Supplementary Material (ESI) for

A Highly Efficient Precatalyst for Amination of Aryl Chlorides:

Synthesis, Structure and Application of a Robust

Acenaphthoimidazolylidene Palladium Complex

Tao Tu*, Weiwei Fang and Jian Jiang

Department of Chemistry, Fudan University, 220 Handan Road, 200433, Shanghai, China *Email: <u>taotu@fudan.edu.cn</u>

Table of contents:

1.	General	S2
2.	Synthetic procedures	S2
	2.1. Synthesis of catalyst	S2
	2.2. Gerneral procedure for Pd-catalyzed amination.	S4
	2.3. Synthesis of mefenamic acid	S4
3.	Optimization of reaction conditions.	S5
4.	Poisoning experiments	S6
5.	Data for the products of aminations	S6
6.	Crystal structure information for Pd-NHC complex 2	S14
7.	¹ H NMR, ¹³ C NMR and MS spectra for important compounds	S31
8.	References	S58

1. General.

All commercial reagents were used directly without further purification, unless otherwise N,N-dimethylformamide stated. Dry (DMF), dimethylsulfoxide (DMSO) N,N-Dimethylacetamide (DMA) were purchased from Alfa Aesar and Acros, stored over 4 Å molecular sieves and handled under N2. Anhydrous methanol (MeOH) and tert-butanol (t-BuOH) were distilled from anhydrous calcium chloride, Tetrahydrofuran (THF) was distilled from sodium/benzophenone, 1,2-Dimethoxyethane (DME), 1,4-dioxane and toluene were distilled from calcium hydride prior to use. t-BuOK was purchased from Acros. All schlenk tubes and sealed vessels (50 mL) were purchased from Beijing Synthware Glass. CDCl₃ was purchased from Cambridge Isotope Laboratories. ¹H and ¹³C NMR were recorded on Jeol ECA-400 and Bruker 400 DRX spectrometers. ¹³C NMR spectra were referenced to the carbon signal of CDCl₃ (77.0 ppm). GC-MS spectra were recorded on Agilent Technologies 1890A GC system and 5975C inert MSD with Triple-Axis Detector.

2. Synthetic procedures:

2.1. Synthesis of palladium NHC complex 2.

Scheme S1. Synthesis of pyridine-stabilized palladium NHC complex 2.

Bis[N,N'-(2,6-diisopropylphenyl)imino]acenaphthene (S2): According to literature procedure ^{S1}, acenaphthenequinone (0.7 g, 3.84 mmol) was suspended in acetonitrile (25 mL) and heated under reflux condition for 60 min. Then acetic acid (6.5 mL) was added, and the resulting reaction mixture was heated until the acenaphthenequinone had been completely dissolved. To the hot mixture, 2,6-diisopropylphenylaniline (1.63 g, 9.2 mmol) was added dropwise over 30 min, and the solution was heated under reflux condition for another 5 h and then cooled to room temperature. The resulting orange-yellow solid was then filtered, washed with pentane (3 ×20 mL), and dried over under the air. Yield: 1.73 g, 90%. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.88 (d, *J* = 10.8 Hz, 2H), 7.36 (t, *J* = 10.0 Hz, 2H), 7.27 (bs, 6H), 6.63 (d, *J* = 9.2 Hz, 2H), 3.07-2.98 (m, 4H), 1.24 (d, *J* = 8.8 Hz, 12H), 0.97 (d, *J* = 8.8 Hz, 12H); HR-MS (ESI): *m*/z 500.3191 (calcd.); 501.3258 (found, [M+1]⁺).

IPr(BIAN) imidazolium chloride (S3): According to literature procedure^{S2}, S2 (1.00 g, 2 mmol) and methoxy(methyl)chloride (3.22 g, 40 mmol) were added to an netrogen-flushed thick-walled reaction vessel. After sealed the vessel, the reaction mixture was stirred at 100 °C for 16 h, during which time the mixture changed from a murky brown suspension to a clear red solution. After cooling to room temperature, 10 mL of diethyl ether was subsequently added resulting in the formation of a yellow precipitate. The precipitation was filtered off and washed with 50 mL of diethyl ether and dried *in vacuo* to afford S3 as an analytically pure yellow powder. Yield: 0.89 g, 81%. ¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 11.82$ (s, 1H), 8.00 (d, J = 8.0 Hz, 2H), 7.67 (t, J = 8.0 Hz, 2H), 7.57 (t, J = 7.6 Hz, 2H), 7.46 (d, J = 7.6 Hz, 4H), 7.23 (d, J = 6.8 Hz 2H), 2.77-2.66 (m, 4H), 1.39 (d, J = 6.8 Hz, 12H); HR-MS (ESI): m/z 513.3264 (calcd.); 513.3264 (found, [M-Cl]⁺).

Pd-NHC complex (2): To a schlenk tube containing PdCl₂ (0.088 g, 0.5 mmol), **S3** (0.55 mmol), K₂CO₃ (0.345 g, 5.0 mmol) and a stirrer bar, 3-Chloropyridine (2.0 mL) was added. The reaction mixture was heated with vigorous stirring at 90°C for 24 h. After cooling to room temperature, the reaction mixture was diluted with CH₂Cl₂ and passed through a short pad of silica gel covered with a pad of Celite eluting with CH₂Cl₂ until the product was completely recovered. Most of the CH₂Cl₂ was removed (rotary evaporator) at room temperature and 3-chloropyridine was then vacuum-distilled (water aspirator vacuum) and saved for reuse. The pure pd-NHCcomplex **2** was isolated after triturating with pentane, decanting of the supernatant and drying in high vacuum^{S3}. Yield: 0.305 g, 76%. ¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.68$ (d, J = 2.0 Hz, 1H), 8.61 (dd, J = 5.2 and 0.8 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.64 (t, J = 8.0 Hz, 2H), 7.57 (d, J = 8.0 Hz 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.10 (dd, J = 8.0 Hz, 5.6 Hz, 1H), 6.80 (d, J = 7.32 Hz, 2H),

3.45 - 3.35 (m, 4H), 1.46 (d, *J* = 6.4 Hz, 12H), 0.92 (d, *J* = 6.4 Hz, 12H); ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 159.07, 150.49, 149.48, 147.21, 140.39, 137.37, 133.79, 131.78, 130.65, 129.51, 129.05, 128.06, 127.21, 126.02, 124.71, 124.24, 122.13, 28.86, 25.76, 24.24. HR-MS (ESI): *m/z* 617.2226 ([M-Cl-Py-2Cl], calcd.); 617.2163 (found, [M-Cl-Py-2Cl]⁺).

2.2. General procedure for Pd-catalyzed amination with complex 2.

To a 50 mL schlenk tube containing base (3.0 mmol) and precatalyst **2** (0.075 mol%, 0.0012 g) purged with N₂ (3 times), amine (2.2 mmol) was added. The resulted mixture was allowed to stir for 2–3 minutes at room temperature before dioxane (2 mL) was injected via syringe. Aryl chloride (2.0 mmol) was added subsequently. (Note, if aryl chloride was a solid, it was introduced before purging with N₂). The result mixture was then heated at 80 °C for 24 h. After cooling to the room temperature, the reaction mixture was concentrated in vacuo and directly purified by silica gel flash chromatography.

2.3. Hydration of Mefenamic acid 30

Scheme S2. Synthesis of mefenamic acid 30.

2-(2,3-dimethylphenylamino)benzonitrile (29): 80% yield.¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.48 (dd, *J* = 7.6 and 1.2 Hz, 1H), 7.30 (td, *J* = 8.0 and 1.2Hz, 1H), 7.17 - 7.09 (m, 3H), 6.77 (t, *J* = 7.6 Hz, 1H), 6.63 (d, *J* = 8.4 Hz 1H), 6.15 (s, 1H), 2.35 (s, 3H), 2.17 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 148.88, 138.43, 137.50, 133.84, 132.65, 132.58, 127.69, 126.24, 123.21, 117.91, 117.74, 113.22, 96.65, 20.49, 13.87. GC-MS: *m*/*z* = 222.2 [M]⁺, 207.1, 194.1

Mefenamic acid (30): A mixture of **29** (0.10 g, 0.45 mmol), KOH (2.52 g), H₂O (15 mL) and MeOH (10mL) was stirred and heated under reflux condition for 12 h resulting in a clear solution^{S4}. After cooling to room temperature, MeOH was removed, the precipitation occurred. The mixture was extracted with EtOAc (5 × 30 mL). The organic phase was combined and dried over Na₂SO₄; the filtrate was concentrated in vacuo affording Mefenamic acid in a 95% yield (0.103 g). The compound was further purified by silica gel flash chromatography. ¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 12.96$ (br s, 1H), 9.46 (br s, 1H),

7.88 (d, J = 7.2 Hz, 1H), 7.29 (t, J = 7.2 Hz, 1H), 7.12 - 7.08 (m, 2H), 7.04 - 6.99 (m, 1H), 6.69 - 6.66 (m, 2H), 2.72 (s, 3H), 2.09 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, 298 K): δ 170.10, 148.72, 138.23, 137.78, 134.07, 131.69, 131.14, 126.31, 125.92, 122.09, 116.15, 113.01, 111.16, 20.12, 13.56. GC-MS: m/z = 241.1 [M]⁺

3. Optimization of the reaction conditions (data not listed in the Table 1)

Table S1. Base and solvent effects on the amination of chlorobenzene with morpholine catalyzed by palladium complex 2.^{*a*}

	CI +	HNO	0.075 mol% 2 , Base, Solvent 80 °C, 24hours	
Entry	Solvent	Base		Yield $(\%)^b$
1	DME	t-BuONa		58
2	DME	КОН		8
3	DME	K_3PO_4		3
4	DME	KOAc		N.R.
5	DME	K_2CO_3		<2%
6	DME	Cs_2CO_3		2%
7	DME	Et ₃ N		N.R.
8	DME	DBU		N.R.
9	t-BuOH	t-BuOK		13
10	MeOH	t-BuOK		N.R.
11	DMF	t-BuOK		68
12	DMSO	t-BuOK		44
13	DMA	t-BuOK		66

^{*a*} Reaction was carried out on a 2 mmol scale (chlorobenzene) with 2.2 mmol morpholine, 3.0 mmol base in 2 mL solvent with Pd-NHC complex **2** for 24 hours.

^b Isolated yield.

4. Poisoning experiments

CI+HN O 0.075 mol% 2,t-BuOK NO			
Entry	Aditive	Yield $(\%)^b$	
1	Hg (1 drop after 0 hour)	50	
2	Hg (1 drop after 0.5 hours)	91	
3	Hg (1 drop after 1 hours)	91	
4	Hg (1 drop after 3 hours)	90	
5	Hg (1 drop after 6 hours)	94	
6	Hg (1 drop after 12 hours)	98	
7	PvPy (300 eq. Pd sources after 0 hour)	97	

Table S2. Poisoning experiments for complex 2 in the aminations.^{*a*}

^{*a*} Reaction was carried out on a 2 mmol scale with 0.075 mol% **2** at 80 °C for 24 hours.

^b Isolated yield.

5. Data for the products of aminations.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.316-7.266 (m, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.89 (t, *J* = 7.2 Hz, 1H), 3.87 (t, *J* = 4.8 Hz, 4H), 3.17 (t, *J* = 4.8 Hz, 4H); GC-MS: *m*/*z* = 163.1 [M]⁺, 132.0, 106.0, 86.0, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.20$ (t, J = 7.2 Hz, 2H), 7.04 (d, J = 7.2 Hz, 1H), 7.01 (d, J = 7.2 Hz, 1H), 3.86 (t, J = 4.4 Hz, 4H), 2.92 (t, J = 4.4 Hz, 4H), 2.33 (s, 3H); GC-MS: m/z = 177.1 [M]⁺, 132.0, 119.1, 91.1, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.19$ (t, J = 8.0 Hz, 1H), 6.80-6.71 (m, 3H), 3.87 (t, J = 4.8 Hz, 4H), 3.16 (t, J = 4.8 Hz, 4H), 2.35 (s, 3H); GC-MS: m/z = 177.1 [M]⁺, 119.1, 91.1,

77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.10 (d, *J* = 8.0 Hz, 2H), 6.84 (d, *J* = 8.0 Hz, 2H), 3.86 (t, *J* = 4.4 Hz, 4H), 3.11 (t, *J* = 4.4 Hz, 4H), 2.28 (s, 3 H); GC-MS: *m*/*z* = 177.0 [M]⁺, 119.1, 91.1, 65.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.10 - 6.82$ (m, 4H), 3.86 (t, J = 4.4 Hz, 4H), 3.77 (s, 3 H), 3.06 (t, J = 4.4 Hz, 4H); GC-MS: m/z = 193.0 [M]⁺, 135.0, 120.0, 92.0, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 6.94-6.85$ (m, 4H), 3.85 (t, J = 4.8 Hz, 4H), 3.06 (t, J = 4.8 Hz, 4H), 3.04 (qn, J = 5.6 Hz, 8H), 3.04 (qn, J = 5.6 Hz, 2H); GC-MS: m/z = 246.2 [M]⁺, 188.1, 132.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 6.98$ (d, J = 8.4 Hz, 2H), 6.90-6.80 (m, 2H), 3.86 (t, J = 4.8 Hz, 4H), 3.08 (t, J = 4.8 Hz, 4H); GC-MS: m/z = 181.0 [M]⁺, 123.1, 95.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.50 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.86 (t, *J* = 4.8 Hz, 4H), 3.24 (t, *J* = 4.8 Hz, 4H); GC-MS: *m*/*z* = 231.0 [M]⁺, 172.9, 144.9, 68.9.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.14$ (d, J = 9.6 Hz, 2H), 6.83 (d, J = 9.6 Hz, 2H), 3.86 (t, J = 4.8 Hz, 4H), 3.37 (t, J = 4.8 Hz, 4H); GC-MS: m/z = 207.9 [M]⁺, 149.9, 119.9, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.19$ (d, J = 4.0 Hz, 1H), 7.49 (t, J = 8.8 Hz, 1H), 6.70-6.50 (m, 2H), 3.82 (t, J = 4.8 Hz, 4H), 3.49 (t, J = 4.8 Hz, 4H); GC-MS: m/z = 164.0 [M]⁺, 133.0, 107.0, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.13$ (s, 1H), 8.07 (d, J = 2.8 Hz, 1H), 7.89 (d, J = 2.8 Hz, 1H), 3.83 (t, J = 4.8 Hz, 4H), 3.55 (t, J = 4.8 Hz, 4H); GC-MS: m/z = 165.0 [M]⁺, 134.0, 108.0, 80.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.23$ (d, J = 8.8 Hz, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.51-7.46 (m, 2H), 7.42 (t, J = 8.0 Hz, 1H) 7.10 (d, J = 7.2 Hz, 1H), 3.99 (t, J = 4.4 Hz, 4H), 3.13 (t, J = 4.4 Hz, 4H); GC-MS: m/z = 213.0 [M]⁺, 153.9, 126.9, 76.9.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.54$ (d, J = 8.8 Hz, 2H), 8.33 (s, 1H), 8.02 (d, J = 7.6 Hz, 2H), 7.52-7.44 (m, 4H), 4.05 (t, J = 4.4 Hz, 4H), 3.54 (t, J = 4.4 Hz, 4H); GC-MS: m/z = 263.0 [M]⁺, 204.0, 176.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.30-6.96 (m, 3H), 3.81 (t, *J* = 4.4 Hz, 4H), 3.11 (t, *J* = 4.4 Hz, 4H), 2.36 (s, 3 H); GC-MS: *m*/*z* = 191.0 [M]⁺, 132.0, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.29 - 7.24$ (m, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.86 (t, J = 7.2 Hz, 1H), 3.22 (t, J = 4.8 Hz, 4H), 2.58 (t, J = 4.8 Hz, 4H), 2.36 (s, 3H); GC-MS: m/z = 176.1 [M]⁺, 105.1, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.17$ (d, J = 4.8 Hz, 1H), 7.46 (dt, J = 8.8 and 2.0 Hz,, 1H), 6.65 – 6.59 (m, 2H), 3.54 (t, J = 5.2 Hz, 4H), 2.51 (t, J = 5.2 Hz, 4H), 2.33 (s, 3H); GC-MS: m/z = 177.1 [M]⁺, 107.1, 79.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.22$ (dd, J = 4.8 and 1.6 Hz, 1H), 7.46 (dt, J = 8.0 and 2.0 Hz, 1H), 7.30 (t, J = 8.0 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 6.89 (t, J = 7.2 Hz, 1H), 6.71 (d, J = 8.8 Hz, 1H), 6.67 – 6.64 (m, 1H), 3.71 (t, J = 5.2 Hz, 4H), 3.32 (t, J = 5.2 Hz, 4H); GC-MS: m/z = 239.0 [M]⁺, 145.0, 133.0, 107.1, 79.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.25 (t, *J* = 8.8 Hz, 2H), 6.68 (t, *J* = 7.6 Hz, 1H), 6.59 (d, *J* = 7.6 Hz, 2H), 3.30 (t, *J* = 6.4 Hz, 4H), 2.02 (t, *J* = 6.4 Hz, 4H); GC-MS: *m*/*z* = 147.0 [M]⁺, 104.0, 91.1, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.24 (t, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.82 (d, *J* = 7.2 Hz, 1H), 3.15 (t, *J* = 5.6 Hz, 4H), 1.74-1.68 (m, 4H), 1.60-1.54 (m, 2H); GC-MS: *m*/*z* = 161.0 [M]⁺, 160.1, 105.0, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.23 (t, J = 8.0 Hz, 2H), 6.71 (d, J = 8.0 Hz, 2H),

6,65 (t, J = 7.2 Hz, 1H), 3.47 (t, J = 6.0 Hz, 4H), 1.82-1.80 (m, 4H), 1.59-1.54 (m, 4H); GC-MS: m/z = 175.1 [M]⁺, 147.0, 132.1, 104.1, 91.0, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.29$ (t, J = 7.2 Hz, 4H), 7.04 (d, J = 8.0 Hz, 4H), 6.97 (t, J = 7.2 Hz, 2H), 3.33 (s, 3H); GC-MS: m/z = 183.0 [M]⁺, 167.1, 104.0, 77.1.

14b:

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.27$ (t, J = 7.2 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 6.90 (t, J = 7.2 Hz, 1H), 2.99 (s, 3H), 2.36 (s, 3H); GC-MS: m/z = 197.2 [M]⁺, 182.1, 167.1, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.25$ (t, J = 8.0 Hz, 2H), 7.07-6.99 (m, 4H), 6.92-6.70 (m, 3H), 3.28 (s, 3H); GC-MS: m/z = 201.0 [M]⁺, 185.0 122.0, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.31 (d, *J* = 8.4 Hz, 4H), 7.00 (d, *J* = 8.4 Hz, 4H), 6.91 (t, *J* = 7.2 Hz, 2H), 3.36 (s, 8H); GC-MS: *m*/*z* = 238.1 [M]⁺, 132.0, 105.0, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.28 (t, *J* = 7.6 Hz, 4H), 7.08 (d, *J* = 7.6 Hz, 4H), 6.94 (t, *J* = 7.2 Hz, 2H), 5.70 (s, 1H); GC-MS: *m*/*z* = 169.1 [M]⁺.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.19-7.06 (m, 5H), 6.75 (t, *J* = 7.2 Hz, 1H), 6.51 (d, *J* = 7.2 Hz, 2H), 5.19 (s, 1H), 2.21 (s, 6H); GC-MS: *m*/*z* = 197.1 [M]⁺, 182.1, 120.1, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.14-7.06 (m, 4H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.71 (t, *J* = 7.6 Hz, 1H), 6.15 (d, *J* = 8.0 Hz, 1H), 4.94 (s, 1H), 2.34 (s, 3H), 2.19 (s, 6H); GC-MS: *m/z* = 211.0 [M]⁺, 194.0, 180.0, 120.0, 107.0, 77.0.

19a:

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.12 (d, *J* = 7.2 Hz, 2H), 7.05 (dd, *J* = 8.4 Hz, 6.0 Hz, 1H), 6.76 (t, *J* = 9.2 Hz, 2H), 6.50 (t, *J* = 9.2 Hz, 2H), 5.04 (s, 1H), 3.76 (s, 3H), 2.21 (s, 6H); GC-MS: m/z = 227.1 [M]⁺, 212.1, 182.1.

19b:

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.13 - 7.05$ (m, 3H), 6.89 - 6.83 (m, 2H), 6.47 - 6.42 (m, 2H), 5.10 (s, 1H), 2.20 (s, 6H); GC-MS: m/z = 215.1 [M]⁺, 198.1, 120.1, 77.1.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.13-7.01 (m, 5H), 6.48 (t, *J* = 3.6 Hz, 1H), 6.46 (t, *J* = 3.6 Hz, 1H), 5.12 (s, 1H), 2.87-2.77 (m, 1H), 2.22 (s, 6H), 1.22 (d, *J* = 6.8 Hz, 6H); GC-MS: m/z = 239.1 [M]⁺, 224.2, 194.1.

21:

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.14-7.07 (m, 3H), 6.43 (s, 1H), 6.16 (s, 1H), 5.10 (s, 1H), 2.22 (s, 6H), 2.21 (s, 6H); GC-MS: *m*/*z* = 225.1 [M]⁺, 210.0, 195.1, 120.1, 77.0.

22:

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 6.97$ (d, J = 7.2 Hz, 2H), 6.83-6.79 (m, 3H), 4.72 (s, 1H), 2.27 (s, 3H), 2.01 (d, J = 2.0 Hz, 12H); GC-MS: m/z = 239.1 [M]⁺.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.18-7.11 (m, 3H), 6.95 (d, *J* = 7.6 Hz, 2H), 6,73 (t, *J* = 8.0 Hz, 1H), 4.80 (s, 1H), 3.21-3.11 (m, 2H), 1.99 (s, 6H), 1.13 (d, *J* = 7.2 Hz, 12H); GC-MS: *m*/*z* = 281.3 [M]⁺, 236.2, 208.1.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.10$ (d, J = 9.2 Hz, 1H), 7.86 (d, J = 9.2 Hz, 1H), 7.56 – 7.50 (m, 2 H), 7.32 (d, J = 8.0 Hz, 1H), 7.24 – 7.10 (m, 4H), 6.24 (d, J = 7.6 Hz, 1H), 5.72 (s, 1H), 2.22 (s, 6H); GC-MS: m/z = 247.1 [M]⁺, 232.1, 217.1.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 6.99$ (d, J = 7.6 Hz, 2H), 6.80 (t, J = 7.6 Hz, 1H), 3.00-2.93 (m, 1H), 2.28 (s, 6 H), 1.99-1.96 (m, 2H), 1.78-1.74 (m, 2H), 1.65-1.62 (m, 1H), 1.32-1.08 (m, 6H), 3.86 (t, J = 4.4 Hz, 4H), 3.11 (t, J = 4.4 Hz, 4H), 2.28 (s, 3 H); GC-MS: m/z = 203.1 [M]⁺

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.01 (d, *J* = 7.2 Hz, 2H), 6.88 (t, *J* = 7.2 Hz, 1H), 2.36 (s, 6 H), 2.04 (s, 3 H), 3.00-2.93 (m, 1H),1.99-1.96 (m, 2H), 1.78-1.74 (m, 2H), 1.65-1.62 (m, 1H), 1.32-1.08 (m, 6H), 1.77 (d, *J* = 2.8 Hz, 6H),1.57 (t, *J* = 14.8 Hz, 6H), 3.11 (t, *J* = 4.4 Hz, 4H), 2.28 (s, 3 H); GC-MS: *m*/*z* = 255.2 [M]⁺, 198.1, 135.1.

27:

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.33-7.22$ (m, 5H), 6.96 (d, J = 7.2 Hz, 2H), 6.80 (t, J = 7.6 Hz, 1H), 4.33 (q, J = 6.8 Hz, 1H), 2.18 (s, 6H), 1.52 (d, J = 6.8 Hz, 3H); $[\alpha]_{20}^{D} = -100.8^{\circ}$ (c = 0.73, CHCl₃).^[S5] GC-MS: m/z = 225.1 [M]⁺, 210.1, 121.0, 105.0, 77.0.

¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.09 - 7.01$ (m, 2H), 6.98 - 6.93 (m, 2H), 3.88 (t, J = 4.8 Hz, 4H), 3.09 (t, J = 4.8 Hz, 4H); GC-MS: m/z = 181.1 [M]⁺, 123.1, 95.0.

6. Crystal data and structure information for the catalyst (2).

 Table S3. Crystal data and structure refinement for pd-NHC complex 2.

Identification code	2
Empirical formula	C43 H46 Cl5 N3 Pd
	C42 H44 Cl3 N3 Pd - CH2Cl2
Formula weight	888.48
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, C2/c
Unit cell dimensions	a = 31.83(2) A alpha = 90 deg.
	b = 12.576(8) A beta = 98.962(15) deg.
	c = 23.076(14) A gamma = 90 deg.
Volume	9125(10) A^3
Z, Calculated density	8, 1.293 Mg/m^3
Absorption coefficient	0.730 mm^-1
F(000)	3648
Crystal size	0.30 x 0.25 x 0.10 mm
Theta range for data collection	1.74 to 25.01 deg.
Limiting indices	-37<=h<=28, -14<=k<=14, -27<=l<=27
Reflections collected / unique	18407 / 7994 [R(int) = 0.0654]
Completeness to theta $= 25.01$	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9305 and 0.8106
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7994 / 0 / 469
Goodness-of-fit on F^2	1.120
Final R indices [I>2sigma(I)]	R1 = 0.0709, wR2 = 0.1879
R indices (all data)	R1 = 0.1046, wR2 = 0.2238
Largest diff. peak and hole	1.666 and -1.049 e.A^-3

	Х	У	Z	U(eq)
Pd(1)	1209(1)	3861(1)	1742(1)	46(1)
Cl(1)	548(1)	4422(2)	1323(1)	81(1)
Cl(2)	1863(1)	3296(2)	2162(1)	66(1)
Cl(3)	1147(1)	1612(4)	3853(1)	165(2)
Cl(4)	823(3)	486(9)	2023(5)	353(5)
N(1)	989(2)	3672(6)	2553(3)	65(2)
N(2)	1630(2)	4956(4)	844(2)	43(1)
N(3)	1329(2)	3484(4)	490(2)	40(1)
C(1)	727(3)	4354(10)	2733(4)	98(3)
C(2)	566(4)	4240(14)	3265(6)	141(5)
C(3)	699(5)	3419(15)	3618(5)	140(6)
C(4)	972(3)	2712(10)	3436(4)	99(3)
C(5)	1117(3)	2846(8)	2899(3)	77(2)
C(6)	1411(2)	4087(5)	992(3)	41(1)
C(7)	1678(2)	4905(5)	261(2)	46(1)
C(8)	1848(2)	5486(5)	-201(3)	52(2)
C(9)	2050(2)	6417(6)	-263(3)	67(2)
C(10)	2158(3)	6674(7)	-817(4)	80(2)
C(11)	2071(3)	6015(7)	-1289(3)	73(2)
C(12)	1859(2)	5046(6)	-1241(3)	59(2)
C(13)	1756(2)	4816(6)	-692(3)	53(2)
C(14)	1545(2)	3859(5)	-571(3)	47(1)
C(15)	1445(2)	3130(6)	-1014(3)	63(2)
C(16)	1555(3)	3376(7)	-1571(3)	71(2)
C(17)	1749(3)	4281(8)	-1682(3)	72(2)

Table S4.	Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters
(A^2 x 10^3	b) for 2 . U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(18)	1497(2)	3992(5)	44(3)	45(1)
C(19)	1827(2)	5760(5)	1248(2)	44(1)
C(20)	1582(2)	6626(6)	1361(3)	56(2)
C(21)	1785(3)	7378(7)	1755(4)	76(2)
C(22)	2196(3)	7283(7)	2002(3)	76(2)
C(23)	2430(2)	6441(7)	1873(3)	70(2)
C(24)	2253(2)	5644(6)	1485(3)	50(2)
C(25)	2527(2)	4730(7)	1365(4)	71(2)
C(26)	2786(3)	5000(9)	879(4)	98(3)
C(27)	2834(3)	4373(10)	1903(5)	118(4)
C(28)	1134(2)	6802(7)	1063(4)	76(2)
C(29)	1146(4)	7512(9)	519(6)	130(5)
C(30)	846(3)	7214(11)	1482(6)	147(6)
C(31)	1139(2)	2453(5)	406(3)	51(2)
C(32)	732(2)	2366(6)	104(3)	70(2)
C(33)	597(4)	1314(9)	-63(5)	113(4)
C(34)	844(5)	471(9)	102(6)	140(5)
C(35)	1244(4)	584(8)	399(5)	104(3)
C(36)	1402(3)	1572(6)	569(3)	62(2)
C(37)	1846(3)	1679(7)	904(3)	71(2)
C(38)	2167(3)	1622(11)	487(4)	118(4)
C(39)	1952(4)	824(9)	1392(4)	109(4)
C(40)	442(2)	3316(8)	-81(4)	82(2)
C(41)	382(3)	3520(11)	-733(5)	121(4)
C(42)	15(3)	3176(11)	132(5)	115(4)
C(43)	400(10)	1452(19)	1711(15)	450(30)
Cl(5)	60(5)	620(12)	1308(5)	440(8)

Pd(1)-C(6)	1.960(6)
Pd(1)-N(1)	2.113(6)
Pd(1)-Cl(2)	2.271(2)
Pd(1)-Cl(1)	2.286(2)
Cl(3)-C(4)	1.727(12)
Cl(4)-C(43)	1.87(3)
N(1)-C(1)	1.307(11)
N(1)-C(5)	1.334(10)
N(2)-C(6)	1.367(8)
N(2)-C(7)	1.379(7)
N(2)-C(19)	1.449(7)
N(3)-C(6)	1.374(7)
N(3)-C(18)	1.388(7)
N(3)-C(31)	1.430(8)
C(1)-C(2)	1.410(14)
C(1)-H(1A)	0.9300
C(2)-C(3)	1.34(2)
C(2)-H(2A)	0.9300
C(3)-C(4)	1.356(18)
C(3)-H(3A)	0.9300
C(4)-C(5)	1.397(11)
C(5)-H(5A)	0.9300
C(7)-C(18)	1.346(8)
C(7)-C(8)	1.464(8)
C(8)-C(9)	1.354(10)
C(8)-C(13)	1.405(9)
C(9)-C(10)	1.413(10)

Table S5.Bond lengths [A] and angles [deg] for 2.

C(9)-H(9A)	0.9300
C(10)-C(11)	1.361(12)
C(10)-H(10A)	0.9300
C(11)-C(12)	1.405(11)
C(11)-H(11A)	0.9300
C(12)-C(13)	1.389(9)
C(12)-C(17)	1.405(11)
C(13)-C(14)	1.427(9)
C(14)-C(15)	1.374(9)
C(14)-C(18)	1.460(8)
C(15)-C(16)	1.418(10)
C(15)-H(15A)	0.9300
C(16)-C(17)	1.337(12)
C(16)-H(16A)	0.9300
C(17)-H(17A)	0.9300
C(19)-C(20)	1.387(9)
C(19)-C(24)	1.391(9)
C(20)-C(21)	1.399(10)
C(20)-C(28)	1.499(10)
C(21)-C(22)	1.350(11)
C(21)-H(21A)	0.9300
C(22)-C(23)	1.354(12)
C(22)-H(22A)	0.9300
C(23)-C(24)	1.402(10)
C(23)-H(23A)	0.9300
C(24)-C(25)	1.494(11)
C(25)-C(27)	1.523(12)
C(25)-C(26)	1.529(12)
C(25)-H(25A)	0.9800
C(26)-H(26A)	0.9600

C(26)-H(26B)	0.9600
C(26)-H(26C)	0.9600
C(27)-H(27A)	0.9600
C(27)-H(27B)	0.9600
C(27)-H(27C)	0.9600
C(28)-C(30)	1.523(13)
C(28)-C(29)	1.547(13)
C(28)-H(28A)	0.9800
C(29)-H(29A)	0.9600
C(29)-H(29B)	0.9600
C(29)-H(29C)	0.9600
C(30)-H(30A)	0.9600
C(30)-H(30B)	0.9600
C(30)-H(30C)	0.9600
C(31)-C(32)	1.378(10)
C(31)-C(36)	1.403(10)
C(32)-C(33)	1.426(12)
C(32)-C(40)	1.530(12)
C(33)-C(34)	1.341(16)
C(33)-H(33A)	0.9300
C(34)-C(35)	1.356(15)
C(34)-H(34A)	0.9300
C(35)-C(36)	1.374(12)
C(35)-H(35A)	0.9300
C(36)-C(37)	1.508(11)
C(37)-C(38)	1.510(12)
C(37)-C(39)	1.556(11)
C(37)-H(37A)	0.9800
C(38)-H(38A)	0.9600
C(38)-H(38B)	0.9600

C(38)-H(38C)	0.9600
C(39)-H(39A)	0.9600
C(39)-H(39B)	0.9600
C(39)-H(39C)	0.9600
C(40)-C(41)	1.508(13)
C(40)-C(42)	1.525(12)
C(40)-H(40A)	0.9800
C(41)-H(41A)	0.9600
C(41)-H(41B)	0.9600
C(41)-H(41C)	0.9600
C(42)-H(42A)	0.9600
C(42)-H(42B)	0.9600
C(42)-H(42C)	0.9600
C(43)-Cl(5)	1.68(2)
C(43)-H(43A)	0.9700
C(43)-H(43B)	0.9700

C(6)-Pd(1)-N(1)	178.1(3)
C(6)-Pd(1)-Cl(2)	90.88(17)
N(1)-Pd(1)-Cl(2)	89.71(18)
C(6)-Pd(1)-Cl(1)	89.45(17)
N(1)-Pd(1)-Cl(1)	89.96(19)
Cl(2)-Pd(1)-Cl(1)	179.61(8)
C(1)-N(1)-C(5)	118.2(8)
C(1)-N(1)-Pd(1)	121.4(7)
C(5)-N(1)-Pd(1)	120.4(5)
C(6)-N(2)-C(7)	110.2(5)
C(6)-N(2)-C(19)	125.7(5)
C(7)-N(2)-C(19)	123.8(5)
C(6)-N(3)-C(18)	109.0(5)

C(6)-N(3)-C(31)	129.5(5)
C(18)-N(3)-C(31)	121.3(5)
N(1)-C(1)-C(2)	123.0(12)
N(1)-C(1)-H(1A)	118.5
C(2)-C(1)-H(1A)	118.5
C(3)-C(2)-C(1)	119.0(12)
C(3)-C(2)-H(2A)	120.5
C(1)-C(2)-H(2A)	120.5
C(2)-C(3)-C(4)	118.2(10)
C(2)-C(3)-H(3A)	120.9
C(4)-C(3)-H(3A)	120.9
C(3)-C(4)-C(5)	120.8(11)
C(3)-C(4)-Cl(3)	121.2(9)
C(5)-C(4)-Cl(3)	118.0(9)
N(1)-C(5)-C(4)	120.8(9)
N(1)-C(5)-H(5A)	119.6
C(4)-C(5)-H(5A)	119.6
N(2)-C(6)-N(3)	105.6(5)
N(2)-C(6)-Pd(1)	125.9(4)
N(3)-C(6)-Pd(1)	128.1(4)
C(18)-C(7)-N(2)	107.2(5)
C(18)-C(7)-C(8)	109.9(5)
N(2)-C(7)-C(8)	142.9(6)
C(9)-C(8)-C(13)	118.4(6)
C(9)-C(8)-C(7)	138.1(6)
C(13)-C(8)-C(7)	103.5(6)
C(8)-C(9)-C(10)	118.8(7)
C(8)-C(9)-H(9A)	120.6
С(10)-С(9)-Н(9А)	120.6
C(11)-C(10)-C(9)	122.4(8)

С(11)-С(10)-Н(10А)	118.8
C(9)-C(10)-H(10A)	118.8
C(10)-C(11)-C(12)	120.4(7)
С(10)-С(11)-Н(11А)	119.8
С(12)-С(11)-Н(11А)	119.8
C(13)-C(12)-C(17)	116.8(7)
C(13)-C(12)-C(11)	115.9(7)
C(17)-C(12)-C(11)	127.3(7)
C(12)-C(13)-C(8)	124.1(7)
C(12)-C(13)-C(14)	122.6(6)
C(8)-C(13)-C(14)	113.2(6)
C(15)-C(14)-C(13)	118.6(6)
C(15)-C(14)-C(18)	138.9(6)
C(13)-C(14)-C(18)	102.5(5)
C(14)-C(15)-C(16)	118.0(7)
С(14)-С(15)-Н(15А)	121.0
С(16)-С(15)-Н(15А)	121.0
C(17)-C(16)-C(15)	123.0(7)
С(17)-С(16)-Н(16А)	118.5
С(15)-С(16)-Н(16А)	118.5
C(16)-C(17)-C(12)	121.1(7)
С(16)-С(17)-Н(17А)	119.5
С(12)-С(17)-Н(17А)	119.5
C(7)-C(18)-N(3)	108.0(5)
C(7)-C(18)-C(14)	110.8(5)
N(3)-C(18)-C(14)	141.2(6)
C(20)-C(19)-C(24)	123.4(6)
C(20)-C(19)-N(2)	118.0(5)
C(24)-C(19)-N(2)	118.5(6)
C(19)-C(20)-C(21)	115.9(7)

C(19)-C(20)-C(28)	123.5(6)
C(21)-C(20)-C(28)	120.5(7)
C(22)-C(21)-C(20)	122.3(8)
C(22)-C(21)-H(21A)	118.9
C(20)-C(21)-H(21A)	118.9
C(21)-C(22)-C(23)	120.5(7)
C(21)-C(22)-H(22A)	119.8
C(23)-C(22)-H(22A)	119.8
C(22)-C(23)-C(24)	121.3(7)
C(22)-C(23)-H(23A)	119.3
C(24)-C(23)-H(23A)	119.3
C(19)-C(24)-C(23)	116.5(7)
C(19)-C(24)-C(25)	124.7(6)
C(23)-C(24)-C(25)	118.7(6)
C(24)-C(25)-C(27)	113.2(8)
C(24)-C(25)-C(26)	111.2(7)
C(27)-C(25)-C(26)	108.2(7)
C(24)-C(25)-H(25A)	108.0
C(27)-C(25)-H(25A)	108.0
C(26)-C(25)-H(25A)	108.0
C(25)-C(26)-H(26A)	109.5
C(25)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(25)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
С(25)-С(27)-Н(27А)	109.5
C(25)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
C(25)-C(27)-H(27C)	109.5

H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
C(20)-C(28)-C(30)	112.5(8)
C(20)-C(28)-C(29)	108.5(7)
C(30)-C(28)-C(29)	114.4(10)
C(20)-C(28)-H(28A)	107.0
C(30)-C(28)-H(28A)	107.0
C(29)-C(28)-H(28A)	107.0
C(28)-C(29)-H(29A)	109.5
C(28)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29B)	109.5
C(28)-C(29)-H(29C)	109.5
H(29A)-C(29)-H(29C)	109.5
H(29B)-C(29)-H(29C)	109.5
C(28)-C(30)-H(30A)	109.5
C(28)-C(30)-H(30B)	109.5
H(30A)-C(30)-H(30B)	109.5
C(28)-C(30)-H(30C)	109.5
H(30A)-C(30)-H(30C)	109.5
H(30B)-C(30)-H(30C)	109.5
C(32)-C(31)-C(36)	123.2(7)
C(32)-C(31)-N(3)	119.0(6)
C(36)-C(31)-N(3)	117.2(6)
C(31)-C(32)-C(33)	115.5(8)
C(31)-C(32)-C(40)	124.0(7)
C(33)-C(32)-C(40)	120.4(8)
C(34)-C(33)-C(32)	121.2(9)
C(34)-C(33)-H(33A)	119.4
C(32)-C(33)-H(33A)	119.4
C(33)-C(34)-C(35)	121.6(10)

C(33)-C(34)-H(34A)	119.2
C(35)-C(34)-H(34A)	119.2
C(34)-C(35)-C(36)	120.8(10)
C(34)-C(35)-H(35A)	119.6
C(36)-C(35)-H(35A)	119.6
C(35)-C(36)-C(31)	117.5(8)
C(35)-C(36)-C(37)	119.9(8)
C(31)-C(36)-C(37)	122.6(7)
C(36)-C(37)-C(38)	110.1(7)
C(36)-C(37)-C(39)	113.0(8)
C(38)-C(37)-C(39)	109.6(8)
C(36)-C(37)-H(37A)	108.0
C(38)-C(37)-H(37A)	108.0
C(39)-C(37)-H(37A)	108.0
C(37)-C(38)-H(38A)	109.5
C(37)-C(38)-H(38B)	109.5
H(38A)-C(38)-H(38B)	109.5
C(37)-C(38)-H(38C)	109.5
H(38A)-C(38)-H(38C)	109.5
H(38B)-C(38)-H(38C)	109.5
С(37)-С(39)-Н(39А)	109.5
C(37)-C(39)-H(39B)	109.5
H(39A)-C(39)-H(39B)	109.5
С(37)-С(39)-Н(39С)	109.5
H(39A)-C(39)-H(39C)	109.5
H(39B)-C(39)-H(39C)	109.5
C(41)-C(40)-C(42)	111.1(8)
C(41)-C(40)-C(32)	112.9(9)
C(42)-C(40)-C(32)	110.4(8)
C(41)-C(40)-H(40A)	107.4

C(42)-C(40)-H(40A)	107.4
C(32)-C(40)-H(40A)	107.4
C(40)-C(41)-H(41A)	109.5
C(40)-C(41)-H(41B)	109.5
H(41A)-C(41)-H(41B)	109.5
C(40)-C(41)-H(41C)	109.5
H(41A)-C(41)-H(41C)	109.5
H(41B)-C(41)-H(41C)	109.5
C(40)-C(42)-H(42A)	109.5
C(40)-C(42)-H(42B)	109.5
H(42A)-C(42)-H(42B)	109.5
C(40)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42C)	109.5
H(42B)-C(42)-H(42C)	109.5
Cl(5)-C(43)-Cl(4)	99.9(15)
Cl(5)-C(43)-H(43A)	111.8
Cl(4)-C(43)-H(43A)	111.8
Cl(5)-C(43)-H(43B)	111.8
Cl(4)-C(43)-H(43B)	111.8
H(43A)-C(43)-H(43B)	109.5

_

Table S	6.	Anisotropic	displacement	parameters	(A^2	х	10^3)	for	2.	The	anisotr	opic
displacer	nent	factor expon	ent takes the f	orm: -2 pi^2	[h^2 a	a*^	2 U11	+	+ 2	h k a	* b* U1	12]

_

	U11	U22	U33	U2	23	U13
Pd(1)	46(1)	60(1)	33(1)	-2(1)	8(1)	1(1)
Cl(1)	48(1)	120(2)	73(1)	9(1)	7(1)	13(1)
Cl(2)	58(1)	108(2)	32(1)	8(1)	5(1)	17(1)
Cl(3)	170(3)	239(4)	90(2)	78(3)	33(2)	-22(3)
Cl(4)	340(12)	317(11)	409(14)	-78(10)	78(10)	-82(10)
N(1)	47(3)	102(5)	49(3)	-13(3)	17(3)	-7(3)
N(2)	45(3)	47(3)	34(3)	-4(2)	0(2)	-4(2)
N(3)	44(3)	44(3)	30(2)	0(2)	2(2)	-2(2)
C(1)	90(6)	137(9)	73(6)	-25(6)	33(5)	11(6)
C(2)	125(10)	209(15)	106(10)	-42(10)	69(9)	5(10)
C(3)	138(11)	238(17)	56(6)	-1(9)	51(7)	-22(12)
C(4)	95(7)	154(10)	54(5)	17(6)	28(5)	-22(7)
C(5)	80(5)	111(7)	43(4)	7(4)	20(4)	-13(5)
C(6)	30(3)	55(4)	37(3)	1(3)	0(2)	2(3)
C(7)	60(4)	50(4)	26(3)	0(3)	5(3)	-6(3)
C(8)	55(4)	62(4)	35(3)	7(3)	0(3)	-5(3)
C(9)	79(5)	74(5)	45(4)	9(3)	3(4)	-20(4)
C(10)	94(6)	83(6)	61(5)	24(4)	8(4)	-25(5)
C(11)	83(5)	97(6)	38(4)	21(4)	12(4)	-3(5)
C(12)	57(4)	85(5)	31(3)	10(3)	1(3)	5(4)
C(13)	53(4)	63(4)	42(4)	6(3)	7(3)	2(3)
C(14)	52(3)	57(4)	30(3)	-3(3)	-1(3)	7(3)
C(15)	69(5)	67(5)	50(4)	-10(3)	2(3)	3(4)
C(16)	87(5)	94(6)	31(4)	-16(4)	3(3)	12(5)
C(17)	70(5)	105(6)	39(4)	0(4)	4(3)	6(5)

C(18)	48(3)	54(4)	31(3)	-3(3)	1(3)	-1(3)
C(19)	55(4)	51(3)	24(3)	-2(2)	-1(3)	-7(3)
C(20)	60(4)	59(4)	49(4)	-12(3)	12(3)	-12(3)
C(21)	72(5)	73(5)	87(6)	-37(4)	26(5)	-19(4)
C(22)	68(5)	104(7)	57(5)	-37(4)	11(4)	-29(5)
C(23)	58(4)	97(6)	51(4)	-1(4)	-5(3)	-22(4)
C(24)	51(4)	65(4)	33(3)	3(3)	-1(3)	-9(3)
C(25)	61(4)	75(5)	73(5)	8(4)	-6(4)	-4(4)
C(26)	98(7)	131(8)	63(5)	-14(5)	11(5)	41(6)
C(27)	72(6)	132(9)	147(10)	68(8)	5(6)	12(6)
C(28)	60(4)	63(5)	101(7)	-17(4)	3(4)	-2(4)
C(29)	122(9)	103(8)	146(11)	52(8)	-39(8)	-8(7)
C(30)	69(6)	162(12)	213(15)	-87(11)	30(8)	13(7)
C(31)	60(4)	53(4)	38(3)	-5(3)	2(3)	-9(3)
C(32)	65(5)	74(5)	64(5)	1(4)	-7(4)	-23(4)
C(33)	105(8)	100(8)	116(9)	-5(6)	-37(7)	-44(7)
C(34)	182(13)	62(7)	155(12)	6(7)	-37(10)	-40(8)
C(35)	135(9)	62(6)	99(7)	-1(5)	-28(7)	-8(6)
C(36)	86(5)	50(4)	49(4)	-6(3)	4(4)	0(4)
C(37)	87(5)	67(5)	57(5)	4(4)	4(4)	26(4)
C(38)	107(8)	180(11)	68(6)	13(7)	20(6)	59(8)
C(39)	138(9)	104(7)	77(6)	22(6)	-5(6)	41(7)
C(40)	56(4)	104(7)	80(6)	10(5)	-14(4)	-9(5)
C(41)	86(7)	176(11)	94(8)	49(8)	-11(6)	24(7)
C(42)	59(5)	171(11)	114(9)	0(8)	6(5)	-19(6)
C(43)	440(40)	165(18)	600(60)	160(30)	-390(40)	-140(20)
Cl(5)	487(17)	541(19)	283(11)	47(12)	34(11)	-208(16)

	Х	у	Z	U(eq)
H(1A)	643	4942	2498	117
H(2A)	371	4727	3370	169
H(3A)	606	3337	3978	168
H(5A)	1304	2353	2781	92
H(9A)	2116	6878	53	80
H(10A)	2294	7317	-862	96
H(11A)	2152	6207	-1644	87
H(15A)	1310	2495	-951	75
H(16A)	1490	2885	-1873	85
H(17A)	1811	4406	-2057	86
H(21A)	1631	7964	1851	91
H(22A)	2320	7801	2262	92
H(23A)	2714	6390	2045	84
H(25A)	2341	4129	1231	86
H(26A)	2597	5197	530	147
H(26B)	2950	4392	800	147
H(26C)	2974	5582	1003	147
H(27A)	2676	4178	2209	177
H(27B)	3025	4944	2036	177
H(27C)	2994	3771	1803	177
H(28A)	1022	6109	920	91
H(29A)	1328	7195	273	195
H(29B)	1252	8204	642	195
H(29C)	864	7579	303	195
H(30A)	852	6727	1804	221

Table S7. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for **2**.

H(30B)	561	7276	1278	221
H(30C)	945	7898	1630	221
H(33A)	332	1211	-290	135
H(34A)	739	-209	10	168
H(35A)	1413	-14	489	124
H(37A)	1870	2380	1091	85
H(38A)	2103	2157	189	176
H(38B)	2155	933	306	176
H(38C)	2447	1741	699	176
H(39A)	1749	865	1658	163
H(39B)	2233	950	1602	163
H(39C)	1941	131	1217	163
H(40A)	578	3948	114	99
H(41A)	654	3618	-855	182
H(41B)	212	4148	-822	182
H(41C)	240	2923	-937	182
H(42A)	62	3062	548	173
H(42B)	-131	2574	-60	173
H(42C)	-154	3803	42	173
H(43A)	271	1797	2016	542
H(43B)	508	1987	1470	542

Bruker Compass DataAnalysis 4.0 printed: 7/8/2011 10:20:07 AM Page 1 of 1

| 100

| 50

ppm (f1)

| 150

S35

Analysis Info

Analysis Name Method Sample Name Comment

Name D:\Data\MS\tt\0708\f110329_GA7_01_515.d tune_200-800_hcoona-pos_esi.m Name f110329 Acquisition Date 7/8/2011 10:09:43 AM

Operator gftang Instrument / Ser# micrOTOF II 10257

Acquisition Parameter								
Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulizer Set Dry Heater	0.6 Bar 200 ℃			
Scan Begin Scan End	50 m/z 1500 m/z	Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas Set Divert Valve	6.0 l/min Waste			

Bruker Compass DataAnalysis 4.0 printed: 7/8/2011 10:12:08 AM Page 1 of 1

8. References.

- S1. S. Dastgir, A. K. S. Coleman, R. Cowley and L. H. Green, Organometallics 2010, 29, 4858.
- S2. K. V. Vasudevan, R. R. Butorac, C. D. Abernethy and A. H. Cowley, *Dalton Trans.* 2010, **39**, 7401.
- S3. C. J. O'Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson and M. G. Organ. *Chem. Eur. J.* 2006, **12**, 4743.
- S4. N. Saemian, O. K. Arjomandi and G. Shirvani, J. Label Compd. Radiopharm, 2009, 52, 453.
- S5. M. G. Organ, M. Abdel-Hadi, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. Sayah, M. O'Brien and C. Valente, *Chem. Eur. J.* 2008, 14, 2443.