Metallo-responsive switching between hexadecameric and octameric supramolecular G-quadruplexes

Mariana Martín-Hidalgo & José M. Rivera

Department of Chemistry, University of Puerto Rico at Río Piedras, San Juan, PR 00931 jmrivortz@mac.com

Table of Contents

A. Characterization of the target compound	2
 B. ¹H NMR studies of 1 using potassium and strontium salts Table S1 Type (molecularity) and relative amounts (fidelity) of quadruplexes formed by 1 (30 mM) determined by ¹H NMR (0.5 equiv of KI, and 0.125 equiv of Srl₂ at 298.2 K) in CD₃CN. Fig. S1 ¹H NMR (500 MHz, CD₃CN, 298.2 K) of 1 (30 mM) with 0.5 equiv of KI. Fig. S2 ¹H NMR (500 MHz, CD₃CN, 298.2 K) of 1 (30 mM) with 0.125 equiv of Srl₂. 	3 3 4 4
C. Vapor Pressure Osmometry Studies Table S2 Molecular weight (MW) as determined by VPO in CH ₃ CN.	5 5
D. Diffusion NMR studies Table S3 Diffusion coefficients (D _s) and hydrodynamic radii (R _H) of the assemblies formed by 1, determined by PFG–NMR in CD ₃ CN.	6 6
E. Mass Spectrometry Fig. S3 MS spectra of 1 (10 mM) solutions with 0.5 equiv of KI (top) and 0.125 equiv of Srl ₂ (botton in CH ₃ CN.	7 n) 8
 F. Thermal stability studies Table S4 Melting temperatures for the assemblies of 1 (5mM) as a function of different metal salts Fig. S4 Variable temperature ¹H NMR (500 MHz, CD₃CN) spectra 1₈•Sr²⁺ (5 mM in 1, with 0.125 equiv of Srl₂). Fig. S5 Melting profile as determined by VT-NMR measurements for 1₈•Sr²⁺ (5 mM in 1, 0.125 equi Srl₂). 	9 .9 10 iv. 11
 G. ¹H NMR titration experiments of mAGi (1) with KI and Srl₂ Fig. S6 ¹H NMR (500 MHz, CD₃CN, 298.2 K) spectra of 1 (30 mM, with 0.5 equiv of KI) followed by those with increasing amounts of Srl₂ (until reaching 0.125 equiv). Fig. S7 ¹H NMR (500 MHz, CD₃CN, 298.2 K) spectra of 1 (30 mM) with Srl₂ (0.125 equiv) followed by those with increasing amounts of KI (until reaching 0.5 equiv). 	11 , 12 12
 H. Switching experiments Fig. S8 ¹H NMR (500 MHz, CD₃CN, 298.2 K) spectra of 1 (30 mM) with 0.5 equiv of KI and 0.125 equiv of Srl₂, followed by the addition of increasing amounts of K₂SO₄ until reaching 0.125 equiv of K₂SO₄. Fig. S9 ¹H NMR (500 MHz, CD₃CN, 298.2 K) spectra of 1 (30 mM) with 0.5 equiv of KI followed by the addition of 0.125 equiv of Srl₂. The eventual addition of 0.125 equiv of K₂SO₄ followed by the further addition of 0.125 equiv of Srl₂ induces the switching between the octameric and hexadecameric states. Fig. S10. Titration of 1 (30 mM) solution with K₂SO₄ as measured by ¹H NMR (500 MHz, CD₃CN, 298.2 K). 	13 13 14 15

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Supporting information

A. Characterization of the target compound

NMR spectra were recorded on Bruker DRX-500 or AV-500 spectrometer, equipped with either a 5 mm BBO or a TXI probe and with nominal frequencies of 500.13 MHz for proton and 125.77 MHz for carbon respectively. All NMR experiments were performed at 298.15 K unless otherwise stated. All the assemblies were characterized with ¹H NMR and 2D-NMR techniques such as COSY and NOESY.

The synthesis and characterization for **1** was reported in Gubala, V.; Betancourt, J. E.; Rivera, J. M. *Org. Lett.* **2004**, *6*, 4735-4738.

B. ¹H NMR studies of 1 using potassium and strontium salts

A monovalent and a divalent cation were used to promote the cation-templated self-assembly of **1**. The addition of 0.5 equiv of KI and 0.125 equiv of Srl_2 ,¹ into 30 mM solutions of the **1** in CD₃CN yield the formation of different GQs, different molecularities with high fidelity were observed (Table S1).²

Table S1 Type (molecularity) and relative amounts (fidelity) of quadruplexes formed by **1** (30 mM) determined by ¹H NMR (0.5 equiv of KI, and 0.125 equiv of Srl₂ at 298.2 K) in CD₃CN.

Cation	Assembly (%)			
Oution	O_{D4}	Н	UA	
K ⁺	-	90	10	
Sr ²⁺	100	-	-	

Note: O_{D4} = Octamer (D4 symmetry); H = Hexadecamer; UA = Unidentified Assembly All measurements have an estimated 5% error

¹ The equivalents of salt reported are calculated realtive to the monomeric subunits. For example, 0.5 equiv of KI relative to **1** represents 8 equiv (or an excess) of K⁺ relative to **1**₁₆.

² Fidelity refers to the percentage of the desired supramolecule when there are two or more potential outcomes. For more information see: Todd, E. M.; Quinn, J. R.; Park, T.; Zimmerman, S. C., Fidelity in the supramolecular assembly of triply and quadruply hydrogen-bonded complexes. *I. J. Chem.* **2005**, *45*, 381-389.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Fig. S1 ¹*H* NMR (500 MHz, CD₃CN, 298.2 K) of *1* (30 mM) with 0.5 equiv of KI. The signals corresponding to the hexadecamer's inner (i) and outer (o) tetrads are highlighted.

Fig. S2¹H NMR (500 MHz, CD₃CN, 298.2 K) of 1 (30 mM) with 0.125 equiv of Srl₂.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Supporting information

C. Vapor Pressure Osmometry Studies

Vapor Pressure Osmometer (VPO) model Knauer K-7000 with the corresponding software EuroOsmo® version 1.3 was used. The calibration of the instrument was performed, using a standard of formula C₅₄H₅₇N₉O₁₂ and a molecular weight of 1024.08 g/mol. Solutions with concentrations ranging from (0.02 - 0.05) molal were prepared, after the calibration procedure, a calibration curve and calibration constant (K_{calib}) value were obtained. For each solution at different concentrations, 3-5 measured values were obtained with good to excellent standard deviation. Validation of the calibration method showed a molecular weight for the standard of 1010 g/mol, which compared to the theoretical value of 1024.08 g/mol, represents a discrepancy of 1.4%. Solutions of 1 (45 - 25 mM) in dry acetonitrile containing 0.5 equiv of the potassium and 0.125 equiv of the strontium salt. Again for each of these solutions 3-5 measurements were obtained with good to excellent standard deviation. The start gain was set to 128, the chamber temperature to 40 °C and the head temperature to 45 °C. To obtain a stable baseline, drops of solvent were added to the thermistors and the system was autozeroed several times together with a stabilization time of about an hour after obtaining the best possible baseline. Input of the concentrations in g/kg prior sample injection lead to computer calculated average molecular weight for a given sample. VPO experiments were performed for assemblies that show 90% of fidelity or higher.

Sample S	Solution composition	MW (Da)			
F -			Experimental	Discrepancy	
1	1 ₁₆ •3(KI)	8907	8661	246	
	1 ₈ •Srl ₂	4546	4566	20	

Table S2	Molecular v	veight (MW) as de	etermined	by VI	PO in	CH₃CN.
----------	-------------	------------	---------	-----------	-------	-------	--------

* Calculated assuming 100% fidelity in CH₃CN.

For VPO standard synthesis and preparation see: Rivera-Sánchez, M. d. C.; Andújar-de-Sanctis, I.; García-Arriaga, M.;Gubala, V.; Hobley, G.; Rivera, J. M. *J. Am. Chem. Soc.* **2009**,*131*,10403–10405

D. Diffusion NMR studies

Diffusion NMR experiments were carried out in a Bruker DRX-500 spectrometer equipped with a 5 mm BBO probe, using the Stimulated Echo Pulse Gradient sequence (stebpgp1s) in FT mode. To improve homogeneity a "13 interval pulse sequence" was used with two pairs of bipolar gradients, all samples were prepared in Shigemi tubes (Shigemi, Inc., Allison Park, PA) and the temperature was actively controlled at (25.0 \pm 0.5) °C. Diffusion coefficients (**D**) were derived using integration of the desired peaks to a single exponential decay, using the Bruker software package T1/T2 Relaxation (TopSpin v 2.0). The supramolecules were assumed to be spherical³ and their

hydrodynamic radii were calculated with the Stokes-Einstein equation: $D = \frac{k_{\rm B}T}{6 \pi \eta r}$

where T denotes the temperature, η is the viscosity of the solvent at the given

temperature, k_B is the Boltzmann-Constant, **D** is the measured diffusion constant and **r** is the hydrodynamic radii. For the calculations of the hydrodynamic radii in CD₃CN the value ($\eta = 0.341 \times 10^{-3} \text{ Kg} \cdot \text{m}^{-1} \cdot \text{s}^{-1}$, 298.15 K) reported elsewhere was used. All the measurements were performed in triplicate and the uncertainty is given as the standard deviation. An internal adenosine standard was used to validate the experiments, $D = (12.7 \pm 1) \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ and $r = (5.0 \pm 0.5) \text{ Å}$ at 298.15 K.

Adenosine Standard

Table S3 Diffusion coefficients (D_s) and hydrodynamic radii (R_H) of the assemblies formed by **1**, determined by PFG–NMR in CD₃CN.

Assembly	<i>D</i> _s (10 ⁻¹⁰ m ² /s) ± SD	(<i>R</i> _H) (Å)
1 ₁₆ ∙3(KI)	6.4 ± 0.1	10.0 ± 0.2
1 ₈ •Srl ₂	7.0 ± 0.2	9.2 ± 0.3

E. Mass Spectrometry

High-resolution electrospray ionization mass spectrometry (ESI MS) was recorded on a Q-Tof Ultima Global mass spectrometer (Micromass) equipped with a Z-spray source. Electrospray ionization was achieved in the positive mode by 3 kV on the needle. 10mM solutions of monomer **1** in acetonitrile with 0.5 equiv of KI and 0.125 equiv of Srl₂ were prepared. At room temperature these samples were directly and continuously infused at a flow rate of 5 μ L/min with a syringe pump. The source block temperature was maintained at 60° C and the desolvation gas was heated to 80° C. Argon was used as the collision gas and the cone voltage was set to 35 V. The mass spectrometer was operated in the mass range 0-4000 amu.

Fig. S3 MS spectra of **1** (10 mM) solutions with 0.5 equiv of KI (top) and 0.125 equiv of Srl₂ (bottom) in CH₃CN.

F. Thermal stability studies

Variable temperature experiments were performed at 5 mM of **1**. At this particular concentration there is enough monomer and self-assembled species to enable the construction of a melting profile. Integration of the area under the H1' peaks and the first derivative calculations allows a good approximation of the melting temperature for the assemblies. The fraction (*f*) of assembly (fidelity) $f = X_{SA}/X_T$, is reported as the ratio between the total self-assembled species (X_{SA}) and the total concentration of **1** (X_T), see Fig.S4 for more information. Value for the thermal stability of the hexadecamer form by **1** in KI was taken from Betancourt, J. E.; Martín-Hidalgo, M.; Gubala, V.; Rivera, J. M., *J. Am. Chem. Soc.* **2009**, *131*, 3186-3188.

Table S4 Melting temperatures for the assemblies of **1** (5mM) as a function of different metal salts.

Metal salt	T _m (K)
KI	329.2
Srl ₂	>333.2

Fig. S4 Variable temperature ¹H NMR (500 MHz, CD_3CN) spectra **1**₈•Sr²⁺ (5 mM in **1**, with 0.125 equiv of Srl₂).

Fig. S5 Melting profile as determined by VT-NMR measurements for $\mathbf{1}_{8} \cdot Sr^{2+}$ (5 mM in 1, 0.125 equiv. Srl₂).

G. ¹H NMR titration experiments of 1 with KI and Srl₂

1 (30 mM) was assembled into the hexadecamer $\mathbf{1}_{16} \cdot 3K^+$ by adding 0.5 equiv of KI in CD₃CN. Upon incremental addition of Srl₂ the signals corresponding to $\mathbf{1}_{16} \cdot 3K^+$ decreased with the concomitant increase of those corresponding to $\mathbf{1}_{8} \cdot Sr^{2+}$ reaching ~100% of fidelity at 0.125 equiv of Srl₂ (Fig. S6). Similarly, **1** was assembled with 0.125 equiv of Srl₂ and upon incremental addition of KI the supramolecule remains as an octamer (Fig. S7). Only small peaks corresponding to a putative hexadecamer are detected (ca. 5 %).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2011

Supporting information

Martín-Hidalgo M. et al.

Fig. S6 ¹H NMR (500 MHz, CD₃CN, 298.2 K) spectra of **1** (30 mM, with 0.5 equiv of KI) followed by those with increasing amounts of Srl₂ (until reaching 0.125 equiv).

Fig. S7 ¹H NMR (500 MHz, CD₃CN, 298.2 K) spectra of **1** (30 mM) with Srl₂ (0.125 equiv) followed by those with increasing amounts of KI (until reaching 0.5 equiv).

H. Switching experiments

The switching studies were performed using a solution of the hexadecamer of **1** (30 mM, 0.5 equiv KI) in deuterated acetonitrile, after adding 0.0625 equiv of Srl₂ an interconvertion from $\mathbf{1}_{16}\cdot\mathbf{3K}^+$ to $\mathbf{1}_8\cdot\mathbf{Sr}^{2+}$ was observed (Fig. S8). The controlled addition of K₂SO₄ caused the precipitation of SrSO₄ with the simultaneous switching of $\mathbf{1}_8\cdot\mathbf{Sr}^{2+}$ back to $\mathbf{1}_{16}\cdot\mathbf{3K}^+$ (Fig. S9). The subsequent filtration of the precipitate and further addition of Srl₂ regenerated the octamer $\mathbf{1}_8\cdot\mathbf{Sr}^{2+}$. The process was repeated three times with no significant loss in fidelity. The cycle can be started from the octamer of Srl₂ followed by the addition of 0.5 equiv of K₂SO₄. On the other hand **1** in K₂SO₄ only promotes the formation of an octamer ($\mathbf{1}_8\cdot\mathbf{K}^+$) with a moderate fidelity of 66% (Fig. S10).

Fig. S8 ¹H NMR (500 MHz, CD₃CN, 298.2 K) spectra of **1** (30 mM) with 0.5 equiv of KI and 0.125 equiv of Srl₂, followed by the addition of increasing amounts of K_2SO_4 until reaching 0.125 equiv of K_2SO_4 .

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Fig. S9 ¹*H* NMR (500 MHz, CD₃CN, 298.2 K) spectra of **1** (30 mM) with 0.5 equiv of KI followed by the addition of 0.125 equiv of Srl₂. The eventual addition of 0.125 equiv of K_2SO_4 followed by the further addition of 0.125 equiv of Srl₂ induces the switching between the octameric and hexadecameric states.

Fig. S10. Titration of **1** (30 mM) solution with K_2SO_4 as measured by ¹H NMR (500 MHz, CD₃CN, 298.2 K).

Disclaimer: The project described in this manuscript was supported by Award Number 5SC1GM093994-02 from the National Institute Of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute Of General Medical Sciences or the National Institutes of Health.