *J* = 13.0, 6.5 Hz, 1H), 4.05 (tt, *J* = 13.5, 6.5 Hz, 1H), 4.17 (tt, *J* = 18.0, 7.0 Hz, 1H), 4.28 (tt, *J* = 18.0, 7.5 Hz, 1H), 4.47 (s, 1H), 4.90 (s, 1H), 6.95 (d, *J* = 8.5 Hz, 2H), 7.35 (s, 1H), 7.43 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 14.2, 19.2, 30.9, 36.0, 39.0, 39.2, 46.2, 52.8, 62.1, 63.2, 73.6, 104.6, 119.3, 121.9, 129.8 (2C), 131.6 (2C), 136.1, 148.0, 164.5, 164.7, 173.1, 194.8; HRMS (ESI-TOF) calcd for C₂₅H₂₉BrNO₅S₂⁺ ([M + H]⁺): 566.0665, found: 566.0666.

3-Butyl 7a-ethyl 4-(1,3-dithiolan-2-ylidene)-7-(4-nitrophenyl)-5-oxo-3a,4,5,6,7,7a-hexahydro-1*H*-indole-3,7a-dicarboxylate (2f):

White solid; m. p. 249-251 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.92 (t, *J* = 7.5 Hz, 3H), 1.29 (t, *J* = 7.0 Hz, 3H), 1.31-1.38 (m, 2H), 1.54-1.63 (m, 2H), 2.49 (d, *J* = 15.5 Hz, 1H), 3.11 (t, *J* = 15.5 Hz, 1H), 3.3s (dd, *J* = 12.5, 9.0 Hz, 1H), 3.42-3.64 (m, 4H), 3.97 (tt, *J* = 14.0, 6.5 Hz, 1H), 4.07 (tt, *J* = 13.0, 7.0 Hz, 1H), 4.19 (qq, *J* = 13.0, 7.0 Hz, 1H), 4.30 (dd, *J* = 13.5, 7.0 Hz, 1H), 4.38 (s, 1H), 4.95 (s, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.34 (s, 1H), 8.17 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 14.3, 19.2, 30.9, 36.1, 39.1 (2C), 46.8, 53.2, 62.4, 63.4, 73.4, 105.6, 119.0, 123.6 (2C), 129.3 (2C), 144.8, 147.5, 147.9, 164.6, 165.4, 172.9, 194.2; HRMS (ESI-TOF) calcd for C₂₅H₂₉N₂O₇S₂⁺ ([M + H]⁺): 533.1410, found: 533.1426.

3-Butyl 7a-ethyl 4-(1,3-dithiolan-2-ylidene)-5-oxo-7-*p*-tolyl-3a,4,5,6,7,7a-hexahydro-1*H*indole-3,7a-dicarboxylate (2g):

White solid; m. p. 121-123 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.91 (t, J = 7.5 Hz, 3H), 1.27 (t, J = 7.0 Hz, 3H), 1.30-1.36 (m, 2H), 1.53-1.57 (m, 2H), 2.32 (s, 3H), 2.47 (d, J = 15.0 Hz, 1H), 3.04 (t, J = 15.0 Hz, 1H), 3.32 (dd, J = 10.5, 6.5 Hz, 1H), 3.42-3.53 (m, 4H), 3.96 (dd, J = 12.5, 7.0 Hz, 1H), 4.05 (dd, J = 13.0, 6.5 Hz, 1H), 4.18 (dd, J = 17.5, 7.0 Hz, 1H), 4.28 (dd, J = 18.0, 7.5 Hz, 1H), 4.49 (s, 1H), 4.88 (s, 1H), 6.94 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.5 Hz, 2H), 7.36 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 14.2, 19.2, 21.0, 31.0, 36.0, 39.0, 39.4, 46.3, 52.8, 61.9, 63.2, 74.0, 104.0, 119.7, 128.0 (2C), 129.3 (2C), 133.9, 137.5, 148.0, 164.0, 164.9, 173.4, 195.5; HRMS (ESI-TOF) calcd for C₂₆H₃₂NO₅S₂⁺ ([M + H]⁺): 502.1716, found: 502.1713.

3-Butyl 7a-ethyl 7-(benzo[d][1,3]dioxol-5-yl)-4-(1,3-dithiolan-2-ylidene)-5-oxo-3a,4,5,6,7,7ahexahydro-1*H*-indole-3,7a-dicarboxylate (2h):

White solid; m. p. 230-232 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.90 (t, J = 7.5 Hz, 3H), 1.29 (t, J = 7.0 Hz, 3H), 1.31-1.37 (m, 2H), 1.53-1.58 (m, 2H), 2.44 (t, J = 16.0 Hz, 1H), 2.98 (t, J = 15.5 Hz, 1H), 3.28-3.33 (m, 1H), 3.41-3.54 (m, 4H), 3.96 (tt, J = 14.0, 6.5 Hz, 1H), 4.06 (tt, J = 13.5, 7.0 Hz, 1H), 4.17 (tt, J = 14.0, 7.5 Hz, 1H), 4.29 (qq, J = 14.5, 7.5 Hz, 1H), 4.53 (s, 1H), 4.87 (s, 1H), 5.95 (s, 2H), 6.51 (d, J = 7.5 Hz, 1H), 6.56 (s, 1H), 6.72 (d, J = 8.0 Hz, 1H), 7.36 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 14.2, 19.2, 30.9, 36.0, 39.0, 39.7, 46.4, 52.6, 62.0, 63.2, 74.0, 101.1, 104.1, 108.3, 108.4, 119.6, 121.4, 130.7, 147.1, 147.8, 148.1, 164.1, 164.8, 173.4, 195.2; HRMS (ESI-TOF) calcd for C₂₆H₃₀NO₇S₂⁺ ([M + H]⁺): 532.1458, found: 532.1449.

3-Butyl 7a-ethyl 4-(1,3-dithiolan-2-ylidene)-7-(furan-2-yl)-5-oxo-3a,4,5,6,7,7a-hexahydro-1*H*indole-3,7a-dicarboxylate (2i):

White solid; m. p. 158-160 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.90 (t, J = 7.5 Hz, 3H), 1.30 (t, J = 7.0 Hz, 3H), 1.32-1.37 (m, 2H), 1.52-1.61 (m, 2H), 2.56 (dd, J = 16.0, 14.0 Hz, 1H), 2.89 (t, J = 15.5 Hz, 1H), 3.27-3.32 (m, 1H), 3.40-3.54 (m, 3H), 3.68 (d, J = 12.5 Hz, 1H), 3.94 (tt, J = 13.5, 6.5 Hz, 1H), 4.05 (tt, J = 13.0, 6.5 Hz, 1H), 4.25 (tt, J = 14.5, 7.5 Hz, 1H), 4.32 (tt, J = 14.5, 7.0 Hz, 1H), 4.69 (s, 1H), 4.83 (s, 1H), 6.07 (d, J = 3.0 Hz, 1H), 6.31 (s, 1H), 7.32 (s, 1H), 7.35 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 14.1, 19.2, 30.9, 36.1, 38.0, 39.0, 41.3, 52.5, 62.1, 63.2, 72.8, 103.7, 107.9, 110.4, 119.4, 142.5, 148.0, 151.6, 164.3, 164.8, 173.2, 194.4; HRMS (ESI-TOF) calcd for C₂₃H₂₈NO₆S₂⁺ ([M + H]⁺): 478.1352, found: 478.1355.

3-Butyl 7a-ethyl 4-(1,3-dithiolan-2-ylidene)-5-oxo-7-(thiophen-2-yl)-3a,4,5,6,7,7a-hexahydro-1*H*-indole-3,7a-dicarboxylate (2j):

White solid; m. p. 173-175 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.90 (t, J = 7.5 Hz, 3H), 1.30 (t, J = 7.0 Hz, 3H), 1.33-1.36 (m, 2H), 1.53-1.58 (m, 2H), 2.60 (dd, J = 16.0, 14.0 Hz, 1H), 2.99 (t, J = 16.0 Hz, 1H), 3.29-3.32 (m, 1H), 3.42-3.52 (m, 3H), 3.89 (d, J = 12.5 Hz, 1H), 3.96 (tt, J = 13.5, 7.0 Hz, 1H), 4.05 (tt, J = 13.5, 7.0 Hz, 1H), 4.21 (dd, J = 18.0, 7.5 Hz, 1H), 4.31 (tt, J = 18.0, 7.0 Hz, 1H), 4.70 (s, 1H), 4.86 (s, 1H), 6.78 (d, J = 3.0 Hz, 1H), 6.95 (t, J = 5.0 Hz, 1H), 7.21 (d, J = 5.0 Hz, 1H), 7.37 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 14.2, 19.2, 30.9, 36.1, 39.0, 40.8, 42.8, 52.6, 62.2, 63.3, 73.7, 104.5, 119.3, 125.1, 125.8, 126.9, 139.6, 148.0, 164.4, 164.7, 173.0, 194.4; HRMS (ESI-TOF) calcd for C₂₃H₂₈NO₅S₃⁺ ([M + H]⁺): 494.1124, found: 494.1140.

3-Butyl 7a-ethyl 4-(1,3-dithiolan-2-ylidene)-5-oxo-7-styryl-3a,4,5,6,7,7a-hexahydro-1*H*indole-3,7a-dicarboxylate (2k):

Yellow solid; m. p. 154-156 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.90 (t, J = 7.5 Hz, 3H), 1.30 (t, J = 7.0 Hz, 3H), 1.33-1.36 (m, 2H), 1.53-1.59 (m, 2H), 2.45 (dd, J = 16.0, 14.0 Hz, 1H), 2.72 (t, J = 16.0 Hz, 1H), 3.08 (dd, J = 13.5, 8.0 Hz, 1H), 3.28-3.31 (m, 1H), 3.41-3.53 (m, 3H), 3.96 (tt, J = 13.5, 7.0 Hz, 1H), 4.06 (tt, J = 13.5, 7.5 Hz, 1H), 4.23 (dd, J = 18.0, 7.0 Hz, 1H), 4.32 (dd, J = 17.5, 7.0 Hz, 1H), 4.86 (s, 1H), 4.87 (s, 1H), 6.02 (dd, J = 16.0, 7.5 Hz, 1H), 6.39 (d, J = 16.0 Hz, 1H), 7.24-7.32 (m, 5H), 7.35 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.9, 14.3, 19.2, 31.0, 36.0, 39.0, 39.1, 45.1, 52.4, 62.1, 63.3, 73.3, 104.8, 119.6, 124.9, 126.4 (2C), 128.0, 128.4, 128.6, 133.5, 136.3, 148.1, 163.9, 164.8, 173.5, 195.0; HRMS (ESI-TOF) calcd for C₂₇H₃₂NO₅S₂⁺ ([M + H]⁺): 514.1716, found: 514.1712.

Diethyl 7-(4-chlorophenyl)-4-(1,3-dithiolan-2-ylidene)-5-oxo-3a,4,5,6,7,7a-hexahydro-1H-

indole-3,7a-dicarboxylate (2l):

White solid; m. p. 226-228 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 1.20 (t, *J* = 7.0 Hz, 3H), 1.29 (t, *J* = 7.5 Hz, 3H), 2.45 (d, *J* = 15.5 Hz, 1H), 3.03 (t, *J* = 15.0 Hz, 1H), 3.34 (qq, *J* = 10.0, 6.0 Hz, 1H), 3.44-3.53 (m, 4H), 4.03 (dd, *J* = 17.5, 7.5 Hz, 1H), 4.10 (dd, *J* = 17.5, 7.5 Hz, 1H), 4.18 (tt, *J* = 17.5, 7.0 Hz, 1H), 4.28 (tt, *J* = 17.0, 7.0 Hz, 1H), 4.47 (s, 1H), 4.90 (s, 1H), 7.01 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.5 Hz, 2H), 7.36 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 14.2, 14.5, 36.0, 39.1, 39.3, 46.2, 52.8, 59.2, 62.1, 73.6, 104.7, 119.3, 128.7 (2C), 129.5 (2C), 133.8, 135.6, 148.0, 164.6, 164.7, 173.2, 194.9; HRMS (ESI-TOF) calcd for C₂₃H₂₅ClNO₅S₂⁺ ([M + H]⁺): 494.0857, found: 494.0858.

Ethyl 7-(4-chlorophenyl)-3-cyano-4-(1,3-dithiolan-2-ylidene)-5-oxo-3a,4,5,6,7,7a-hexahydro-1*H*-indole-7a-carboxylate (2m):

White solid; m. p. 271-273 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 1.26 (t, *J* = 7.5 Hz, 3H), 2.48 (dd, *J* = 15.5, 13.5 Hz, 1H), 3.02 (t, *J* = 15.5 Hz, 1H), 3.39-3.57 (m, 5H), 4.19 (qq, *J* = 18.0, 7.0 Hz, 1H), 4.25 (qq, *J* = 17.5, 7.0 Hz, 1H), 4.55 (s, 1H), 4.88 (s, 1H), 7.01 (d, *J* = 8.5 Hz, 2H), 7.06 (s, 1H), 7.28 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ : 14.2, 36.5, 39.0, 39.3, 45.0, 52.6, 62.6, 72.8, 84.3, 117.0, 117.1, 128.9 (2C), 129.3 (2C), 134.1, 135.4, 149.8, 166.9, 173.0, 193.0; HRMS (ESI-TOF) calcd for C₂₁H₂₀ClN₂O₃S₂⁺ ([M + H]⁺): 447.0598, found: 447.0601.

IV. General Procedure for the Preparation of 3 (3a as Example):

To a solution of 5-oxohepta-2,6-dienoate **1a** (1.0 mmol, 408 mg) and tosylmethyl isocyanide (1.2 mmol, 234 mg) in DMF (4.0 mL) was added DBU (1.5 mmol, 0.22 mL) in one portion. The reaction mixture was stired for 1 h at room temperature. After **1a** was consumed (monitored by TLC), the reaction mixture was poured into ice-water (45 mL) under stirring. The precipitated solid was collected by filtration, and dried in vacuo to afford the crude product, which was purified by flash chromatography (silica gel, petroleum ether/acetone = 5/2, V/V) to give **3a** (358 mg, 80 %) as a yellow solid.

Butyl 7-(4-chlorophenyl)-4-(1,3-dithiolan-2-ylidene)-5-oxo-4,5,6,7-tetrahydro-1*H*-indole-3carboxylate (3a):

Yellow solid; m. p. 150-152 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.94 (t, *J* = 7.5 Hz, 3H), 1.39-1.43 (m, 2H), 1.63-1.69 (m, 2H), 2.83 (dd, *J* = 6.5, 16.0 Hz, 1H), 2.90 (dd, *J* = 6.0, 16.0 Hz, 1H), 3.20-3.25 (m, 1H), 3.30-3.44 (m, 3H), 4.19 (q, *J* = 7.0 Hz, 2H), 4.22 (t, *J* = 7.0 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.26 (s, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 8.20 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.9, 19.3, 30.8, 36.3, 38.1, 38.9, 45.8, 64.2, 115.7, 118.7, 118.9, 122.9, 129.3 (2C), 129.4 (2C), 130.9, 133.5, 138.0, 157.5, 165.5, 194.2; HRMS (ESI-TOF) calcd for C₂₂H₂₃ClNO₃S₂⁺ ([M + H]⁺): 448.0802, found: 448.0812.

Butyl 4-(1,3-dithiolan-2-ylidene)-5-oxo-7-phenyl-4,5,6,7-tetrahydro-1*H*-indole-3-carboxylate (3b):

Yellow solid; m. p. 234-235 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.94 (t, J = 7.5 Hz, 3H), 1.39-1.43 (m, 2H), 1.64-1.69 (m, 2H), 2.92 (t, J = 6.5 Hz, 2H), 3.18-3.23 (m, 1H), 3.32-3.47 (m, 3H), 4.19 (q, J = 7.5 Hz, 2H), 4.24 (t, J = 6.5 Hz, 1H), 7.22 (t, J = 7.5 Hz, 2H), 7.25 (s, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 2H), 8.02 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.9, 19.3, 30.8, 36.2, 38.7, 38.9, 45.8, 64.1, 115.7, 118.6, 118.9, 122.7, 127.8, 128.0 (2C), 129.3 (2C), 131.7, 139.2, 157.0, 165.5, 194.7; HRMS (ESI-TOF) calcd for C₂₂H₂₄NO₃S₂⁺ ([M + H]⁺): 414.1192, found: 414.1195.

Butyl 4-(1,3-dithiolan-2-ylidene)-7-(4-methoxyphenyl)-5-oxo-4,5,6,7-tetrahydro-1H-indole-3-

carboxylate (3c):

Yellow solid; m. p. 117-119 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.93 (t, J = 7.5 Hz, 3H), 1.38-1.43 (m, 2H), 1.63-1.68 (m, 2H), 2.85 (d, J = 8.0 Hz, 2H), 3.17-3.21 (m, 1H), 3.32-3.44 (m, 3H), 3.79 (s, 3H), 4.17 (t, J = 8.0 Hz, 1H), 4.21 (q, J = 8.0 Hz, 2H), 6.88 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.5 Hz, 2H), 7.24 (s, 1H), 8.13 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.9, 19.3, 30.8, 36.2, 37.8, 38.9, 46.0, 55.3, 64.1, 114.5 (2C), 115.5, 118.3, 119.0, 122.7, 129.0 (2C), 131.1, 132.2, 156.7, 159.0, 165.6, 195.0; HRMS (ESI-TOF) calcd for C₂₃H₂₆NO₄S₂⁺ ([M + H]⁺): 444.1297, found: 444.1290.

Butyl 4-(1,3-dithiolan-2-ylidene)-7-(furan-2-yl)-5-oxo-4,5,6,7-tetrahydro-1*H*-indole-3-carbo-xylate (3i):

Yellow solid; m. p. 88-89 °C; ¹H NMR (CDCl₃, 500 MHz) δ : 0.93 (t, J = 7.5 Hz, 3H), 1.38-1.42 (m, 2H), 1.62-1.68 (m, 2H), 2.93 (dd, J = 5.5, 16.0 Hz, 1H), 2.97 (dd, J = 9.5, 15.5 Hz, 1H), 3.18-3.23 (m, 1H), 3.29-3.44 (m, 3H), 4.20 (q, J = 6.5 Hz, 2H), 4.35 (dd, J = 5.5, 9.5 Hz, 1H), 6.11 (d, J = 3.0 Hz, 1H), 6.34 (d, J = 2.0 Hz, 1H), 7.29 (d, J = 3.0 Hz, 1H), 7.40 (s, 1H), 8.73 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.9, 19.3, 30.8, 32.0, 36.2, 38.9, 42.4, 64.1, 106.5, 110.6, 115.2, 118.4, 118.5, 123.1, 129.1, 142.3, 152.9, 157.3, 165.6, 194.2; HRMS (ESI-TOF) calcd for C₂₀H₂₂NO₄S₂⁺ ([M + H]⁺): 404.0984, found: 404.0986.

(E)-Butyl 5-(4-(4-chlorophenyl)-1H-pyrrol-3-yl)-4-(1,3-dithiolan-2-ylidene)-5-oxopent-2 -enoate (4a):

Red liquid; ¹H NMR (CDCl₃, 500 MHz) δ : 0.93 (t, *J* = 7.5 Hz, 3H), 1.35-1.40 (m, 2H), 1.58-1.64 (m, 2H), 3.36-3.45 (m, 4H), 4.10 (t, *J* = 6.5 Hz, 2H), 5.71 (d, *J* = 15.5 Hz, 1H), 6.79 (s, 1H), 7.25 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 8.5 Hz, 2H), 7.29 (s, 1H), 7.46 (d, *J* = 16.0 Hz, 1H), 8.87 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.8, 19.2, 30.7, 37.2, 38.5, 64.2, 117.4, 118.6, 122.2, 124.9, 125.2, 126.9, 128.0 (2C), 129.9 (2C), 132.3, 133.0, 140.8, 161.1, 167.6, 188.4.

V. Crystal data and ORTEP drawing of compound 2m

 $C_{21}H_{19}CIN_2O_3S_2$, white crystal, M = 446.82, Monoclinic, C2/c, a = 40.139(6) Å, b = 9.4559(13)Å, c = 11.1246(14) Å, a = 90.00 °, $\beta = 100.587(2)$ °, $\gamma = 90.00$ °, V = 4150.5(10) Å³, Z = 8, T = 293(2), $F_{000} = 1856$, $R_1 = 0.0486$, $wR_2 = 0.1252$. CCDC 824546.

Figure 1. ORTEP drawing of 2m

Figure 1. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 1d.

Figure 2. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound **1e**.

Figure 3. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 1f.

Figure 4. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 1g.

Figure 5. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 1h.

Figure 6. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 11.

Figure 7. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 1m.

Figure 8. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2a.

Figure 9. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2b.

Figure 10. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound **2c**.

Figure 11. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2d.

Figure 12. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound **2e**.

Figure 13. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2f.

Figure 14. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2g.

Figure 15. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2h.

Figure 16. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2i.

Figure 17. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2j.

Figure 18. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound **2k**.

Figure 19. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2l.

Figure 20. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 2m.

Figure 21. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound **3a**.

Figure 22. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound **3b**.

Figure 23. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3c.

Figure 24. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3i.

Figure 25. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 4a.