

Chemical Communications

Dynamic Clicked Surfaces Based on Functionalised Pillar[5]arene

Huacheng Zhang,^a Nathan L. Strutt,^{a,b} Ragnar S. Stoll,^a Hao Li,^a Zhixue Zhu,^a and J. Fraser Stoddart*^{a,b}

^aDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.

^bGraduate School of EEWS (WCU), Advanced Institute of Science and Technology (KAIST),

373-1, Guseong Dong, Yuseong Gu, Daejeon 305-701, Republic of Korea.

Electronic Supplementary Information

General Methods	S2
Compounds Synthesised	S3
Synthesis of 1	S3
Figure S1—S9	S4—S8
Table S1	S8
References	S9

* To Whom Correspondence should be Addressed		
Professor J Fraser Stoddart		
Department of Chemistry		
Northwestern University		
2145 Sheridan Road		
Evanston, IL 60208-3113, USA		
Tel: (+1)-847-491-3793		
Fax: (+1)-847-491-1009		
E-mail: stoddart@northwestern.edu		

General Methods

Reagents were purchased from Aldrich and used without further purification. 4-hydroxy-4'-ethynyl azobenzene^{S1} (**2**) and azido-pillar[5]arene^{S2} (**3**) were synthesised according to the literature procedures. The THF was dried using a commercial solvent purification system (SG Water, Inc.). The H₂O used was triply distilled. The UV lamp is a Blak-Ray series, model B100A/R and 365 nm longwave UV, purchased from UVP, LLC. UV spectra were recorded with TU-1800pc UV-Vis Spectrophotometer at 298 K. The stock solutions ($10^{-2} \text{ mol} \cdot \text{L}^{-1}$) of **1** were prepared with triply distilled H₂O. All sample solutions for the investigation of the CAC were freshly prepared by diluting the stock solutions according to literature procedures.^{S3}

1D and 2D nuclear magnetic resonance (NMR) spectra were recorded at 298 K on Bruker Avance III 500 spectrometer with working frequencies of 500 MHz for ¹H and 125 MHz for ¹³C nuclei. Chemical shifts are reported in ppm relative to the signals corresponding to the residual non-deuterated solvent (CDCl₃: δ 7.26 ppm; Tetrahydrofuran-d₈: δ 1.73 and 3.58 ppm; D₂O: δ 4.79 ppm), and coupling constants were recorded in Hertz (Hz). All ¹³C NMR spectra were recorded with the simultaneous decoupling of ¹H nuclei. The following abbreviations were used to explain the multiplicities: s, singlet; d, doublet; t, triplet; b, broad peaks; m, multiplet or overlapping peaks. Electrospray Ionization (ESI) mass spectra were obtained on an Agilent LC-TOF high-resolution mass spectrometer.

Negative-stained TEM and Cryo-TEM were measured on a Hitachi H-8100 electron microscope (100—200 kV) equipped with slow scan CCD and using cold cathode field emission as the gun. The samples for negative-stained TEM were prepared by dropping a droplet of the orange yellow sample solution onto a TEM grid (copper grid, 300 meshes, coated with carbon film), immediately staining with 2% uranyl acetate in H₂O (about 2 μ L) and allowing to air-dry. SEM images were obtained on a FEI Quanta 600 SFEG scanning electron microscope (0.2—30 kV) equipped with both solid-state BSED and low vacuum LFSED as detectors. Atomic force microscopy was performed by using a multimode Nanoscope IIIA system operated in tapping mode using silicon cantilevers. DLS measurements were carried out with a Zetasizer Nano ZS instrument purchased from Malvern Instruments Ltd. at 298 K using a 633 nm 'red' laser. The mean hydrodynamic radius was calculated with Zetasizer software.

Compounds Synthesised

Synthesis of 1

1: 4-hydroxy-4'-ethynyl azobenzene (2, 25 mg, 0.11 mmol) and 3 (90 mg, 0.11 mmol), tetrakis(acetonitrile) copper(I) hexafluorophosphate (4.1 mg, 0.011 mmol) and tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl] amine (TBTA) were dissolved in Me₂CO (20 mL). The mixture was then stirred under reflux for 2 days. The solution was then poured into H₂O (200 mL). The aqueous phase was extracted (3 × 200 mL) with CH₂Cl₂. The combined organic layers were dried (Mg₂SO₄) and the solvent was removed in vacuum. The mixture was subjected to column chromatography (SiO₂, gradient elution from 2% up to 20% MeOH in CH₂Cl₂) to afford 1 (108.3 mg) in 94% yield. ¹H NMR (500 MHz, CDCl₃): δ = 8.16 (s, 1H), 7.97 (t, *J* = 10 Hz, 4H), 7.91 (d, *J* = 10 Hz, 2H), 7.01 (d, *J* = 5 Hz, 2H), 6.86-6.74 (m, 8H), 6.44 (t, *J* = 5 Hz, 2H), 4.35 (d, *J* = 5 Hz, 2H), 3.83-3.78 (m, 12H), 3.72-3.59 (m, 26H), 3.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 159.2, 152.3, 151.6, 151.2, 151.0, 150.7, 132.1, 128.9, 128.6, 128.4, 128.1, 127.8, 127.6, 126.2, 125.1, 123.2, 121.6, 115.9, 115.2, 114.6, 114.4, 114.2, 114.1, 113.8, 67.2, 55.9, 50.1, 29.9. HR-MS (ESI): C₆₀H₆₁N₅O₁₁ calcd for *m/z* = 1028.4440, found *m/z* = 1028.4443 [*M* + H]⁺.

Figure S1—S9

Fig. S1 The critical assembly concentration (CAC) of 1 in the 1/2 (v/v) mixture of H₂O and THF was determined in three separate trials, giving an average value of 0.62 ± 0.03 mM by detection of the maximum absorption band in the UV-vis spectra.

Fig. S2 Size distributions of **1** cast on a TEM grid from a $1:2 \text{ H}_2\text{O}$ / THF mixture (2 mM) in visible light atmosphere (left), irradiated by UV (365 nm) for 1 h (middle) and then exposed in visible light for another 1 h (right).

Fig. S3 The orange-yellow sample solution was dropped onto a silicon plate and allowed to air-dry. Air tapping mode AFM images of assemblies of 1 (upper left, planar image with scale bar = $15.3 \mu m$; upper right, steric image; bottom, a line profile extracted along the marked white trace in the upper left image).

Fig. S4 DLS size distributions of **1** (molar ratio = 1:1) in the 1:2 H_2O / THF mixture (2 mM) before irradiating by UV (solid line), after irradiating by UV and exposing in visible light (dash line).

Fig. S5 2D NMR NOESY spectrum of 1 at ambient temperature. Inset: proposed structure of lamellar assemblies formed by 1.

Fig. S6 ¹H-NMR spectra (500 MHz, r. t.) of 1:1 **2** and DMpillar[5]arene mixture (2 mM) in 1:2 (v/v) D_2O / THF-d₈ mixed solvent in comparison with the individual **2** and the individual DMpillar[5]arene.

Fig. S7 The sample solution, **1** in the 1/2 (v/v) mixture of water and THF (2 mM), was irradiated by the UV lamp for 1 hour at rt. One droplet of the solution was cast on a silicon plate and carefully air-dried in the absence of light. Immediately, AFM detection with air tapping mode was performed. Air tapping mode AFM images of assemblies of **1** (upper left, planar image with scale bar = 7.6 mm; upper right, steric image; bottom, a line profile extracted along the marked white trace in the upper left image).

Fig. S8 Micro-morphology of **1** in the 1:2 H_2O / THF mixture (2 mM) after exposing in visible light once again for 1 h: negative stained TEM image (a) and gold sputtering SEM images (b, scale bar = 5 μ m).

Fig. S9 Air tapping mode AFM images of assemblies of 1 which were exposed to visible light (upper left, planar image with scale bar = $15.3 \mu m$; upper right, steric image; bottom, a line profile extracted along the marked white trace in the upper left image).

Table S1

Table S1. Morphologies and sizes of aggregates obtained by TEM, SEM, ESEM and AFM.

Conditions	Morphology	Size (D / nm)
Visible light	Hollow spheres (TEM)	150~600 (TEM)
	Hollow spheres (SEM)	180~700 (SEM)
	Hollow spheres (ESEM)	300~1000 (ESEM)
	Hollow spheres (AFM)	300~1000 (AFM)
UV (365 nm)	Solid spheres (TEM)	300~650 (TEM)
	Solid spheres (SEM)	200~600 (SEM)
	Solid spheres (AFM)	300~700 (AFM)
Visible light	Hollow spheres (TEM)	250~1700 (TEM)
	Hollow spheres (SEM)	300~1500 (SEM)
	Hollow spheres (AFM)	300~1800 (AFM)

References

^{S1} A. Loudet, J. Han, R. Barhoumi, J. P. Pellois, R. C. Burghardt, K. Burgess, *Org. Biomol. Chem.*, 2008, 6, 4516.

⁵² N. L. Strutt, R. S. Forgan, J. S. Spruell, Y. Y. Botros, J. F. Stoddart, J. Am. Chem. Soc., 2011, 133, 5668.

⁵³ (a) P. Mukerjee, M. J. Gumkowski, C. C. Chan, R. Sharma, J. Phys. Chem., 1990, **94**, 8832; (b) B. W.

Liu, Y. Chen, B. E. Song, Y. Liu, Chem. Commun., 2011, 47, 4418.