Electronic Supplementary Information

Encapsulated oligothiophenes having electron-affinity characteristics

Masaru Endou, Yutaka Ie, and Yoshio Aso

The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan, and PRESTO-JST, 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan

Table of Contents

S2–S4
S 5
S 5
S6-S9
S10-S17
S18-S20
S21-S27
S28

Fig. S1 CV of $h(TC_mT)_2h$ in CH₂Cl₂ containing 0.1 M TBAPF₆ as a supporting electrolyte.

Fig. S2 DPVs of oligothiophenes in CH_2Cl_2 containing 0.1 M TBAPF₆ as a supporting electrolyte.

Fig. S3 Calculated frontier orbitals of LUMO (a) and HOMO (b) for $(TC_bT)_2$.

Fig. S4 UV-vis-NIR spectra of the dianionic species of $(\mathbf{TC}_{b}\mathbf{T})_{2}$. These measurements were performed by treatment of $(\mathbf{TC}_{b}\mathbf{T})_{2}$ with K/graphite in THF at room temperature under inert conditions. According to time-dependent DFT calculations of dianionic species at the long-range corrected (LC)-BLYP/6-31+G(d,p) level, the observed band at 1.44 eV can be mainly ascribed to the HOMO–LUMO transition.

The calculated excited state of dianionic species of $(\mathbf{TC_bT})_2$ at LC-BLYP/6-31+G(d, p) level. Excited State 1: 1.49 eV (831 nm): oscillator strength (*f*) =1.76

HOMO-1 – LUMO+1 0.18875 HOMO – LUMO 0.63891

Fig. S5 UV-vis-NIR spectra of $h(TC_mT)_2h$ (dashed line) and $h(TC_mT)_2h^{+}$ (black line : r.t. red line : 233K. blue line : after warming to r.t.). N, P, and D denote neutral, polaronic, and π -dimeric bands, respectively.

Fig. S6 UV-vis-NIR spectra of $(TC_bT)_4$ with successive oxidation in CH_2Cl_2 .

General Information. Column chromatography was performed on silica gel, KANTO Chemical silica gel 60N (40–50 μ m). Thin-layer chromatography (TLC) plates were visualized with UV light. Preparative gel-permeation chromatography (GPC) was performed on Japan Analytical Industry LC-918 equipped with JAI-GEL 1H/2H or 2.5H/3H columns. Analytical GPC was performed on a Hitachi High-Technologies Corporation L-2420/L-2130 equipped with a shodex K-803L. Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded on a JEOL ECS-400 or ECA-600 spectrometer in CDCl₃ with tetramethylsilane as an internal standard. Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (Hz), and integration. Mass spectra were obtained on a Shimadzu GCMS-OP-5050 or a Shimadzu AXIMA-TOF. UV-vis-NIR spectra were recorded on a Shimadzu UV-3100PC spectrophotometer equipped with nonfocused optics in an environmental chamber Oxford Optistat-DN cryostat. All spectra were obtained in spectrograde solvents. Cyclic voltammetry was carried out on a BAS CV-620C voltammetric analyzer. High resolution mass spectrum (HRMS) was obtained on Brucker ultraflex III. Elemental analyses were performed on Perkin Elmer LS-50B by the Elemental Analysis Section of CAC, ISIR, Osaka University.

Materials. All reactions were carried out under a nitrogen atmosphere. Solvents of the highest purity grade were used as received. Unless stated otherwise, all reagents were purchased from commercial sources and used without purification. 1,3-dibromo-4*H*-cyclopenta[*c*]thiophene-4,6(5*H*)-dione (**1**)¹, 3,5-di-*t*-butylbenzylbromide², and 2-hexyl-5-tributylstannylthiophene³ were prepared by reported procedures, and ¹H NMR data of these compound were in agreement with those previously reported.

Experimental Procedure

Synthesis of **2**: **1** (1.55 g, 5.00 mmol) and 3,5-di-*t*-butylbenzylbromide (8.50 g, 30.0 mmol) were placed in a test tube with screw cap and dissolved in acetonitrile (25 mL). 50 wt% KF on celite (3.47 g, 29.9 mmol) was added, and the resulting mixture was stirred at 70 °C for 12 h. After being cooled to room temperature, the mixture was filtered over celite. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/CHCl₃ = 3/1) to give **2** (2.38 g, 67%).

Colorless solid; TLC: $R_f = 0.16$ (hexane/CHCl₃ = 3/1); Mp: 195-197 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.19 (s, 18H), 3.25 (s, 4H), 6.82 (d, J = 2.0 Hz, 4H), 7.06 (t, J = 2.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 31.3, 34.6, 42.7, 72.2, 110.6, 120.3, 124.2, 134.2 145.3, 150.6, 194.4; MS (DI): m/z = 714 (M⁺); Anal. Calcd for C₃₇H₄₆Br₂O₂S: C, 62.19; H, 6.49. Found: C, 62.06; H, 6.52.

Synthesis of $(\mathbf{TC}_b\mathbf{T})_1$: 2 (970 mg, 1.36 mmol), 2-tributylstannylthiophene (1.52 g, 4.07 mmol), and Pd(PPh₃)₄ (155 mg, 0.135 mol) were placed in a test tube with screw cap and dissolved in toluene (15 mL). The reaction mixture was stirred at 120 °C for 12 h. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on alumina (hexane/CHCl₃ = 3/1) to give (**TC**_b**T**)₁ (910 mg, 93%).

Yellow solid; TLC: $R_f = 0.42$ (hexane/CHCl₃ = 3/1); Mp: 233-235 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.05 (s, 18H), 3.29 (s, 4H), 6.85 (d, J = 2.0 Hz, 4H), 6.99 (t, J = 2.0 Hz, 2H), 7.05 (dd, J = 4.8, 3.6 Hz, 2H), 7.35 (dd, J = 4.8, 1.2 Hz, 2H), 7.95 (dd, J = 3.6, 1.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 31.1, 34.5, 43.0, 72.2, 120.2, 124.2, 128.1, 128.4, 129.5, 133.0, 134.7, 135.1, 140.6, 150.3, 195.8; MS (MALDI-TOF,1,8,9-trihydroxyanthracene matrix) m/z 719.7 (M⁺, Calcd 720.3); Anal. Calcd for C₄₅H₅₂O₂S₃: C, 74.95; H, 7.27. Found: C, 74.97; H, 7.28.

Synthesis of $(TC_bT)_n$: $(TC_bT)_1$ (360 mg, 0.499 mmol), PdCl₂(PhCN)₂ (19 mg, 50 µmol), and AgF (254 mg, 2.00 mmol) were placed in a test tube with screw cap and dissolved in DMSO (1.6 mL) and CHCl₃ (0.8 mL). After stirring for 12 h at 60 °C, the reaction mixture was quenched by addition of NaCl aq.. The reaction mixture was filtered over celite, and the organic layer was separated. The organic layer was washed with water and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was filtered over alumina with CHCl₃ as eluent, followed by purification with preparative GPC (JAIGEL 2.5H/3H, CHCl₃) to give $(TC_bT)_2$ (96 mg, 27%), $(TC_bT)_3$ (82 mg, 23%), and $(TC_bT)_4$ (32 mg, 9%).

 $(\mathbf{TC_bT})_2$: Red solid; Mp: > 300 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.08 (s, 72H), 3.31 (s, 8H), 6.87 (d, J = 2.0 Hz, 8H), 7.01 (t, J = 2.0 Hz, 4H), 7.08 (dd, J = 4.8, 3.6 Hz, 2H), 7.19 (d, J = 3.6 Hz, 2H), 7.38 (dd, J = 4.8, 1.2 Hz, 2H), 7.89 (d, J = 3.6 Hz, 2H), 7.97 (dd, J = 3.6, 1.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 31.1, 34.5, 43.0, 72.3, 120.2, 124.2, 125.3, 128.2, 128.6, 129.7, 130.5, 132.7, 132.9, 134.1, 134.6, 135.3, 139.1, 140.8, 141.0, 150.4, 195.7, 195.9; MS (MALDI-TOF,1,8,9-trihydroxyanthracene matrix) *m*/*z* 1438.1 (M⁺, Calcd 1438.6); Anal. Calcd for C₉₀H₁₀₂O₄S₆: C, 75.06; H, 7.14. Found: C, 74.67; H, 7.17.

(**T**C_b**T**)₃: Dark purple solid; Mp: > 300 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.08 (s, 72H), 1.10 (s, 36H), 3.32 (s, 8H), 3.33 (s, 4H), 6.88 (d, *J* = 2.0 Hz, 8H), 6.89 (d, *J* = 2.0 Hz, 4H), 7.02 (t, *J* = 2.0 Hz, 4H), 7.03 (t, *J* = 2.0 Hz, 2H), 7.08 (dd, *J* = 4.8, 3.6 Hz, 2H), 7.21 (d, *J* = 3.6 Hz, 4H), 7.38 (dd, *J* = 4.8, 1.2 Hz, 2H), 7.90 (d, *J* = 3.6 Hz, 2H), 7.91 (d, *J* = 3.6 Hz, 2H), 7.98 (dd, *J* = 3.6, 1.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 31.3, 31.3, 34.6, 34.6, 43.1, 72.4, 120.3, 120.4, 124.3, 125.5, 125.6, 128.4, 128.8, 129.8, 130.6, 130.8, 132.7, 132.9, 133.0, 134.1, 134.4, 134.7, 135.5, 139.1, 139.5, 140.9, 141.2, 141.2, 150.5, 150.5, 195.8, 195.9, 196.0; MS (MALDI-TOF,1,8,9-trihydroxyanthracene matrix) *m*/*z* 2156.6 (M⁺, Calcd 2156.9); Anal. Calcd for C₁₃₅H₁₅₂O₆S₉: C, 75.09; H, 7.10. Found: C, 74.83; H, 7.16.

(**TC**_b**T**)₄: Dark violet solid; Mp: > 300 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.08 (s, 72H), 1.10 (s, 72H), 3.31 (s, 8H), 3.33 (s, 8H), 6.87 (d, *J* = 1.6 Hz, 8H), 6.89 (d, *J* = 1.6 Hz, 8H), 7.01 (t, *J* = 1.6 Hz, 4H), 7.03 (t, *J* = 1.6 Hz, 4H), 7.07 (dd, *J* = 4.8, 3.6 Hz, 2H), 7.21 (m, 6H), 7.37 (dd, *J* = 4.8, 1.2 Hz, 2H), 7.90 (m, 6H), 7.97 (dd, *J* = 3.6, 1.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 31.2, 31.2, 34.5, 34.5, 43.0, 72.3, 120.2, 120.3, 124.2, 125.4, 125.5, 128.3, 128.7, 129.7, 130.5, 130.7, 132.6, 132.7, 132.8, 132.9, 134.0, 134.2, 134.3, 134.6, 135.4, 139.0, 139.3, 139.4, 140.8, 141.1, 141.2, 141.2, 150.4, 150.4, 195.7, 195.8, 195.8, 195.9; MS (MALDI-TOF,1,8,9-trihydroxyanthracene matrix) *m*/*z* 2874.6 (M⁺, Calcd 2875.2); Exact mass Calcd for C₁₈₀H₂₀₂O₈S₁₂: 2875.205. Found: 2875.194.

Scheme S1. Synthesis of $h(TC_mT)_2h$.

Synthesis of 3: 1 (660 mg, 2.13 mmol) and iodomethane (1.81 g, 12.8 mmol) were placed in a test tube with screw cap and dissolved with acetonitrile (10 mL). 50 wt% KF on celite (1.49 g, 12.8 mmol) was added and the resulting mixture was stirred at 70 °C for 12 h. After being cooled to room temperature, the mixture was filtered over celite. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/CHCl₃ = 2/1) to give **3** (370 mg, 51%).

Colorless solid; Mp: 202-204 °C; TLC: $R_f = 0.40$ (hexane/CHCl₃ = 2/1); ¹H NMR (400 MHz, CDCl₃): δ 1.33 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 20.9, 59.5, 113.4, 143.1, 194.6; MS (DI): m/z = 338 (M⁺); Anal. Calcd for C₉H₆Br₂O₂S: C, 31.98; H, 1.79. Found: C, 31.98; H, 2.02.

Synthesis of 4: **3** (200 mg, 0.575 mmol), 2-tributylstannylthiophene (257 mg, 0.690 mmol), 2-hexyl-5-tributylstannyl thiophene (316 mg, 0.690 mmol), and Pd(PPh₃)₄ (67 mg, 58 μ mol) were placed in a test tube with screw cap and dissolved in toluene (6 mL). The resulting mixture was stirred at 120 °C for 12 h. After removal of the solvent under reduced pressure, the residue was filtered over alumina with CHCl₃ as eluent, followed by purification with preparative GPC (JAIGEL 1H/2H, CHCl₃) to give **4** (91 mg, 37 %).

Yellow solid; Mp: 99-101 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, J = 7.2 Hz, 3H), 1.28-1.44(m, 6H), 1.36(s, 6H), 1.72 (m, 2H), 2.85 (t, J = 7.6 Hz, 2H), 6.81 (d, J = 3.6 Hz, 1H), 7.13 (dd, J = 5.2, 3.6 Hz, 1H), 7.43 (dd, J = 5.2, 1.2 Hz, 1H), 7.93 (d, J = 3.6 Hz, 1H), 8.07 (dd, J = 3.6, 1.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 14.1, 21.3, 22.6, 28.8, 30.3, 31.5, 31.5, 59.6, 125.8, 128.4, 128.6, 129.7, 130.2, 130.5, 133.1, 136.4, 137.2, 138.0, 138.1, 150.9, 196.5, 196.7; MS (MALDI-TOF,1,8,9-trihydroxyanthracene matrix) m/z 427.4 (M⁺, Calcd 428.1); Anal. Calcd for C₂₃H₂₄O₂S₃: C, 64.45; H, 5.64. Found: C, 64.17; H, 5.58.

Synthesis of $h(TC_mT)_2h$: 4 (91 mg, 0.21 mmol), AgF (107 mg, 0.85 mmol), and PdCl₂(PhCN)₂ (8.1 mg, 21 µmol) were placed in a test tube with screw cap and dissolved in DMSO (1.0 mL) and CHCl₃ (0.5 mL). After stirring for 12 h at 60 °C, the reaction mixture was quenched by addition of NaCl aq.. The reaction mixture was filtered over celite, and the organic layer was separated. The organic layer was washed with water and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was filtered over alumina with CHCl₃ as eluent, followed by purification with preparative GPC (JAIGEL 1H/2H, CHCl₃) to give $h(TC_mT)_2h$ (30 mg, 33%).

Dark violet solid; Mp: 287-289 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, J = 7.2 Hz, 6H), 1.28-1.46 (m, 12H), 1.37 (s, 12H), 1.73 (m, 4H), 2.85 (t, J = 7.6 Hz, 4H), 6.81 (d, J = 3.6 Hz, 2H), 7.26 (dd, J = 5.2, 1.2 Hz, 1H), 7.94 (d, J = 3.6 Hz, 2H), 7.99 (d, J = 3.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃/CS₂ = 1/2): δ 14.4, 21.4, 23.0, 29.2, 30.7, 31.8, 31.9, 59.6, 125.9, 126.2, 130.7, 131.0, 133.2, 135.5, 137.6, 138.4, 138.6, 139.5, 151.2, 196.1, 196.5; MS (MALDI-TOF,1,8,9-trihydroxyanthracene matrix) m/z 853.4 (M⁺, Calcd 854.2); Exact mass Calcd for C₄₆H₄₆O₄S₆: 854.1707, Found: 854.1720.

NMR Spectra

¹H NMR spectrum of **2**

¹³C NMR spectrum of **2**

¹H NMR spectrum of **3**

¹³C NMR spectrum of **3**

¹H NMR spectrum of **4**

¹³C NMR spectrum of **4**

¹H NMR spectrum of (TC_bT)₁

¹³C NMR spectrum of (TC_bT)₁

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

¹H NMR spectrum of (TC_bT)₂

¹³C NMR spectrum of (TC_bT)₂

¹H NMR spectrum of (**TC**_b**T**)₃

¹³C NMR spectrum of $(\mathbf{TC}_{\mathbf{b}}\mathbf{T})_3$

¹H NMR spectrum of (**TC**_b**T**)₄

¹³C NMR spectrum of (**TC**_b**T**)₄

¹H NMR spectrum of $h(TC_mT)_2h$

¹³C NMR spectrum of h(TC_mT)₂h

GPC Charts GPC chart of (TC_bT)₁

GPC chart of (TC_bT)₃

GPC chart of (TCbT)4

GPC chart of h(TC_mT)₂h

Computational Details

All calculations were conducted using Gaussian 09 program. The geometry was optimized with the restricted Becke Hybrid (B3LYP) at 6-31 G(d, p) level.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-6.951581	0.046880	-1.937077
2	6	0	-7.776435	0.052368	-0.633940
3	6	0	-6.836555	0.014366	0.497091
4	6	0	-5.491763	-0.016379	0.011891
5	6	0	-5.487613	-0.015549	-1.457912
6	6	0	-6.956622	0.009529	1.876777
7	16	0	-5.332263	-0.029606	2.569813
8	6	0	-4.519782	-0.038761	1.000044
9	6	0	-8.091215	0.027680	2.767843
10	6	0	-3.082218	-0.057983	0.961639
11	6	0	-7.308112	-1.181479	-2.826091
12	6	0	-7.213636	1.344455	-2.761477
13	6	0	-6.890076	2.652038	-2.064999
14	6	0	-7.133458	-2.542824	-2.181405
15	6	0	-5.606504	3.209592	-2.170980
16	6	0	-5.284417	4.413479	-1.540913
17	6	0	-6.291116	5.055091	-0.796791
18	6	0	-7.581914	4.534532	-0.670060
19	6	0	-8.060214	-4.408815	-0.906179
20	6	0	-6.816470	-5.048927	-1.003579
21	6	0	-5.726978	-4.474544	-1.674152
22	6	0	-5.909733	-3.215523	-2.261106
23	6	0	-3.885014	5.051911	-1.637239
24	6	0	-8.686595	5.235277	0.144451

Optimized structure of (TC_bT)₂ at B3LYP/6-31G(d, p).

25	6	0	-4.359460	-5.176521	-1.788982
26	6	0	-9.264400	-5.039918	-0.179597
27	8	0	-8.997532	0.089199	-0.592794
28	8	0	-4.519702	-0.058086	-2.204710
29	6	0	-7.861374	3.319806	-1.318728
30	6	0	-8.196168	-3.148861	-1.503758
31	16	0	-9.765072	0.073184	2.221855
32	6	0	-10.338534	0.066909	3.850698
33	6	0	-9.319884	0.032172	4.768438
34	6	0	-8.045655	0.009898	4.153865
35	6	0	-2.229765	-0.059565	2.059076
36	6	0	-0.865196	-0.076750	1.726225
37	6	0	-0.635699	-0.088580	0.358821
38	16	0	-2.146182	-0.076314	-0.529289
39	1	0	-11.403287	0.089528	4.039849
40	6	0	6.945993	0.101736	1.952721
41	6	0	5.480533	0.052673	1.475882
42	6	0	5.483945	-0.032085	0.008502
43	6	0	6.828913	-0.043507	-0.477264
44	6	0	7.769666	0.049781	0.649987
45	6	0	4.511564	-0.107514	-0.976815
46	16	0	5.323938	-0.201398	-2.543851
47	6	0	6.948685	-0.136296	-1.853805
48	6	0	3.073864	-0.117879	-0.938224
49	6	0	8.083296	-0.192610	-2.743594
50	6	0	7.237479	1.408751	2.748092
51	6	0	7.271968	-1.118410	2.868008
52	6	0	7.077102	-2.485548	2.241623
53	6	0	6.955376	2.706377	2.016067
54	6	0	8.129815	-3.100418	1.546298
55	6	0	7.971709	-4.353517	0.950809
56	6	0	6.721210	-4.986052	1.074119
57	6	0	5.650866	-4.410349	1.763886

58	6	0	5.413769	4.511285	1.438865
59	6	0	6.434569	5.092081	0.672799
60	6	0	7.708849	4.517467	0.560323
61	6	0	7.948718	3.318713	1.244927
62	6	0	9.105127	-5.051464	0.174318
63	6	0	4.282729	-5.104453	1.909054
64	6	0	8.833650	5.151522	-0.281542
65	6	0	4.012524	5.139955	1.568358
66	8	0	4.512529	0.074915	2.223394
67	8	0	8.990670	0.085568	0.605864
68	6	0	5.853401	-3.147183	2.345099
69	6	0	5.698305	3.312628	2.106100
70	16	0	2.137392	-0.052432	0.550499
71	6	0	0.627418	-0.109612	-0.335891
72	6	0	0.857127	-0.171822	-1.702011
73	6	0	2.221771	-0.176502	-2.034597
74	6	0	8.037052	-0.306135	-4.124993
75	6	0	9.311277	-0.343110	-4.739170
76	6	0	10.330772	-0.258574	-3.825826
77	16	0	9.758247	-0.131027	-2.201324
78	1	0	11.395633	-0.262870	-4.015666
79	1	0	-6.682526	-1.113890	-3.722331
80	1	0	-8.349374	-1.053071	-3.139529
81	1	0	-6.622922	1.260657	-3.679790
82	1	0	-8.271164	1.327330	-3.045154
83	1	0	-4.864532	2.679750	-2.756501
84	1	0	-6.051684	5.992436	-0.309505
85	1	0	-6.695131	-6.022268	-0.549599
86	1	0	-5.091921	-2.738836	-2.793220
87	6	0	-2.919190	4.216901	-2.499249
88	6	0	-3.277923	5.176876	-0.219647
89	6	0	-4.000616	6.459200	-2.269896
90	6	0	-8.216885	6.573344	0.745614

91	6	0	-9.902323	5.521909	-0.768346
92	6	0	-9.127203	4.313155	1.306128
93	6	0	-4.021068	-5.403091	-3.281648
94	6	0	-3.269327	-4.285673	-1.147099
95	6	0	-4.336431	-6.544439	-1.081139
96	6	0	2.954862	4.149261	1.026484
97	6	0	3.716905	5.438916	3.057431
98	6	0	3.881086	6.457907	0.781796
99	1	0	-8.852028	2.880295	-1.246930
100	1	0	-9.142515	-2.619064	-1.448361
101	1	0	-9.473711	0.022580	5.840952
102	1	0	-7.116638	-0.019705	4.712247
103	1	0	-2.589277	-0.048260	3.081823
104	1	0	-0.069931	-0.083322	2.462801
105	1	0	8.291986	1.370644	3.040814
106	1	0	6.638060	1.363843	3.663426
107	1	0	8.312806	-1.003868	3.188527
108	1	0	6.639137	-1.022787	3.756463
109	1	0	9.075006	-2.574803	1.478561
110	1	0	6.589623	-5.959866	0.618465
111	1	0	6.233127	6.018501	0.153836
112	1	0	8.922747	2.842245	1.184520
113	6	0	10.404332	-4.223784	0.165557
114	6	0	9.412973	-6.421694	0.823300
115	6	0	8.663482	-5.267279	-1.292854
116	6	0	4.239439	-6.475199	1.207816
117	6	0	3.974021	-5.322550	3.409415
118	6	0	3.184221	-4.211290	1.285298
119	6	0	8.406795	6.480802	-0.932553
120	6	0	10.059907	5.432665	0.618828
121	6	0	9.241762	4.171947	-1.407900
122	1	0	5.047464	-2.663560	2.889206
123	1	0	4.934911	2.830343	2.709294

124	1	0	0.061948	-0.214901	-2.437462
125	1	0	2.581604	-0.221412	-3.056307
126	1	0	7.107440	-0.362892	-4.680246
127	1	0	9.464367	-0.428821	-5.808405
128	6	0	-9.707199	-4.116248	0.979795
129	6	0	-8.939632	-6.425586	0.409600
130	6	0	-10.436619	-5.205386	-1.176003
131	1	0	11.177145	-4.758700	-0.396082
132	1	0	10.787668	-4.057829	1.177608
133	1	0	10.264175	-3.247997	-0.310170
134	1	0	9.455870	-5.768480	-1.860515
135	1	0	8.449830	-4.310524	-1.780355
136	1	0	7.763344	-5.885447	-1.360977
137	1	0	3.001226	-5.812356	3.531583
138	1	0	3.942834	-4.377601	3.959129
139	1	0	4.734792	-5.956161	3.877211
140	1	0	3.247622	-6.921698	1.333016
141	1	0	4.970459	-7.173266	1.628906
142	1	0	4.428124	-6.388572	0.132767
143	1	0	2.721719	5.884896	3.166578
144	1	0	4.450422	6.139890	3.469269
145	1	0	3.743498	4.531376	3.667182
146	1	0	2.870023	6.859894	0.903933
147	1	0	4.049636	6.312101	-0.290211
148	1	0	4.583351	7.218925	1.137837
149	1	0	1.948568	4.572338	1.125455
150	1	0	2.972147	3.197884	1.565190
151	1	0	3.128963	3.933900	-0.032899
152	1	0	10.868686	5.881643	0.030965
153	1	0	10.449193	4.517891	1.074277
154	1	0	9.802426	6.125448	1.426764
155	1	0	9.239114	6.888393	-1.515556
156	1	0	8.129326	7.230969	-0.184684

157	1	0	7.560807	6.349419	-1.614988
158	1	0	10.051957	4.599152	-2.009964
159	1	0	8.396278	3.967814	-2.073176
160	1	0	9.589191	3.214411	-1.010060
161	1	0	-10.574234	-4.543333	1.496720
162	1	0	-9.986286	-3.120540	0.624760
163	1	0	-8.902163	-3.994334	1.711867
164	1	0	-11.305413	-5.645248	-0.673163
165	1	0	-10.155564	-5.862292	-2.005816
166	1	0	-10.748213	-4.246716	-1.600310
167	1	0	-9.824140	-6.826942	0.914978
168	1	0	-8.133141	-6.376060	1.148569
169	1	0	-8.649536	-7.142304	-0.365743
170	1	0	-2.282823	5.633542	-0.269745
171	1	0	-3.176612	4.192865	0.249325
172	1	0	-3.896140	5.797686	0.435633
173	1	0	-3.012439	6.927574	-2.341433
174	1	0	-4.640164	7.121506	-1.678975
175	1	0	-4.422320	6.401193	-3.278689
176	1	0	-1.941860	4.708990	-2.538591
177	1	0	-3.278317	4.114159	-3.528473
178	1	0	-2.768595	3.213298	-2.088901
179	1	0	-9.036224	7.031025	1.309387
180	1	0	-7.911801	7.284216	-0.029447
181	1	0	-7.377710	6.439204	1.435914
182	1	0	-9.923524	4.789241	1.889717
183	1	0	-8.289533	4.106842	1.980462
184	1	0	-9.506214	3.353572	0.944016
185	1	0	-2.286276	-4.762421	-1.234544
186	1	0	-3.473799	-4.123943	-0.083552
187	1	0	-3.208453	-3.304379	-1.625718
188	1	0	-3.048861	-5.899207	-3.381447
189	1	0	-3.973093	-4.460785	-3.834681

190	1	0	-4.775619	-6.034519	-3.762334
191	1	0	-10.696753	6.017267	-0.198524
192	1	0	-10.320574	4.604074	-1.190794
193	1	0	-9.622433	6.176255	-1.600485
194	1	0	-3.344129	-6.995553	-1.184558
195	1	0	-5.061624	-7.241393	-1.513926
196	1	0	-4.546553	-6.452810	-0.010517
197	1	0	2.200696	-4.682043	1.396310
198	1	0	3.366883	-4.056586	0.216798
199	1	0	3.138531	-3.227109	1.759514
200	1	0	10.215999	-6.930132	0.277573
201	1	0	8.540772	-7.081994	0.820689
202	1	0	9.734443	-6.298420	1.862687

References

- (1) L. P. Khanh, P. Dallemagne, S. Rault, Synlett, 1999, 9, 1450–1452.
- (2) A. Gourdon, Eur. J. Org. Chem., 1998, 2797-2801.
- (3) B. Jousselme, P. Blanchard, N. Gallego-Planas. E. Levillain, J. Delaunay, M. Allain, P.

Richomme, J. Roncali, Chem. Eur. J., 2003, 9, 5297-5306.