Eu^{II}-Containing Cryptates as Contrast Agents for Ultra-High Field Strength Magnetic Resonance Imaging

Joel Garcia,^{*a*} Jaladhar Neelavalli,^{*b*} E. Mark Haacke,^{*b*} and Matthew J. Allen^{*a*,*}

Contribution from^{*a*} *the Department of Chemistry, Wayne State University, Detroit, MI 48202 and*^{*b*} *the Department of Radiology, Wayne State University, Detroit, MI 48201*

E-mail: mallen@chem.wayne.edu

Page	Contents
S1	Table of Contents
S2–S28	Experimental Procedures
S29	References
S30-S39	¹ H and ¹³ C NMR spectra

Garcia et al.

Supporting Information

Experimental Procedures

Commercially available chemicals were of reagent-grade purity or better and were used without further purification unless otherwise noted. Water was purified using a PURELAB Ultra Mk2 water purification system (ELGA). Dicholoromethane was dried using a solvent purification system (Vacuum Atmospheres Company) and degassed under vacuum. Triethylamine was distilled from CaH₂ under an atmosphere of Ar.¹ 4-Allylbiphenyl was prepared according to a published procedure.² Ozone was generated using an apparatus from Ozone Research and Equipment Corporation. For ozone generation, oxygen was passed through a column of anhydrous calcium sulfate before the ozone apparatus, and the oxygen flow rate and current were held constant at 1.0 L/min and 0.8 A, respectively. *p*-Toluenesulfonyl chloride was recrystallized prior to use.¹

Flash chromatography was performed using silica gel 60, 230–400 mesh (EMD Chemicals).³ Analytical thin-layer chromatography (TLC) was carried out on ASTM TLC plates precoated with silica gel 60 F_{254} (250 µm layer thickness). TLC visualization was accomplished using a UV lamp followed by charring with potassium permanganate stain (2 g KMnO₄, 20 g K₂CO₃, 5 mL 5% w/v aqueous NaOH, 300 mL H₂O).

¹H NMR spectra were obtained using a Varian Unity 400 (400 MHz) spectrometer, and ¹³C NMR spectra were obtained using a Varian Unity 400 (101 MHz) spectrometer. Chemical shifts are reported relative to residual solvent signals (CD₃OD: ¹H: δ 3.30, ¹³C: δ 49.00; CD₃CN: ¹H: δ 1.94, ¹³C: δ 118.26 and 1.30). ¹H NMR data are assumed to be first order, and the apparent multiplicities are reported as "s" = singlet, "m" = multiplet, and "brs" = broad singlet. Italicized elements are those that are responsible for the shifts. High-resolution electrospray ionization

Supporting Information

mass spectra (HRESIMS) were obtained using an electrospray time-of-flight high-resolution Waters Micromass LCT Premier XE mass spectrometer.

Samples for inductively coupled plasma mass spectrometry (ICP–MS) were diluted with nitric acid (2% v/v, aqueous). Standard solutions were prepared by serial dilution of Eu, Gd, and Sr standards (High-Purity Standards). ICP–MS measurements were conducted on a PE Sciex Elan 9000 ICP–MS instrument with a cross-flow nebulizer and Scott-type spray chamber.

Susceptibility weighted imaging (SWI) was performed at 3 (Siemens TRIO at 19.8 °C) and 7 (ClinScan at 19 °C) Tesla (T). Volume coils were used at both field strengths. The acquisition parameters for SWI were as follows: $T_R = 37$ ms, $T_E = 5.68-31.18$ ms, and resolution = 0.5×0.5 $\times 2$ mm³ for 3 T; $T_R = 21$ ms, $T_E = 3.26-15.44$ ms, and resolution = $0.27 \times 0.27 \times 2$ mm³ for 7 T. Multiple flip angles (5, 10, 15, 20, 25, and 30°) were used in the SWI experiments to allow for the determination of longitudinal relaxation time, T_1 .⁴ MR images were processed using SPIN software (SVN Revision 1751).

Matlab (7.12.0.635 R2011a) was used to generate effective transverse relaxation time, T_2^* , and corrected T_1 maps. The T_1 values from the corrected T_1 maps were plotted vs the concentration of Gd or Eu in the samples to calculate longitudinal relaxivities, r_1 . The Matlab codes for T_2^* and T_1 (with T_2^* correction) maps are shown below:

$T_2^*:$

```
% function [T2map error_estimatemap]=flash_fit(fa,s,tr)
% s is the 3D matrix of # of slices equal to the number of flip angles.
clear all;
clc
format long;
h=msgbox(' ------Please enter the information Asked for ------');
waitfor(h);
```

```
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011
```

Supporting Information

```
rows=input('Enter Matrix size # ROWS: ');
cols=input('Enter Matrix size # COLS: ');
echonumber=input('Enter number of echoes: ');
slices=input('Enter the number of slices in each echo images: ');
s.fpathname=[];
%%%%%%%%% FILE INFORMATION INPUT
for i=1:echonumber
   disp(' ');disp(' ');disp(' ')
   display('Select the first file in the series you want to calculate T2*');
    [fname, path]=uigetfile('C:\Archives\Ang Doktorado\Projects\Imaging
Experiments\2011 05 20 Phantom Imaging 3T\DICOM\5-
11Echo_SWI_FA5_.5x.5x2\TEsorted\*.*');
    s(i).fpathname=strcat(path,fname)
    disp(' ');disp(' ');disp(' ');
   TE(i)=input('\n Please enter the Corresponding echo time (TE) : ');
end
mm=zeros(rows,cols);
mml=zeros(rows,cols);
for i=1:slices
   mat=zeros(rows,cols); % IMAGE MATRIX SIZE
   xmat=zeros(size(TE,2),rows,cols); % IMAGE MATRIX SIZE
   ymat=zeros(size(TE,2),rows,cols); % IMAGE MATRIX SIZE
   for j=1:echonumber
       if s(j).fpathname(size(s(j).fpathname,2)-7)=='-'
           firstnum=str2num(s(j).fpathname(size(s(j).fpathname,2)-
6))*100+str2num(s(j).fpathname(size(s(j).fpathname,2)-
5))*10+str2num(s(j).fpathname(size(s(j).fpathname,2)-4));
mat(:,:)=dicomread(strcat(s(j).fpathname(1,1:(size(s(j).fpathname,2)-
7)),num2str(firstnum+i-1),'.dcm'));
       elseif s(j).fpathname(size(s(j).fpathname,2)-6)=='-'
           firstnum=str2num(s(j).fpathname(size(s(j).fpathname,2)-
5))*10+str2num(s(j).fpathname(size(s(j).fpathname,2)-4));
mat(:,:)=dicomread(strcat(s(j).fpathname(1,1:(size(s(j).fpathname,2)-
6)),num2str(firstnum+i-1),'.dcm'));
       else s(j).fpathname(size(s(j).fpathname,2)-5)=='-'
           firstnum=str2num(s(j).fpathname(size(s(j).fpathname,2)-4));
mat(:,:)=dicomread(strcat(s(j).fpathname(1,1:(size(s(j).fpathname,2)-
5)),num2str(firstnum+i-1),'.dcm'));
       end
       ymat(j,:,:)=log(mat);
```

Supporting Information

```
xmat(j,:,:) = -TE(j);
        %
                  end
    end
    clear mat tmps tmpt;
    num=echonumber*sum((xmat.*ymat),1)-(sum(xmat,1).*sum(ymat,1));
    din=echonumber*(sum(xmat.^2,1))-(sum(xmat,1)).^2;
    bl=num./din;
    b2=(1/echonumber)*(sum(ymat,1)-b1.*sum(xmat,1));
    T2map=(1./b1);
    8
          T1map=-tr./(log(b1)); %%%%% TR OF THE EXPERIMENT
    mm(:,:)=T2map(1,:,:);
    clear T2map;
    T2map=mm;
%
     mm(:,:) = echoimagemat(1,:,:);
%
     mm1(:,:)=echoimagemat(2,:,:);
%
%
      T2_error= (T2map/dTE).*sqrt( (sigma1./mm).^2 + (sigma2./mm1).^2 );
    curntfname=strcat(s(1).fpathname(1,(1:size(s(1).fpathname,2)-
7)), 'T2_map_mult10-', num2str(i), '.ima');
    writeima(curntfname, T2map*100);
%
      dicomwrite(T2map*100,curntfname);
      curntfname=strcat(s(1).fpathname(1,(1:size(s(1).fpathname,2)-
%
7)), 'T2_errmap_mult10-', num2str(i), '.dcm');
          writeima(curntfname, T2_error*10);
%
      %
%
      dicomwrite(T2map,curntfname);
end
```

T_1 map (with T_2^* correction):

```
% function [T1map error_estimatemap]=flash_fit(fa,s,tr)
% s is the 3D matrix of # of slices equal to the number of flip angles.
clear all;
clc
format long;
h=msgbox(' ------Please enter the information Asked for ------');
waitfor(h);
rows=input('Enter Matrix size # ROWS: ');
```

Supporting Information

```
cols=input('Enter Matrix size # COLS: ');
TE=input('Enter Echo-time: ');
fanumber=input('Enter number of flip angles: ');
slices=input('Enter the number of slices in the Flip angle images: ');
s.fpathname=[];
display('Please input the T2starcorrection file (.ima)');
[fnameT2star, pathT2star]=uigetfile('C:\Archives\Ang
Doktorado\Projects\Imaging Experiments\2011 05 20 Phantom Imaging
3T\DICOM\*.*');
fpathnameT2star=strcat(pathT2star,fnameT2star)
t2starcorrection=showima(fpathnameT2star);
%%%%%%%%% FILE INFORMATION INPUT
for i=1:fanumber
    disp(' ');disp(' ');disp(' ')
    display('Select the first file in the series you want to calculate T1');
    [fname, path]=uigetfile('C:\Archives\Ang Doktorado\Projects\Imaging
Experiments\2011 05 20 Phantom Imaging 3T\DICOM\*.*');
    s(i).fpathname=strcat(path,fname)
    disp(' ');disp(' ');disp(' ');
    fa(i)=input('\n Please enter the Corresponding Flip angle: ');
end
% disp(' ');disp(' ');
% disp('Select the corresponding first reference flip angle image for
normalization:');
% fa=(fa)*(pi/180);
% [fname, path]= uigetfile('E:\Data_OM\Rahul1.5T_LOW FA data\');
% str=strcat(path,fname);
% disp(' ');disp(' ');
% normfactor=input('Enter the normalization peak/mode/mean value from the
normalization image: ');
tr=input('Enter TR of the experiment: ');
mm=zeros(rows,cols);
% flag=input(' ENTER 1 for alpha map normalisation: OR 2 for normal T1 map
calculation: ');
fa=fa*(pi/180);
%%%%%%%%%%%%%% ACTUAL CALCULATION WITH ALPHA MAP COMPENSATION INCLUDED
for i=1:slices
          alphamap=zeros(rows,cols);% IMAGE MATRIX SIZE
    mat=zeros(rows,cols); % IMAGE MATRIX SIZE
```

```
Supporting Information
```

```
xmat=zeros(size(fa,2),rows,cols); % IMAGE MATRIX SIZE
    ymat=zeros(size(fa,2),rows,cols); % IMAGE MATRIX SIZE
          faimagemat=zeros(size(fa,2),rows,cols); % IMAGE MATRIX SIZE
    for j=1:fanumber
        if s(j).fpathname(size(s(j).fpathname,2)-5)=='-'
            firstnum=str2num(s(j).fpathname(size(s(j).fpathname,2)-4));
mat(:,:)=dicomread(strcat(s(j).fpathname(1,1:(size(s(j).fpathname,2)-
5)),num2str(firstnum+i-1),'.dcm'));
            mat(:,:)=mat./exp(-TE./t2starcorrection);
        else
            firstnum=str2num(s(j).fpathname(size(s(j).fpathname,2)-4))+10;
mat(:,:)=dicomread(strcat(s(j).fpathname(1,1:(size(s(j).fpathname,2)-
6)),num2str(firstnum+i-1),'.dcm'));
            mat(:,:)=mat./exp(-TE./t2starcorrection);
        end
        faimagemat(j,:,:)=mat;
        tmps=sin(fa(j));
        tmpt=tan(fa(j));
        ymat(j,:,:)=mat./tmps;
        xmat(j,:,:)=mat./tmpt;
    end
    clear mat tmps tmpt;
   num=fanumber*sum((xmat.*ymat),1)-(sum(xmat,1).*sum(ymat,1));
   din=fanumber*(sum(xmat.^2,1))-(sum(xmat,1)).^2;
   bl=num./din;
   b2=(1/fanumber)*(sum(ymat,1)-b1.*sum(xmat,1));
    T1map=-tr./(log(b1)); %%%%% TR OF THE EXPERIMENT
    mm(:,:)=T1map(1,:,:);
    clear T1map;
    T1map=mm;
    % Error MATRIX calculation
    yestimate=zeros(size(fa,2),rows,cols); % IMAGE MATRIX SIZE
    for j=1:fanumber
        num=b2.*sin(fa(j));
        din=1-cos(fa(j)).*b1;
        yestimate(j,:,:)=num./din;
    end
    sigma_y_error_estimate=sqrt((1/(fanumber-2))*sum((yestimate-
faimagemat).^2,1));
```

```
Supporting Information
```

```
din=fanumber*(sum(xmat.^2,1))-(sum(xmat,1)).^2;
    error_bl=sigma_y_error_estimate.*sqrt(fanumber./din);
    mm(:,:)=zeros(rows,cols);
    mm(:,:) = din(1,:,:);
    clear din;
    din=mm;clear mm;
    T1_error=(tr*error_b1)./(b1.*(log(b1)).^2);
    rho_e2=b2./(1-b1);
    mm(:,:)=zeros(rows,cols);
    mm(:,:) = T1 error(1,:,:);
    clear T1 error error b1;
    T1 error=mm;
    curntfname=strcat(s(1).fpathname(1,(1:size(s(1).fpathname,2)-7)),'T1_map-
',num2str(i),'.ima');
    writeima(curntfname, T1map);
    curntfname=strcat(s(1).fpathname(1,(1:size(s(1).fpathname,2)-
7)), 'T1_errmap_mult10-', num2str(i), '.ima');
    writeima(curntfname, T1_error*10);
end
```

Inverse recovery experiments were performed using a Bruker mq 60 NMR Analyzer (1.4 T, 37 °C) and a Varian-500S (11.7 T, 20 and 37 °C) spectrometer for samples of GdDOTA, **1**, **2**, and **3** in degassed phosphate buffered saline (PBS, pH 7.4). The relaxivity of the complexes were calculated from the slopes of the linear plots of $1/T_1$ versus concentration.

Variable-temperature ¹⁷O NMR measurements of degassed solutions of GdDOTA (20 mM); **1** (5.0 mM); **2** (0.50 mM); **3** (0.42 mM); and the Sr^{II} analogues of **1** (5.0 mM), **2** (0.50 mM), and **3** (0.42 mM) in phosphate buffered saline (PBS, pH = 7.4) as well as acidified water (HClO₄, pH 3.4) were obtained on a Varian–500S (9.4 T) spectrometer. ¹⁷O-enriched water (10% $H_2^{17}O$, Cambridge Isotope Laboratories, Inc.) was added to samples to yield 1% ¹⁷O enrichment. Line widths at half height were measured at 15, 20, 30, 40, 50, 60, and 70 °C. The Sr^{II} analogues

Supporting Information

of **1**, **2**, and **3** and the acidified water were used as diamagnetic references. A/\hbar , q, and ΔE were fixed to -3.8×10^{-6} rad/s, 2, and 2.5×10^{-11} J/mol, respectively, for Eu^{II}-containing cryptates. Data acquired from variable-temperature ¹⁷O NMR experiments were fitted using sixty unique values of T_{1e}^{298} in the range of 10^{-8} – 10^{-3} s, and the T_{1e}^{298} values that were associated with the best correlation coefficients were reported. The least-squares fits of the ¹⁷O NMR relaxation data were calculated using Origin software (8.0951 B951) following published procedures.⁵ The variable temperature ¹⁷O NMR data and fits are presented below:

GdDOTA:

Temperature (°C)	Linewidth (Hz)		
	Acidified water	GdDOTA	
70	33	97	
60	39	137	
50	50	197	
40	68	249	
30	99	281	
20	137	256	
15	160	241	

- Notes
- 🗉 Input Data
- Parameters

L .		· -		
			Value	Standard Error
	T tau 1overT2P	T1e298	2.9E-8	0
		taum298	2.8731E-7	1.44761E-8
		deltaH	70278.52868	1737.2312
		deltaE	2.5E-11	0
		q	1	0
		Gd	0.02	0

Iterations Performed = 8

Total Iterations in Session = 8

Fit converged - tolerance criterion satisfied.

Some parameter values were fixed.

📮 Statistics

	1overT2P
Number of Points	7
Degrees of Freedom	5
Reduced Chi-Sqr	355.87249
Residual Sum of Squares	1779.36246
Adj. R-Square	0.98372
Fit Status	Succeeded(100)

Fit Status Code : 100 : Fit converged

∃ Summary

🗉 Residual vs. Independent Plot

Eu^{II}-containing complex, 1:

Temperature (°C)	Linewidth (Hz)		
-	Sr analog of 1	1	
70	30	31	
60	34	37	
50	40	46	
40	53	57	
30	64	73	
20	91	111	
15	107	142	

∃ Notes

- ∃ Input Data
- ⊒ Parameters

		Value	Standard Error
	T1e298	1.2E-7	0
	taum298	3.0316E-9	3.61557E-10
1 ovorT2D	deltaH	60371.25707	8482.41449
TOVETTZF	deltaE	2.5E-11	0
	q	2	0
	Eu	0.005	0

Iterations Performed = 5

Total Iterations in Session = 5 Fit converged - Chi-sqr no longer changed.

Some parameter values were fixed.

⊒ <u>Statistics</u>

		1overT2P
Nun	nber of Points	7
Degree	s of Freedom	5
Red	uced Chi-Sqr	51.7001
Residual Su	m of Squares	258.50051
1	Adj. R-Square	0.96503
	Fit Status	Succeeded(101)

Fit Status Code : 101 : Fit converged

- ∃ Summary
- ∃ ANOVA
- ⊒ Fitted Curves Plot

∃ Residual vs. Independent Plot

Garcia et al.

Eu^{II}-containing complex, 2:

Temperature (C)	Linowidth	(H 7)
-	Sr analog of 2	2
70	30	37
60	34	45
50	41	57
40	52	75
30	71	105
20	102	154
15	126	183

- 🗉 Input Data
- *₽* Parameters

ſ			Value	Standard Error
		T1e298	4.1E-8	0
		taum298	1.16602E-8	2.57992E-10
	1overT2P	deltaH	33732.12485	1360.89106
		deltaE	2.5E-11	0
		q	2	0
		Eu	0.005	0

Iterations Performed = 6

Total Iterations in Session = 6 Fit converged - Chi-sqr no longer changed.

Some parameter values were fixed.

📮 Statistics

	1overT2P
Number of Points	7
Degrees of Freedom	5
Reduced Chi-Sqr	19.20064
Residual Sum of Squares	96.0032
Adj. R-Square	0.99503
Fit Status	Succeeded(101)

Fit Status Code :

101 : Fit converged

- Summary
- Fitted Curves Plot

■ Residual vs. Independent Plot

Eu^{II}-containing complex, 3:

Temperature (°C)	Linewidth (Hz)		
-	Sr analog of 3	3	
70	29	30	
60	33	35	
50	39	43	
40	48	55	
30	63	75	
20	90	108	
15	112	134	

⊞ Input Data

₽ Parameters

			Value	Standard Error
		T1e298	1.1E-6	0
		taum298	4.78533E-8	3.77746E-9
	1overT2P	deltaH	48872.87829	5457.16633
		deltaE	2.5E-11	0
		q	2	0
		Eu	4.2E-4	0

Iterations Performed = 11

Total Iterations in Session = 11 Fit converged - tolerance criterion satisfied. Some parameter values were fixed.

₽ Statistics

	1overT2P
Number of Points	7
Degrees of Freedom	5
Reduced Chi-Sqr	9.39458
Residual Sum of Squares	46.97288
Adj. R-Square	0.98571
Fit Status	Succeeded(100)

Fit Status Code : 100 : Fit converged

- ANOVA

Garcia et al.

GdDOTA (1.4 T, Temp = $37 \degree C$)

Concn	$1/T_1$	T_1	_ 4	.00 y י	= 2.9675 x + 0	0.2136	
(mM)	(s^{-1})	(s)	-11	00	$R^2 = 1$		
1	3.18	0.31	<u>'s</u> 2.	.00 -			
0.5	1.69	0.59	Ę 0.	.00			
0.25	0.96	1.05	1	0	0.5	1	15
0.125	0.58	1.71		0	0.5	1	1.5
0.0625	0.40	2.51					
0	0.22	4.63		(Gd Concentra	tion (mM)	
					su concentiu		
Concn	$1/T_{1}$	T_1	4	00			
(mM)	(s^{-1})	(s)	<u></u>	י אך יי.	= 2.9147x + 0	0.2126	
1	3.13	0.32	< <u>'</u> 2.	.00 -	$R^2 = 1$		
0.5	1.67	0.60					
0.25	0.93	1.07	11	.00 1			
0.125	0.58	1.74		0	0.5	1	1.5
0.0625	0.40	2.52			Cd apparent	ntion (m)	n)
0	0.22	4.63			Ou concentu		1)
Concn	$1/T_{1}$	T_1	4	00 V -	$-3.1195 \text{ x} \pm 0$	2163	
(mM)	(s^{-1})	(s)	$\widehat{}$	יעך 100.	$R^2 = 1$.2105	
1	3.33	0.30	< <u></u> 2.	.00 -			
0.5	1.79	0.56	Ŭ, I		•		
0.25	1.00	1.00	5 0	.00	I	1	1
0.125	0.60	1.66		0	0.5	1	1.5
0.0625	0.41	2.45					
0	0.22	4.63			Gd concent	ration (mN	1)
0.0625	0.41	2.45 4.63			Gd concent	ration (mN	A)

Cryptate 1 (1.4 T, Temp = $37 \degree C$)

Concn	$1/T_1$	T_1
(mM)	(s^{-1})	(s)
1	2.30	0.43
0.5	1.24	0.81
0.25	0.73	1.37
0.125	0.44	2.26
0.0625	0.30	3.38
0	0.22	4.63

1 2.31 0.43
0.5 1.27 0.79
0.25 0.65 1.54
0.125 0.47 2.13
0.0625 0.29 3.39
0 0.22 4.63

Concn	$1/T_1$	T_1
(mM)	(s^{-1})	(s)
1	2.31	0.43
0.5	1.27	0.79
0.25	0.65	1.54
0.125	0.47	2.13
0.0625	0.29	3.39
0	0.22	4.63

Eu Concentration (mM)

Supporting Information

Garcia et al.

Supporting Information

Cryptate 2 (1.4 T, Temp = $37 \degree C$)

	Concn	$1/T_1$	T_1	-6 $-3.7665x + 0.2155$	
	(mM)	(s^{-1})	(s)	\vec{z} 4 - $R^2 = 0.9999$	
	1	3.97	0.25		
	0.5	2.13	0.47	E	
	0.25	1.14	0.88		_
	0.125	0.69	1.46	0 0.5 1	1.5
	0.0625	0.45	2.21		
	0	0.22	4.63	Eu Concentration (mM)	
	Concn	$1/T_1$	T_1		
	(mM)	(s^{-1})	(s)	$\widehat{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{3.7594x + 0.1809}{B^2 = 0.0001}$	
	1	3.96	0.25	$K^2 = 0.9991$	
	0.5	2.00	0.50		
	0.25	1.15	0.87		—
	0.125	0.68	1.48	0 0.5 1	1.5
	0.0625	0.36	2.76		
	0	0.22	4.63	Eu Concentration (mM)	
	Concn	$1/T_1$	T_1		
	(mM)	(s^{-1})	(s)	4 - y = 3.4831x + 0.2309	
	1	3 69	0.27	$\hat{-}$ 3 $R^2 = 0.9996$	
	0.5	2.02	0.50	<u>5</u> 2 -	
	0.25	1.11	0.90		
	0.125	0.66	1.51		_
	0.0625	0.44	2.30	0 0.5 1	1.5
	0	0.22	4.63		
-				Eu Concentration (mM)	

Cryptate **3** (1.4 T, Temp = $37 \degree C$)

	Concn	$1/T_1$	T_1
_	(mM)	(s^{-1})	(s)
	1	4.57	0.22
	0.5	2.36	0.42
	0.25	1.25	0.80
	0.125	0.72	1.40
	0.0625	0.47	2.14
_	0	0.22	4.63

Concn (mM)	$1/T_1$ (s ⁻¹)	<i>T</i> ₁ (s)
1	4.77	0.21
0.5	2.45	0.41
0.25	1.33	0.75
0.125	0.75	1.33
0.0625	0.47	2.12
0	0.22	4.63

Concn	$1/T_1$	T_1
(mM)	(s^{-1})	(s)
1	4.41	0.23
0.5	2.30	0.43
0.25	1.23	0.81
0.125	0.70	1.43
0.0625	0.44	2.27
0	0.22	4.63

Eu Concentration (mM)

Garcia et al.

GdDOTA (3 T, Temp = $19.8 \degree C$)

Concn	$1/T_{1}$	T_1		6.00 y = 3.6585x + 0.1338
(mM)	(s^{-1})	(s)	-1)	$4.00 R^2 = 0.9955$
1	3.86	0.26	(S	2 00
0.5	1.88	0.53	TI	2.00
0.25	0.95	1.06	1	0.00
0.125	0.53	1.90		0 0.5 1 1.5
0.0625	0.45	2.24		
0	0.23	4.36		Gd Concentration (mM)
Concn	1/T.	T		
(mM)	$\frac{1}{1}$	1	-	6.00 y = 3.7873x + 0.1323
(IIIIVI)	(S)	(S)	-1	$4.00 - R^2 = 0.9975$
1	3.98	0.25	(s/	2 00
0.5	1.90	0.53	IT	2.00
0.25	1.07	0.93	1	0.00
0.125	0.58	1./1		0 0.5 1 1.5
0.0625	0.38	2.65		
0	0.21	4.78		Gd concentraton (mM)
Concn	$1/T_{1}$	T_1		< 00
(mM)	(s^{-1})	(s)	1	y = 3.776x + 0.1366
1	3.07	0.25	- <s< td=""><td>$4.00 - R^2 = 0.9979$</td></s<>	$4.00 - R^2 = 0.9979$
05	1.93	0.23	1 (2.00
0.25	1.05	0.95	11	0.00
0.125	0.63	1.58		
0.0625	0.34	2.91		0 0.5 1 1.5
0	0.22	4.62		Gd concentration (mM)
				Su concentration (inivi)
Conon	1 /T	T		2.5511 0.1722
(mM)	$\frac{1}{1}$	I_1		4.00 y = 3.5511x + 0.1755
(IIIIVI)	(S^{-1})	(S)	~-1	$3.00 - K^2 = 0.9992$
1	3.73	0.27	l (s	2.00
0.5	1.96	0.51	T	1.00
0.25	1.02	0.98	1	0.00
0.125	0.60	1.66		0 0.5 1 1.5
0.0625	0.36	2.78		
0	0.24	4.19		Gd concentration (mM)

Cryptate **1** (3 T, Temp = 19.8 °C)

Concn	$1/T_1$	T_1	6.00 = x = 3.6688x + 0.221
(mM)	(s^{-1})	(s)	$\overrightarrow{1}$ 4.00 $R^2 = 0.9994$
1	3.88	0.26	S 2.00 -
0.5	2.11	0.48	
0.25	1.10	0.91	
0.125	0.64	1.55	0 0.5 1 1.
0.0625	0.47	2.11	F_{ii} concentration (mM)
0	0.23	4.36	Eu concentration (IIIW)
Concn	$1/T_1$	T_1	C 00 4 2425
Concn (mM)	$\frac{1/T_1}{(s^{-1})}$	T_1 (s)	$\begin{bmatrix} 6.00 \\ 4.00 \end{bmatrix}^{y} = 4.2435x + 0.1438$ $R^{2} = 0.9985$
Concn (mM)	$\frac{1/T_1}{(s^{-1})}$ 4.44	T_1 (s) 0.23	$\begin{bmatrix} 6.00 \\ -4.00 \\ -2.00 \end{bmatrix}^{y} = 4.2435x + 0.1438$ R ² = 0.9985
Concn (mM) 1 0.5	$ \frac{1/T_1}{(s^{-1})} \\ \frac{4.44}{2.17} $	T_1 (s) 0.23 0.46	$\begin{cases} 6.00 \\ -\frac{1}{2} \\ 2.00 \\ -\frac{1}{2} \\ 2.00 \\ -\frac{1}{2} \\ -\frac{1}{2}$
Concn (mM) 1 0.5 0.25	$ \frac{1/T_1}{(s^{-1})} \\ \frac{4.44}{2.17} \\ 1.18 $	$ \begin{array}{c} T_1 \\ (s) \\ 0.23 \\ 0.46 \\ 0.85 \end{array} $	$\begin{cases} 6.00 \\ 4.00 \\ 2.00 \\ 0.00 \end{cases} y = 4.2435x + 0.1438 \\ R^2 = 0.9985 \\ 0.9985 \\ 0.00 \\ $
Concn (mM) 1 0.5 0.25 0.125	$ \begin{array}{r} 1/T_1 \\ (s^{-1}) \\ 4.44 \\ 2.17 \\ 1.18 \\ 0.65 \\ \end{array} $	$\begin{array}{c} T_1 \\ (s) \\ 0.23 \\ 0.46 \\ 0.85 \\ 1.55 \end{array}$	$\begin{cases} 6.00 \\ 4.00 \\ 2.00 \\ 0.00 \end{cases} = 4.2435x + 0.1438 \\ R^2 = 0.9985 \\ 0.9985 \\ 0.00 \\ 0.05 \\ 0.05 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $
Concn (mM) 1 0.5 0.25 0.125 0.0625	$ \begin{array}{r} 1/T_1 \\ (s^{-1}) \\ 4.44 \\ 2.17 \\ 1.18 \\ 0.65 \\ 0.44 \\ \end{array} $	$\begin{array}{c} T_1 \\ (s) \\ 0.23 \\ 0.46 \\ 0.85 \\ 1.55 \\ 2.27 \end{array}$	$\begin{array}{c} 6.00\\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Concn (mM) 1 0.5 0.25 0.125 0.0625 0	$ \begin{array}{r} 1/T_1 \\ (s^{-1}) \\ 4.44 \\ 2.17 \\ 1.18 \\ 0.65 \\ 0.44 \\ 0.21 \\ \end{array} $	$\begin{array}{c} T_1 \\ (s) \\ 0.23 \\ 0.46 \\ 0.85 \\ 1.55 \\ 2.27 \\ 4.78 \end{array}$	$\begin{array}{c} 6.00\\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

Supporting Information

Garcia et al.

Concn	$1/T_1$	T_1
(mM)	(s^{-1})	(s)
1	4.10	0.24
0.5	2.13	0.47
0.25	1.07	0.93
0.125	0.66	1.51
0.0625	0.48	2.09
0	0.22	4.62
Concn	$1/T_{1}$	T_1
(mM)	(s^{-1})	(s)
1	4.17	0.24
0.5	2.16	0.46
0.25	1.08	0.92
0.125	0.63	1.60
0.0625	0.46	2.18
0	0.24	1 10

Eu concentration (mM)

1.5

1.5

1.5

1.5

Cryptate **2** (3 T, Temp = $19.8 \degree C$)

Concn	$1/T_{1}$	T_1	y = 5.0371x + 0.0987
(mM)	(s^{-1})	(s)	$\begin{array}{c} 6.00 \\ 1.00 \\ 1 \\ \end{array}$
1	5.29	0.19	
0.5	2.34	0.43	
0.25	1.26	0.79	
0.125	0.74	1.35	0 0.5 1
0.0625	0.48	2.07	Fu concentration $(\mathbf{m}\mathbf{M})$
0	0.23	4.36	
Concn	$1/T_1$	T_1	6.00 y = 4.832x + 0.1405
(mM)	(s^{-1})	(s)	$\hat{r}_{1}^{2} = 4.00$ $R^{2} = 0.999$
1	5.03	0.20	× 2 00
0.5	2.46	0.41	$\mathbf{F}^{2.00}$
0.25	1.33	0.75	~ 0.00
0.125	0.72	1.38	0 0.5 1
0.0625	0.45	2.22	
0	0.21	4.78	Eu concentration (mM)
Concn	$1/T_1$	T_1	6.00 -y = 4.8284x + 0.127
(mM)	(s^{-1})	(s)	$\overrightarrow{-}$ 4.00 R ² = 0.9988
1	4.98	0.20	<u>5</u> 2.00
0.5	2.56	0.39	
0.25	1.23	0.81	
0.125	0.73	1.38	0 0.5 1
0.0625	0.41	2.42	Eu concentration (mM)
0	0.22	4.62	
Concn	$1/T_1$	T_1	6.00 y = 4.6489x + 0.1534
(mM)	(s^{-1})	(s)	$rac{1}{2}$ $rac{$
1	4.83	0.21	4.00
0.5	2.48	0.40	$E^{2.00}$
0.25	1.23	0.82	
0.125	0.68	1.48	0 0.5 1
0.0625	0.48	2.08	· ···· ·
0	0.24	4 19	En concentration (mM)

Supporting Information

Garcia et al.

Cryptate **3** (3 T, Temp = $19.8 \degree C$)

Concn	$1/T_{1}$	T_1	10.00 $y = 6.3294y + 0.1245$
(mM)	(s^{-1})	(s)	$\vec{r} = 0.3294 \text{ A} + 0.1243$ $\vec{r} = 0.9967$
1	6.58	0.15	š 3.00
0.5	3.05	0.33	
0.25	1.69	0.59	\geq 0 05 1 15
0.125	0.86	1.16	0 0.5 1 1.5
0.0625	0.60	1.68	Eu concentration (mM)
0	0.23	4.36	······································
Concn	$1/T_1$	T_1	10.00 y = 6.4163x + 0.0797
(mM)	(s^{-1})	(s)	$\overrightarrow{\mathbf{R}}$ $\mathbf{R}^2 = 0.9969 \bigstar$
1	6.62	0.15	5.00 -
0.5	3.07	0.33	
0.25	1.62	0.62	
0.125	0.85	1.17	0 0.5 1 1.5
0.0625	0.54	1.85	
0	0.21	4.78	Eu concentration (mM)
Concn	$1/T_{1}$	T_1	$10.00 \mathbf{w} = 6.1245 \mathbf{x} + 0.1777$
(mM)	(s^{-1})	(s)	$\widehat{} = 0.9989 \qquad \bigstar$
1	6.29	0.16	\$ 5.00
0.5	3.24	0.31	
0.25	1.83	0.55	
0.125	0.83	1.20	
0.0625	0.53	1.90	Eu concentration (mM)
0	0.22	4.62	
Concn	$1/T_1$	T_1	y = 6.3816x + 0.0641
(mM)	(s^{-1})	(s)	$10.00 I R^2 = 0.9962$
1	(5)	(8)	- 5.00
1	0.38	0.15	
0.5	3.00	0.55	
0.23	0.83	1.20	- 0 0.5 1 1.5
0.125	0.65	1.20	F_{ii} concentration (mM)
0.0025	0.32	4 19	Eu concentiutori (ilivi)
0	0.21		

GdDOTA (7 T, Temp = $19 \degree C$)

Concn	$1/T_1$	T_1		< 00		2.7	0.0	0.224	- 4
(mM)	(s^{-1})	(s)	<u>(</u>	6.00 4.00]	= 3.71 R ²	= 0.99	0.323 45	•4 •
1	4.07	0.25	(S^.	2.00	_	•	A		•
0.5	2.16	0.46	Ľ	0.00	-		•		
0.25	1.25	0.80	17	0.00					
0.125	0.70	1.42			0		0.5		1
0.0625	0.46	2.20				<u> </u>			
0	0.51	1.96				Ga	concer	itratic	on (mM)
Concn	$1/T_1$	T_1				2 71	01	0.240	
(mM)	(s^{-1})	(s)	$\widehat{}$	6.00	יען	= 3./1 D2	01X + 0.00'	0.342 22	.0
1	4.08	0.25	<	4.00	-	K2	= 0.99.	25	*
0.5	2.19	0.46	1 (5	2.00					
0.25	1.25	0.80	T	2.00	1	-			
0.125	0.70	1.43	_	0.00	Ť		-		T
									1
0.0625	0.46	2.18			0		0.5		
0.0625	0.46 0.56	2.18 1.77			0		0.5		1

1.5

1.5

Concn	$1/T_{1}$	T_1
(mM)	(s^{-1})	(s)
1	4.08	0.25
0.5	2.19	0.46
0.25	1.24	0.80
0.125	0.70	1.43
0.0625	0.45	2.20
0	0.50	1.99

Concn	$1/T_1$	T_1
(mM)	(s ⁻¹)	(s)
1	4.10	0.24
0.5	2.22	0.45
0.25	1.24	0.81
0.125	0.71	1.42
0.0625	0.46	2.17
0	0.54	1.86

1.5

Cryptate 1 (7 T, Temp = $19 \degree C$)

$1/T_1$	T_1		x = 4.9477	x + 0.3517	
(s^{-1})	(s)	1	$\begin{array}{c} 6.00 \\ 4.00 \end{array} \right] y = 4.9477 \\ R^2 = \end{array}$	0.996	
5.26	0.19		2.00		
2.96	0.34	Ē	2.00		
1.55	0.65	5	0.00 ++	1 1	1
0.87	1.15		0 0	0.5 1	1.5
0.55	1.83		_		
0.51	1.96		Eu co	ncentration (mN	1)
$1/T_1$	T_1		$6.00 \mathbf{y} = 5.0095$	x + 0.3964	
(s^{-1})	(s)	-1)	$\frac{1}{4.00}$ $R^2 = 0$.9921	
5.32	0.19	(s^	2.00		
3.15	0.32	TI	0.00	,	
1.59	0.63	1/	0.00		
0.89	1.13		0 (0.5 1	1.5
0.57	1.77		Fu co	ncentration (mN	n
0.56	1.77		Luco	incentration (iniv	.)
$1/T_1$	T_1				
(s^{-1})	(s)		6.00 - y = 5.052	4x + 0.2408	
5 3 2	0.10	· -1	$4.00 - K^2 =$	0.9974	
3.15	0.19	1 (5	2.00	~	
1.59	0.63	T	0.00	, ,	
0.89	1.13	_	0	0.5 1	1.5
0.57	1.77				
0.56	1.77		Eu co	oncentration (mN	()
$1/T_1$	T_1		6.00 = y = 5.033	7x + 0.3413	
(s^{-1})	(s)	-1)	4.00 R ² =	= 0.995	
5 32	0.19		4.00	*	
3.15	0.32	II	2.00		
1.59	0.63	1/	0.00		
0.89	1.13		0	0.5 1	15
0.57	1.77		0	J.J I	1.3
0.56	1.77		Eu co	oncentration (mN	1)
	$\begin{array}{c} 1/T_1 \\ ({\rm s}^{-1}) \\ \hline 5.26 \\ 2.96 \\ 1.55 \\ 0.87 \\ 0.55 \\ 0.51 \\ \hline \\ \hline \\ 1/T_1 \\ ({\rm s}^{-1}) \\ \hline \\ 5.32 \\ 3.15 \\ 1.59 \\ 0.89 \\ 0.57 \\ 0.56 \\ \hline \\ \hline \\ 1/T_1 \\ ({\rm s}^{-1}) \\ \hline \\ 5.32 \\ 3.15 \\ 1.59 \\ 0.89 \\ 0.57 \\ 0.56 \\ \hline \\ \hline \\ 1/T_1 \\ ({\rm s}^{-1}) \\ \hline \\ 5.32 \\ 3.15 \\ 1.59 \\ 0.89 \\ 0.57 \\ 0.56 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Garcia et al.

Cryptate **2** (7 T, Temp = $19 \degree C$)

Concn (mM) 1 0.5 0.25 0.125 0.0625 0	$ \frac{1/T_1}{(s^{-1})} \\ 7.14 \\ 3.73 \\ 2.10 \\ 1.63 \\ 1.04 \\ 0.51 $	$\begin{array}{c} T_1 \\ (s) \\ 0.14 \\ 0.27 \\ 0.48 \\ 0.61 \\ 0.96 \\ 1.96 \end{array}$	$\begin{array}{c} 10.00 \\ \hline 10.00 \\ \hline 5.00 \\ 0.00 \\ \hline 0 \\ 0 \\ \hline 1 \\ 1 \\$
Concn (mM) 1 0.25 0.25 0.125 0.0625 0	$\frac{1/T_1}{({\rm s}^{-1})}$ 7.58 3.97 2.18 1.81 1.16 0.56	$\begin{array}{c} T_1 \\ (8) \\ 0.13 \\ 0.25 \\ 0.46 \\ 0.55 \\ 0.86 \\ 1.77 \end{array}$	$ \begin{array}{c} 10.00 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Concn (mM) 1 0.5 0.25 0.125 0.0625 0	$\frac{1/T_1}{(s^{-1})}$ 6.67 3.60 2.01 1.56 1.04 0.50	$\begin{array}{c} T_1 \\ (s) \\ 0.15 \\ 0.28 \\ 0.50 \\ 0.64 \\ 0.96 \\ 1.99 \end{array}$	$ \begin{array}{c} 10.00 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Concn (mM) 1 0.5 0.25 0.125 0.0625	$ \begin{array}{r} 1/T_1 \\ (s^{-1}) \\ 7.09 \\ 3.66 \\ 2.11 \\ 1.71 \\ 1.10 \\ \end{array} $	$\begin{array}{c} T_1 \\ (s) \\ 0.14 \\ 0.27 \\ 0.48 \\ 0.59 \\ 0.91 \end{array}$	$\begin{array}{c} 10.00 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Cryptate **3** (7 T, Temp = $19 \degree C$)

1.86

0.54

0

Concn	$1/T_1$	T_1
(mM)	(s^{-1})	(s)
1	7.58	0.13
0.5	3.46	0.29
0.25	1.78	0.56
0.125	1.03	0.97
0.0625	0.65	1.54
0	0.51	1.96
Concn	$1/T_1$	T_1
Concn (mM)	$\frac{1/T_1}{(s^{-1})}$	T_1
Concn (mM)	$\frac{1/T_1}{(s^{-1})}$	$\begin{array}{c} T_1 \\ (s) \\ 0.12 \end{array}$
Concn (mM)	$\frac{1/T_1}{(s^{-1})}$ 7.63	T_1 (s) 0.13 0.20
Concn (mM) 1 0.5	$ \begin{array}{r} 1/T_1 \\ (s^{-1}) \\ 7.63 \\ 3.51 \\ 1.70 \end{array} $	T_1 (s) 0.13 0.29 0.56
Concn (mM) 1 0.5 0.25	$ \begin{array}{r} 1/T_1 \\ (s^{-1}) \\ 7.63 \\ 3.51 \\ 1.79 \\ 1.04 \end{array} $	$ \begin{array}{c} T_1 \\ (s) \\ 0.13 \\ 0.29 \\ 0.56 \\ 0.96 \\ \end{array} $
Concn (mM) 1 0.5 0.25 0.125	$ \frac{1/T_1}{(s^{-1})} $ 7.63 3.51 1.79 1.04	$\begin{array}{c} T_1 \\ (s) \\ 0.13 \\ 0.29 \\ 0.56 \\ 0.96 \end{array}$
Concn (mM) 1 0.5 0.25 0.125 0.0625	$ \begin{array}{r} 1/T_1 \\ (s^{-1}) \\ 7.63 \\ 3.51 \\ 1.79 \\ 1.04 \\ 0.67 \\ \end{array} $	$\begin{array}{c} T_1 \\ (s) \\ 0.13 \\ 0.29 \\ 0.56 \\ 0.96 \\ 1.49 \end{array}$

Supporting Information

Garcia et al.

Supporting Information

GdDOTA (11.7 T, Temp = $37 \degree C$)

Cryptate **1** (11.7 T, Temp = 37 °C)

Supporting Information

Cryptate 2 (11.7 T, Temp = $37 \degree C$)

Cryptate **3** (11.7 T, Temp = 37 °C)

Garcia et al.

GdDOTA (11.7 T, Temp = $20 \degree C$)

Cryptate 1 (11.7 T, Temp = $20 \degree C$)

Cryptate 2 (11.7 T, Temp = $20 \degree C$)

Garcia et al.

Supporting Information

Cryptate **3** (11.7 T, Temp = $20 \degree C$)

Garcia et al.

Supporting Information

3-(Biphenyl-4-yl)propane-1,2-diol (4): To a mixture of 4-allylbiphenyl (4.00 g, 20.6 mmol, 1 equiv), *t*-BuOH (150 mL), and H₂O (150 mL) was added sequentially K₃Fe(CN)₆ (20.3 g, 61.8 mmol, 3 equiv), K₂CO₃·H₂O (9.65 g, 61.8 mmol, 3 equiv), and a solution of OsO₄ in *t*-BuOH (95.9 mM, 2.70 mL, 0.0129 equiv). The reaction mixture was stirred for 20 h at ambient temperature at which point Na₂SO₃ (7.79 g, 61.8 mmol, 3 equiv) was added, and stirring was continued for 4 h. The resulting solution was concentrated to dryness under reduced pressure, and the residue was extracted with Et₂O (6 × 50 mL). After removal of Et₂O under reduced pressure, purification was performed using silica gel chromatography (1:1 hexanes/ethyl acetate) to yield 4.25 g (90%) of **4** as white solid. ¹H NMR (400 MHz, CD₃OD, δ): 2.66–2.90 (m, CH₂, 2H), 3.44–3.56 (m, CH₂, 2H), 3.81–3.89 (m, CH, 1H), 7.24–7.58 (m, CH, 9H); ¹³C NMR (101 MHz, CD₃OD, δ): 40.5 (CH₂), 66.6 (CH₂), 74.4 (CH), 127.80 (CH), 127.81 (CH), 128.1 (CH),

129.8 (*C*H), 130.9 (*C*H), 139.3, 140.3, 142.2; TLC: $R_f = 0.33$ (1:1 hexanes/ethyl acetate); HRESIMS (*m*/*z*): [M + Na]⁺ calcd for C₁₅H₁₆O₂Na, 251.1048; found, 251.1046.

4-(1,2-Bis(allyloxy)ethyl)biphenyl (5): To a solution of 4 (3.10 g, 13.5 mmol, 1 equiv) in anhydrous dimethoxyethane (60 mL) under Ar at ambient temperature was added NaH (50% in oil, 2.53 g, 52.6 mmol, 4 equiv) followed by the dropwise addition of 1-bromoprop-2-ene (4.45 mL. 52.6 mmol, 4 equiv). The resulting reaction mixture was heated at reflux for 23 h and allowed to cool to ambient temperature before excess NaH was guenched with methanol (2 mL). Solvent was removed under reduced pressure; the resulting residue was extracted with ethyl acetate (3 \times 20 mL); and the combined ethyl acetate solutions were washed with water (3 \times 20 mL). The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. Purification was performed using silica gel chromatography (9:1 hexanes/ethyl acetate) to yield 3.85 g (95%) of **5** as a yellow oil. ¹H NMR (400 MHz, CD₃CN, δ): 2.79–2.91 (m, CH₂, 2H), 3.37-3.48 (m, CH₂, 2H), 3.68-3.76 (m, CH, 1H), 3.93-4.11 (m, CH₂, 4H), 5.04-5.32 (m, CH₂, 4H), 5.78–5.98 (m, CH, 2H), 7.28–7.66 (m, CH, 9H); ¹³C NMR (101 MHz, CD₃CN, δ): 38.1 (CH₂), 72.3 (CH₂), 72.6 (CH₂), 79.8 (CH), 116.4 (CH₂), 116.7 (CH₂), 127.6 (CH), 127.7 (CH), 128.1 (CH), 129.8 (CH), 131.0 (CH), 136.2 (CH), 136.6 (CH), 139.2, 139.5, 141.6; TLC: R_f = 0.53 (9:1 hexanes/ethyl acetate); HRESIMS (m/z): $[M + Na]^+$ calcd for C₂₁H₂₄O₂Na, 331.1674; found, 331.1669.

2,2'-(Propane-1,2-diylbisoxy-3-biphenyl-4-yl)-diethanol (6): Ozone was passed through a solution of **5** (4.00 g, 12.9 mmol, 1 equiv) in methanol (100 mL) at -50 °C until the starting compound was consumed (55 min). The resulting reaction mixture was purged with Ar, and NaBH₄ (4.87 g, 129 mmol, 10 equiv) was added. The mixture was stirred for 1 h, a mixture of HOAc/H₂O 1:10 (v/v) (18 mL) was added, and the resulting solution was stirred for 2 h. Volatile

Supporting Information

components were removed under reduced pressure, and the residue was extracted with ethyl acetate (6 × 20 mL). The extract was concentrated under reduced pressure, and purification was performed using silica gel chromatography (ethyl acetate) to yield 3.31 g (81%) of **6** as pale yellow oil. ¹H NMR (400 MHz, CD₃CN, δ): 2.75–2.90 (m, CH₂, 2H), 3.01 (brs, OH, 2H), 3.25–3.77 (m, CH and CH₂, 11H), 7.29–7.68 (m, CH, 9H); ¹³C NMR (101 MHz, CD₃CN, δ): 38.1 (CH₂), 61.9 (CH₂), 62.2 (CH₂), 72.3 (CH₂), 73.3 (CH₂), 73.6 (CH₂), 80.8 (CH), 127.6 (CH), 127.7 (CH), 128.2 (CH), 129.8 (CH), 131.0 (CH), 139.1, 139.6, 141.6; TLC: $R_f = 0.44$ (ethyl acetate); HRESIMS (*m*/*z*): [M + H]⁺ calcd for C₁₉H₂₅O₄, 317.1753; found, 317.1745.

2,2'-(Propane-1,2-diylbisoxy-3-biphenyl-4-yl)-ditosylate (7): A solution of tosyl chloride (3.71 g, 19.5 mmol, 3 equiv) in CH₂Cl₂ (22 mL) was added in a dropwise manner to an icecooled solution of 6 (2.06 g, 6.51 mmol, 1 equiv), triethylamine (5.45 mL, 39.1 mmol, 6 equiv), and dimethylaminopyridine (0.030 mL, 0.25 mmol, 0.038 equiv) in CH₂Cl₂ (33 mL), and the resulting mixture was stirred for 24 h while warming to ambient temperature. The reaction mixture was washed sequentially with water (2 \times 33 mL), saturated aqueous Na₂CO₃ (2 \times 22 mL), and saturated aqueous citric acid $(2 \times 22 \text{ mL})$; dried over Na₂SO₄; and concentrated under reduced pressure. Purification was performed using silica gel chromatography (stepwise gradient of 3:1 \rightarrow 1:1 hexanes/ethyl acetate) to yield 3.15 g (78%) of 7 as a light yellow oil. ¹H NMR (400 MHz, CD₃CN, δ): 2.37 (s, CH₃, 6H), 2.60–2.74 (m, CH₂, 2H), 3.20–3.35 (m, CH₂, 2H), 3.47– 3.67 (m, CH and CH₂, 5H), 3.97–4.12 (m, CH₂, 4H), 7.18–7.81 (m, CH, 17H); ¹³C NMR (101 MHz, CD₃CN, δ): 21.6 (CH₃), 37.7 (CH₂), 68.2 (CH₂), 69.3 (CH₂), 70.8 (CH₂), 71.1 (CH₂), 73.1 (CH₂), 80.7 (CH), 127.6 (CH), 127.7 (CH), 128.2 (CH), 128.7 (CH), 129.8 (CH), 131.0 (CH), 133.8, 138.6, 139.5, 141.6, 146.3; TLC: $R_f = 0.21$ (3:1 hexanes/ethyl acetate); HRESIMS (m/z): $[M + Na]^+$ calcd for C₃₃H₃₆O₈S₂Na, 647.1749; found, 647.1735.

Supporting Information

5-(Biphenyl-4-ylmethyl)-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (8):

Under an atmosphere of Ar, 4,13-diaza-18-crown-6-ether (0.177 g, 0.675 mmol, 1 equiv) was added to a suspension of Cs₂CO₃ (1.08 g, 3.33 mmol, 4.93 equiv) in anhydrous acetonitrile (37 mL). The mixture was heated to 60 °C, and a solution of **7** (0.478 g, 0.765, 1.13 equiv) in anhydrous acetonitrile (13 mL) was added. The reaction mixture was heated at reflux for 115 h, cooled to ambient temperature, and filtered through celite. Solvent was removed under reduced pressure, and purification was performed using silica gel chromatography (stepwise gradient of 20:1 \rightarrow 10:1 CH₂Cl₂/methanol) to yield 73.6 mg (21%) of **8** as a pale yellow oil. ¹H NMR (400 MHz, CD₃CN, δ): 2.55–2.88 (m, *CH*₂, 10H), 3.03–3.11 (m, *CH*₂, 1H), 3.32–3.82 (m, *CH* and *CH*₂, 26H), 7.30–7.66 (m, *CH*, 9H); ¹³C NMR (101 MHz, CD₃CN, δ): 38.4 (*C*H₂), 53.4 (*C*H₂), 53.5 (*C*H₂), 53.7 (*C*H₂), 53.8 (*C*H₂), 54.1 (*C*H₂), 66.1 (*C*H₂), 68.0 (*C*H₂), 68.1 (*C*H₂), 68.57 (*C*H₂), 68.59 (*C*H₂), 68.8 (*C*H₂), 68.9 (*C*H₂), 69.2 (*C*H₂), 69.6 (*C*H₂), 71.4 (*C*H₂), 79.4 (*C*H), 126.7 (*C*H), 127.7 (*C*H), 127.8 (*C*H), 128.3 (*C*H), 129.2 (*CH*), 129.9 (*C*H), 131.0 (*C*H), 138.4, 139.6, 141.5; TLC: *R*_f = 0.23 (10:1 CH₂Cl₂/methanol); HRESIMS (*m*/*z*): [M + H]⁺ calcd for C₃₁H₄₇O₆N₂, 543.3434; found, 543.3425.

General Procedure for the synthesis of Eu^{II} -containing cryptates (1–3): A degassed aqueous solution of $EuCl_2$ (1 equiv) was mixed with a degassed aqueous solution of a cryptand (2 equiv). The resulting mixture was stirred for 12 h at ambient temperature under Ar. Degassed PBS (10×) was added to make the entire reaction mixture 1× in PBS, and stirring was continued for 30 min. The concentration of Eu was verified by ICP-MS.

Garcia et al.

References

- Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, Fifth Edition; Elsevier: Burlington, MA, 2003.
- Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 12901–12903.
- 3. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.
- Haacke, E. M.; Brown, R. W.; Thompson, M. R.; Venkatesan, R. Magnetic Resonance Imaging Physical Principles and Sequence Design; John Wiley & Sons, Inc.: New York, 1999; p 654.
- Urbanczyk-Pearson, L. M.; Femia, F. J.; Smith, J.; Parigi, G.; Duimstra, J. A.; Eckermann,
 A. L.; Luchinat, C.; Meade, T. J. *Inorg. Chem.* 2008, 47, 56–68.

•

S35

P.

Supporting Information Garcia et al. ŝ đ $\boldsymbol{\infty}$ ٤ħ •

S38

