Supporting information for

Reactivity Studies of Corrole Germanium Hydride Complex with Aldehydes, Olefins and Alkyl halides

Huayi Fang^a, Zhen Ling^a, Penelope J. Brothers^b, and XuefengFu^a*

^aBeijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth

Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.

^bSchool of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.

General Information

 C_6D_6 and CDCl₃ were purchased from Cambridge Isotope Laboratory Inc; other solvents were distilled before used; aldehydes and olefins were purchased from Aldrich or Alfa Aesar and were distilled before used; and all other chemicals were purchased from Aldrich or Alfa Aesar unless otherwise noted and used as received. ¹H NMR and ¹⁹F NMR spectra were recorded on a Bruker AVII⁺-400 spectrometer at ambient temperature. Mass spectra were taken on a Bruker Apex IV FTMS.UV-Vis spectra were recorded on a SHIMADZU UV-3100 UV-Vis-NIR spectrophotometer. The FTIR microspectroscopy of complex **3** was recorded on a NICOLET iN10 MX spectrometer in the range of 4000-400cm⁻¹. The single-crystal X-ray diffraction data was collected on a Rigaku MM007HF Saturn724+ diffractometer.

General Synthesis method of (TPFC)Ge-OCH₃ and (TPFC)Ge-OCH₂CH₃ complexes.

The labile axial ligand of (TPFC)Ge-L (L= -OH and -Cl, 10 mg) is easily changed toalkoxy group (-OCH₃, -OCH₂CH₃) by dissolving in alcohol (methanol, ethanol, 10 ml) at room temperature within 30 minutes. (TPFC)Ge-OCH₂CH₃ is crystallized from ethanol solution to give dark red crystals.

(TPFC)Ge-OCH₃¹H NMR (400 MHz, CDCl₃) δ(ppm): 9.53 (d, 2H, ³*J*(H,H)=4.3 Hz; β-pyrrole H), 9.11 (d, 2H, ³*J*(H,H)=4.7 Hz; β-pyrrole H), 9.05 (d, 2H, ³*J*(H,H)=4.3 Hz; β-pyrrole H), 8.92 (d, 2H, ³*J*(H,H)=4.8 Hz; β-pyrrole H), -1.01 (s, 3H; CH₃);¹⁹F NMR (376 MHz, C₆D₆) δ(ppm): -137.8 (m, 3F; *ortho*-F), -138.8 (dd, 1F, ³*J*(F,F)=24.8 Hz, ⁴*J*(F,F)=6.6 Hz; *ortho*-F), -139.0 (dd, 2F, ³*J*(F,F)=24.5 Hz, ⁴*J*(F,F)=6.6 Hz; *ortho*-F), -152.2 (t, 1F, ³*J*(F,F)=21.2 Hz; *para*-F), -152.4 (t, 2F, ³*J*(F,F)=21.8 Hz; *para*-F), -161.8 (m, 3F; *meta*-F), -162.2 (td, 2F, ³*J*(F,F)=23.2 Hz, ⁴*J*(F,F)=8.2 Hz; *meta*-F), -162.4 (td, 1F, ³*J*(F,F)=22.9 Hz, ⁴*J*(F,F)=8.2 Hz; *meta*-F); UV/Vis (CHCl₃): λ_{max} (nm): 389.0, 411.0, 560.0, 576.5; HRMS (ESI) calcd for $C_{38}H_{12}F_{15}GeN_4O$ [M+H]⁺ 898.9986; found 898.9997.

(TPFC)Ge-OCH₂CH₃¹H NMR (400 MHz, C₆D₆) δ (ppm): 9.14 (d, 2H, ³*J*(H,H)=4.4 Hz; β -pyrrole H), 8.89 (d, 2H, ³*J*(H,H)=5.0 Hz; β -pyrrole H), 8.71 (d, 2H, ³*J*(H,H)=4.4 Hz; β -pyrrole H), 8.69 (d, 2H, ³*J*(H,H)=4.6 Hz; β -pyrrole H), -1.01 (q, 2H, ³*J*(H,H)=7.0 Hz; CH₂), -1.69 (t, 3H, ³*J*(H,H)=7.0 Hz; CH₃);UV/Vis (CHCl₃): λ_{max} (nm): 389.5, 411.0, 560.5, 577.0; HRMS (ESI) calcd for C₃₉H₁₄F₁₅GeN₄O [M+H]⁺ 913.0143; found 913.0145.

General synthesis method of (TPFC)Ge-H complex.

Methanol (10 µl) is added to a Schlenk flask containing benzene solution (300 µl) of (TPFC)Ge-OCH₃ (1 mg, 1.1×10^{-3} mmol). After the solution is degassed for three freeze-pump-thaw cycles, excess solid NaBH₄ are added into the flask. The yield of the reaction reaches about 95% after 4 hours.

(TPFC)Ge-H (yield: 95%): ¹H NMR (400 MHz, C₆D₆) δ (ppm): 9.09 (d, 2H, ³*J*(H,H)=4.4 Hz; β -pyrrole H), 8.87 (d, 2H, ³*J*(H,H)=4.3 Hz; β -pyrrole H), 8.65 (m, 4H, β -pyrrole H), -2.14 (s, 1H,Ge-H);¹⁹F NMR (376 MHz, C₆D₆) δ (ppm): -139.9 (dd, 2F; ³*J*(F,F)=25.4 Hz, ⁴*J*(F,F)=6.2 Hz;*ortho*-F), -140.2 (dd, 1F, ³*J*(F,F)=24.8 Hz, ⁴*J*(F,F)=6.7 Hz; *ortho*-F), -140.6 (dd, 1F, ³*J*(F,F)=24.9 Hz, ⁴*J*(F,F)=6.8 Hz; *ortho*-F), -140.8 (dd, 2F, ³*J*(F,F)=24.6 Hz, ⁴*J*(F,F)=6.1 Hz;*ortho*-F), -154.6 (t, 1F, ³*J*(F,F)=21.7 Hz; *para*-F), -154.7 (t, 2F, ³*J*(F,F)=21.8 Hz; *para*-F), -163.9 (td, 3F, ³*J*(F,F)=23.3 Hz, ⁴*J*(F,F)=7.3 Hz; *meta*-F), -164.3 (td, 2F, ³*J*(F,F)=23.4 Hz, ⁴*J*(F,F)=8.1 Hz; *meta*-F), -164.5 (td, 1F, ³*J*(F,F)=23.4 Hz, ⁴*J*(F,F)=8.0 Hz; *meta*-F); UV/Vis (CHCl₃): λ_{max} (nm): 399.0, 419.5, 529.0, 567.5, 595.0.

General procedure of reactions of (TPFC)Ge-H with aldehydes.

Freshly prepared (TPFC)Ge-H (1 mg, 1.2×10^{-3} mmol) is dissolved in 300 µl C₆D₆ in J. Young Valve NMR tube. Excess aldehydes and catalytic amount of KOH are added into the NMR tube. After the solution is degassed for three freeze-pump-thaw cycles, the NMR tube is heated to 60-70°C in a water-bath for 24-33 hours.

(TPFC)Ge-CH₂OH (prepared using paraformaldehyde; yield: 91%): ¹H NMR (400 MHz, C₆D₆) δ(ppm): 9.12 (d, 2H, ³*J*(H,H)=4.3 Hz; β-pyrrole H), 8.88 (d, 2H, ³*J*(H,H)=4.6 Hz;β-pyrrole H), 8.68 (d, 2H, ³*J*(H,H)=4.1 Hz; β-pyrrole H), 8.66 (d, 2H, ³*J*(H,H)=4.7 Hz; β-pyrrole H), -2.20 (d, 2H, ³*J*(H,H)=5.3 Hz; CH₂), -3.72 (t, 1H, ³*J*(H,H)=5.5 Hz; OH);¹⁹F NMR (376 MHz, C₆D₆) δ(ppm): -140.3 (dd, 2F; ³*J*(F,F)=24.9 Hz, ⁴*J*(F,F)=5.8 Hz;*ortho*-F), -140.6 (td, 2F, ³*J*(F,F)=22.8 Hz, ⁴*J*(F,F)=7.0 Hz; *ortho*-F), -140.8 (dd, 2F, ³*J*(F,F)=25.6 Hz, ⁴*J*(F,F)=5.7 Hz; *ortho*-F), -154.7 (m, 3F; *para*-F), -164.2 (m, 5F; *meta*-F), -164.4 (td, 1F, ³*J*(F,F)=22.9 Hz, ⁴*J*(F,F)=7.2 Hz; *meta*-F); UV/Vis (CHCl₃): λ_{max} (nm): 420.0, 530.0, 568.0, 597.0; HRMS (ESI) calcd for C₃₈H₁₁F₁₅GeN₄NaO [M+Na]⁺920.98058; found 920.98179.

(TPFC)Ge-CH(OH)C₆H₅(prepared using benzaldehyde; yield: 84%): ¹H NMR (400 MHz, C₆D₆) δ (ppm): 9.03 (d, 2H, ³J(H,H)=4.2 Hz; β -pyrrole H), 9.02 (d, 2H,

³*J*(H,H)=4.3 Hz; β-pyrrole H), 8.82 (d, 2H, ³*J*(H,H)=5.1 Hz; β-pyrrole H), 8.61 (d, 2H, ³*J*(H,H)=4.8 Hz; β-pyrrole H), 6.38 (t, 1H, ³*J*(H,H)=7.2 Hz; ε-CH), 6.21 (t, 2H, ³*J*(H,H)=7.6 Hz; δ-CH), 3.80 (d, 2H, ³*J*(H,H)=7.6 Hz; γ-CH), -1.17 (d, 1H, ³*J*(H,H)=4.0 Hz; CH), -2.69 (d, 1H, ³*J*(H,H)=4.1 Hz; OH); HRMS (ESI) calcd for C₄₄H₁₆F₁₅GeN₄O [M+H]⁺975.03011; found 975.03366.

General procedure of reactions of (TPFC)Ge-H with olefins.

Freshly prepared (TPFC)Ge-H is dissolved in 300 μ l C₆D₆ in a J. Young Valve NMR tube. Olefin (100 equiv.) and a catalytic amount of KOH are added into the NMR tube. After the solution is degassed for three freeze-pump-thaw cycles, the NMR tube is heated to 60 °C in a water-bath for 24 hours.

(TPFC)Ge-CH₂CH₂CO₂CH₃ (prepared using methyl acrylate; yield: 95%) ¹H NMR (400 MHz, CDCl₃) δ (ppm): 9.44(d, 2H, ³*J*(H,H)=4.3 Hz; β -pyrrole H), 9.02(d, 2H, ³*J*(H,H)=4.8 Hz; β -pyrrole H), 8.97(d, 2H, ³*J*(H,H)=4.2 Hz; β -pyrrole H), 8.82(d, 2H, ³*J*(H,H)=4.8 Hz; β -pyrrole H), 2.81(s, 3H; CH₃), -2.08(m, 2H; β -CH₂), -4.11(m, 2H; α -CH₂). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): -139.4 (m, 3F; *ortho*-F), -139.9 (dd, 1F, ³*J*(F,F)=23.7 Hz, ⁴*J*(F,F)=5.9 Hz; *ortho*-F), -140.0 (dd, 2F, ³*J*(F,F)=23.8 Hz, ⁴*J*(F,F)=5.6 Hz; *ortho*-F), -154.7 (t, 2F, ³*J*(F,F)=21.0 Hz; *para*-F), -154.9 (t, 1F, ³*J*(F,F)=20.9 Hz; *para*-F), -164.0 (m, 6F; *meta*-F); UV/Vis (CHCl₃): λ_{max} (nm): 398.5, 419.5, 528.5, 567.5, 595.5; HRMS (ESI) calcd for C₄₁H₁₆F₁₅GeN₄O₂ [M+H]⁺ 955.0249; found 955.0278.The (TPFC)Ge-CH₂CH₂CO₂CH₃ was crystallized from petroleum ether/chloroform solution.

(TPFC)Ge-CH₂CHDCOOCH₃ (yield: 95%) ¹H NMR (400 MHz, CDCl₃) δ (ppm): 9.44(d, 2H, 4.3 Hz), 9.02(d, 2H, 4.8 Hz), 8.97(d, 2H, 4.2 Hz), 8.82(d, 2H, 4.8 Hz), 2.81(s, 3H), -2.10(t, 1H, 8.0 Hz), -4.12(d, 2H, 8.8 Hz). The HRMS (ESI) calcd for C₄₁H₁₄DF₁₅GeN₄NaO₂ [M+Na]⁺ 978.01316; found 978.01470.

(TPFC)Ge-CH₂CH₂CH₂CH₂CH₃ (prepared using 1-pentene; yield: 50%) ¹H NMR (400 MHz, CDCl₃) δ(ppm): 9.41 (d, 2H, ³*J*(H,H)=4.2 Hz; β-pyrrole H), 9.00 (d, 2H, ³*J*(H,H)=4.8 Hz; β-pyrrole H), 8.95 (d, 2H, ³*J*(H,H)=4.2 Hz; β-pyrrole H), 8.80 (d, 2H, ³*J*(H,H)=4.7 Hz; β-pyrrole H), -0.05 (t, 3H, ³*J*(H,H)=7.3 Hz; CH₃), -0.20 (m, 2H; δ-CH₂), -1.17 (m, 2H; γ-CH₂), -3.07 (m, 2H; β-CH₂), -4.40 (m, 2H; α-CH₂); ¹⁹F NMR (376 MHz, CDCl₃) δ(ppm): -139.8 (m, 6F; *ortho*-F), -155.0 (t, 2F, ³*J*(F,F)=20.8 Hz; *para*-F), -155.2 (t, 1F, ³*J*(F,F)=20.9 Hz; *para*-F), -164.2 (m, 6F; *meta*-F);UV/Vis (CHCl₃): λ_{max} (nm): 400.0, 421.0, 529.5, 568.5, 598.0; HRMS (ESI) calcd for C₄₂H₁₉F₁₅GeN₄ M⁺ 938.0586; found 938.0599.

General method for synthesis of (TPFC)Ge-alkyl complexes using alkyl halides as alkylation reagents.

(TPFC)Ge-OCH₃(10 mg) is dissolved in 5 mL ethanol in a Schlenk flask. After the solution was degassed for three freeze-pump-thaw cycles, NaOH (20 mg, 0.50 mmol) and NaBH₄ (20 mg, 0.54 mmol) are injected into the flask. The solution is vigorously stirred at room temperature for 30 min, and then excess alkyl halide (> 100 equiv.) is injected into the frozen flask followed by a degassing procedure. The (TPFC)Ge-alkyl

complex is obtained by chromatography on silica gel using $CHCl_3$ /petroleum ether (1:3) as eluent.

(TPFC)Ge-CH₃ (prepared using CH₃I; yield: 90%; crystallized from acetone/H₂O solution) ¹H NMR (400 MHz, C₆D₆) δ(ppm): 9.11 (d, 2H, ³*J*(H,H)=4.3 Hz; β-pyrroleH), 8.87(d, 2H, ³*J*(H,H)=5.5 Hz; β-pyrrole H), 8.67(d, 2H, ³*J*(H,H)=4.3 Hz; β-pyrrole H), 8.65(d, 2H, ³*J*(H,H)=4.7 Hz; β-pyrrole H), -5.13(s, 3H; CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ(ppm): -139.7 (dd, 2F, ³*J*(F,F)=24.4 Hz, ⁴*J*(F,F)=5.6 Hz; *ortho*-F), -139.8 (dd, 2F, ³*J*(F,F)=24.3 Hz, ⁴*J*(F,F)=6.4 Hz; *ortho*-F), -139.9 (dd, 2F, ³*J*(F,F)=23.9 Hz, ⁴*J*(F,F)=5.4 Hz; *ortho*-F), -154.9 (t, 2F, ³*J*(F,F)=20.8 Hz; *para*-F), -155.1 (t, 1F, ³*J*(F,F)=20.8 Hz; *para*-F), -164.2 (m, 6F; *meta*-F); UV/Vis (CHCl₃): λ_{max} (nm): 398.0, 419.5, 529.0, 568.0, 595.5; HRMS (ESI) calcd for C₃₈H₁₁F₁₅GeN₄ M⁺881.9959; found 881.9974.

(TPFC)Ge-CH₂C₆H₅ (prepared using C₆H₅Br; yield: 50%) ¹H NMR (400 MHz, CDCl₃) δ(ppm): 9.31(d, 2H, ³*J*(H,H)=4.3 Hz; β-pyrrole H), 8.98(d, 2H, ³*J*(H,H)=4.7 Hz; β-pyrrole H), 8.91(d, 2H, ³*J*(H,H)=4.2 Hz; β-pyrrole H), 8.77(d, 2H, ³*J*(H,H)=4.8; β-pyrrole H), 6.41(t, 1H, ³*J*(H,H)=7.3 Hz; ε-CH), 6.16(t, 2H, ³*J*(H,H)=7.6 Hz; δ-CH), 3.60(d, 2H, ³*J*(H,H)=7.4 Hz; γ-CH), -3.04(s, 2H; CH₂); ¹⁹F NMR (376 MHz, CDCl₃) δ(ppm): -139.2 (dd, 1F, ³*J*(F,F)=24.3 Hz, ⁴*J*(F,F)=7.3 Hz; *ortho*-F), -139.3 (dd, 2F, ³*J*(F,F)=24.7 Hz, ⁴*J*(F,F)=6.4 Hz; *ortho*-F), -139.7 (dd, 1F, ³*J*(F,F)=24.6 Hz, ⁴*J*(F,F)=6.6 Hz; *ortho*-F), -139.8 (dd, 2F, ³*J*(F,F)=24.5 Hz, ⁴*J*(F,F)=6.0 Hz; *ortho*-F), -154.9 (t, 2F, ³*J*(F,F)=20.9 Hz; *para*-F), -155.1 (t, 1F, ³*J*(F,F)=20.9 Hz; *para*-F), -164.2 (m, 6F; *meta*-F); UV/Vis (CHCl₃): λ_{max} (nm): 402.5, 423.0, 530.0, 569.5, 599.5; HRMS (ESI) calcd for C₄₄H₁₆F₁₅GeN₄ [M+H]⁺ 959.0352; found 959.0370.

Summary of ¹H NMR data of complexes 1-9.

corrolates			
compd. no.	structure of substituent	solvent	organic group ¹ H NMR parameters
1	-OCH ₃	CDCl ₃	CH ₃ , s, -1.01
2	-OCH ₂ CH ₃	C_6D_6	CH ₂ , q, -1.01, <i>J</i> =7.0; CH ₃ , t, -1.69, <i>J</i> =7.0
3	-H	C_6D_6	Ge-H, s, -2.14
4	-CH ₂ OH	C_6D_6	OH, t, -3.72, <i>J</i> =5.5; CH ₂ , d, -2.20, <i>J</i> =5.3
5	-CH(OH)C ₆ H ₅	C_6D_6	OH, d, -2.69, <i>J</i> =4.1; CH, d, -1.17, <i>J</i> =4.0; γ-CH,
			d, 3.80, <i>J</i> =7.6;δ-CH, t, 6.21, <i>J</i> =7.6;ε-CH, t,
			6.38, <i>J</i> =7.2
6	-CH ₂ CH ₂ CO ₂ CH ₃	CDCl ₃	α-CH ₂ , m, -4.11; β-CH ₂ , m, -2.08; CH ₃ , s, 2.81
7	$-CH_2(CH_2)_3CH_3$	CDCl ₃	α-CH ₂ , m, -4.40; β-CH ₂ , m, -3.07; γ-CH ₂ , m,
			-1.17; δ-CH ₂ , m, -0.20; CH ₃ , t, -0.05, <i>J</i> =7.3
8	-CH ₃	C_6D_6	CH ₃ , s, -5.13
9	$-CH_2C_6H_5$	CDCl ₃	CH ₂ , s, -3.04; γ-CH, d, 3.60, J=7.4; δ-CH, t,
			6.16, <i>J</i> =7.6; ε-CH, t, 6.41, <i>J</i> =7.3

Table S1.¹H NMR parameters for the organic substituents in alkyl germanium

The molecular structure of complex 2.

Fig. S1 The structure of complex 2.

Calculation of ΔH and ΔS of eq. 2.

A mixture of (TPFC)Ge-CH₂OH, (TPFC)Ge-CH₂OCH₂OH and paraformaldehyde is prepared using the method mentioned above. ¹H NMR spectra are recorded at 40 °C, 50°C, 60°C and 70°C. Equilibrium constants at different temperatures are derived from the ratios of the integrated intensity for the doublet at $\delta = 9.12$ ppm (corresponds to the β -pyrrole H of (TPFC)Ge-CH₂OH), the doublet at $\delta = 9.13$ ppm (corresponds to the β -pyrrole H of (TPFC)Ge-CH₂OCH₂OH) and the singlet ranging from $\delta = 8.75 \sim$ 8.84 ppm (corresponds to the H of formaldehyde). The linear fit line gives changes of Δ H and Δ S of reaction (TPFC)Ge-CH₂OH+HCHO-(TPFC)Ge-CH₂OCH₂OH (Fig. S2).

Fig. S2 Temperature dependence of ΔG for eq. 2 (r²=0.996).