Synthesis, structure and DFT study of a pyrazolate stabilized mononuclear Rh(II) complex

William J. McCarty, Richard A. Jones* and Xiaoping Yang

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712.

Supplementary material:

General procedures

All reactions were performed under a dry, oxygen-free nitrogen atmosphere or under vacuum using standard Schlenk line and dry box techniques. All solvents were dried prior to use by distillation from sodium benzophenone ketyl under nitrogen. 3,5-bis(trifluoromethyl)pyrazole¹, was prepared according to literature procedures. Anhydrous RhCl₃ was prepared from RhCl₃·nH₂O and SOCl₂ in diethyl ether according to the literature procedure² and used immediately in the next step. ESIMS were collected on a Finnigan MAT TSQ 700 mass spectrometer. NMR spectra were recorded on a Varian 300 Unity Plus spectrometer 300 MHz at 298 K. Chemical shifts are referenced to the deuterated solvent. Infrared spectra were taken on a Nicolet IR 200 FTIR spectrometer between KBr plates.

Synthesis of [Li(THF)]₂ Rh(µ-3,5-(CF₃)₂Pz)₄ (1)

A solution of n-butyllithium (0.95 mL, 1.6 M) in hexane was added dropwise to a solution of 3,5-bis(trifluoromethyl)pyrazole (0.31 g, 1.51 mmol) in THF (25 ml) at -78 °C. This was allowed to warm to room temperature and was then stirred for 3 hours. This solution was added dropwise to a heterogeneous solution of anhydrous RhCl₃ (from 0.1 g RhCl₃ · nH₂O, 0.38mmol) in 10 mL diethyl ether. The resulting reaction mixture was stirred for 12 h at room temperature. During this time the color of the mixture changed from red to dark yellow. The mixture was then filtered. The filtrate was evaporated to dryness under vacuum and the residue was extracted with hexane (3 × 10mL). The extracts were combined and X-ray quality crystals were grown by slow evaporation of this yellow solution under N₂. Isolated: 0.18g, 44%; mp 126-127 °C. (dec.); ¹H-NMR (300 MHz, δ , CDCl₃): δ -60.7 (s, br), -61.2 (s, br); FT-IR (KBr, cm⁻¹):

1016 (s), 1128 (m), 1261 (w), 2964 (w), 1379 (m), 1450 (m); HRMS (chemical ionization) m/e 1005 [M^+ - CF₃], 859 [M^+ - CF₃ - 2 THF], 769 [M^+ - 2CF₃ - 2 THF - Li]. Calcd. for C₂₈H₂₀F₂₄Li₂N₈O₂Rh: C, 31.3; H, 1.9; N, 10.4, found C 30.8; H 1.8; N 10.0 %.

Single Crystal X-Ray Diffraction Analysis

Data was collected on a Nonius Kappa CCD diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 153 K. Absorption corrections were applied using GAUSSIAN. The structures were solved by direct methods and refined anisotropically using full-matrix least-squares methods with the SHELX 97 program package. The coordinates of the non-hydrogen atoms were refined anisotropically, while hydrogen atoms were included in the calculation isotropically but not refined.

X-Band EPR Studies of 1

EPR data were collected on a Bruker EMX Pro with a liquid nitrogen cooled cryostat. Samples dissolved in dry, degassed toluene were transferred to a quartz EPR tube and quickly frozen and immediately used.

Electrochemical Studies of 1

All electrochemical studies of complex **1** were performed in 0.1 M [TBA][PF₆] in methylene chloride or acetonitrile under a nitrogen atmosphere in a dry-box using a GPES system from Eco. Chemie B. V. Cyclic voltammograms were recorded against a ferrocene external standard with a $Ag/AgNO_3$ non-aqueous reference electrode, a Pt button working electrode (1.6 mm diameter), and a Pt wire coil counter electrode.

DFT Calculations of 1

All calculations were performed with the Gaussian 03 suite of programs³. Initial atomic coordinates from the X-ray crystallographic data were input and the geometry was optimized using the B3LYP hybrid density functional method⁴ with the LANL2DZ basis set⁵. A single point energy calculation was performed at the same level of theory on the geometry optimized structures to produce graphical representations of molecular orbitals (all calculated with a 0.04 isovalue).

2

The singularly occupied molecular orbital (SOMO) of Complex **1** is shown with an isovalue of 0.04 in Figure S2. The tilted orientation of each pyrazolate ring with respect to the xy plane of the complex (121°) leads to efficient overlap of the ligand based π orbitals with the d_{xy} orbital on the metal, resulting in the formation of a bonding and antibonding pair of molecular orbitals. This orientation also diminishes the overlap with d_{xz} and d_z² orbitals on the metal, rendering these predominantly non bonding. The result of this interaction is the placement of the unpaired electron in an L_π + d_{xy} antibonding orbital of relatively high energy with substantial ligand and metal character. Optimized structural coordinates of **1** are listed in Table S1.

Figure S1. Top and side view of the SOMO of Complex 1.

Table S1. B3LYP/LANL2DZ optimized structural coordinates for Complex 1.

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	45	0	0.000000	0.000000	0.000000			
2	9	0	1.756130	3.574230	0.762926			
3	9	0	2.673725	1.538857	0.501905			
4	6	0	-1.443454	-3.149242	2.586713			
5	1	0	-2.050781	-3.991637	2.877453			
6	9	0	2.625508	-1.600640	0.566234			
7	6	0	2.259597	-2.792998	-0.092669			
8	9	0	-3.538944	-3.327943	0.571613			
9	6	0	-1.352681	3.282355	2.467944			
10	1	0	-1.934987	4.152420	2.726619			
11	6	0	1.443454	3.149242	-2.586713			
12	1	0	2.050781	3.991637	-2.877453			
13	9	0	0.757285	-1.494172	5.120426			
14	7	0	-0.513206	1.491115	1.341961			
15	7	0	-0.065361	1.433796	-2.607651			
16	6	0	-0.460464	-2.471726	3.326647			
17	6	0	2.339262	2.718755	-0.195482			
18	7	0	0.104928	1.525279	2.553515			
19	6	0	-1.469960	-2.450391	1.367982			
20	9	0	0.966034	-3.723150	4.844589			
21	9	0	0.800409	1.657494	5.061836			
22	7	0	0.553067	1.425812	-1.395878			
23	7	0	0.065361	-1.433796	2.607651			
24	9	0	1.071131	3.868481	4.706378			
25	6	0	1.352681	-3.282355	-2.467944			
26	1	0	1.934987	-4.152420	-2.726619			
27	6	0	1.399511	-2.540434	-1.275501			
28	6	0	-2.339262	-2.718755	0.195482			
29	6	0	0.051397	-2.677330	4.702459			
30	6	0	-0.390234	2.603745	3.233423			
31	6	0	0.127530	2.844136	4.601392			
32	7	0	-0.553067	-1.425812	1.395878			
33	6	0	0.460464	2.471726	-3.326647			
34	6	0	1.469960	2.450391	-1.367982			
35	9	0	-0.865076	3.122967	5.539436			
36	9	0	1.651751	-3.600367	0.891963			
37	9	0	-2.673725	-1.538857	-0.501905			
38	9	0	3.538944	3.327943	-0.571613			
39	9	0	-1.756130	-3.574230	-0.762926			
40	7	0	-0.104928	-1.525279	-2.553515			
41	7	0	0.513206	-1.491115	-1.341961			
42	6	0	0.390234	-2.603745	-3.233423			
43	9	0	-0.948245	-2.894511	5.649336			
44	9	0	3.442582	-3.447154	-0.445767			
45	3	0	-0.956356	-0.051620	-3.550970			
46	3	Ũ	0.956356	0.051620	3.550970			
47	9	0	-2.625508	1.600640	-0.566234			
48	9	0	-0.966034	3.723150	-4.844589			
49	9	0	-3.442582	3.447154	0.445767			

Standard orientation:

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

50	9	0	-0.757285	1.494172	-5.120426
51	9	0	-1.651751	3.600367	-0.891963
52	9	0	-1.071131	-3.868481	-4.706378
53	6	0	-1.399511	2.540434	1.275501
54	9	0	-0.800409	-1.657494	-5.061836
55	6	0	-2.259597	2.792998	0.092669
56	6	0	-0.051397	2.677330	-4.702459
57	6	0	-0.127530	-2.844136	-4.601392
58	9	0	0.865076	-3.122967	-5.539436
59	9	0	0.948245	2.894511	-5.649336

References

1. O. Renn, L. M. Vananzi, A. Marteletti and V. Gramlich, Helv. Chim. Acta., 1995, 78, 993.

2. R. S. Hay-Motherwell, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, *Dalton Trans.*, 1992, 24, 3477.

3. *Gaussian 03*, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

4. (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098. (b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648. (c) C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.

5. (a) W. R. Wadt and P. J. Hay, *J. Chem. Phys.*, 1985, **82**, 284. (b) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 299.