Chemoselective Conversion of α-Unbranched Aldehyde to Amide, Ester, and Carboxylic Acid by NHC-Catalysis

Satoru Kuwano, Shingo Harada, Raphaël Oriez, and Ken-ichi Yamada*

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku,

Kyoto 606-8501, Japan.

yamak@pharm.kyoto-u.ac.jp

Experimental Section

General Methods

Reactions were performed using dried glassware in dry solvent under argon atmosphere, unless otherwise mentioned. Column chromatography was performed using silica gel. All melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded in CDCl₃ at 500 and 125 MHz, respectively, unless otherwise mentioned. Chemical shifts and coupling constants are presented in ppm δ relative to tetramethylsilane and Hz, respectively. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, and m = multiplet), coupling constants, integration, and assignment. ¹³C peak multiplicity assignments were made on the basis of DEPT data. IR spectroscopy of oil and solid samples were measured as neat liquid films and KBr pellets, respectively. The wave numbers of maximum absorption peaks of IR spectroscopy are presented in cm⁻¹.

Materials

DMSO, $(COCl)_2$, benzaldehyde, hydrocinnamaldehyde (1a), heptanal (1b), and benzyl alcohol were distilled prior to used. Et₂NH and Et₃N were dried over CaH₂ and distilled. Aldehyde 1c,¹ triazolium tetrafluoroborate 2a,² and benzotriazolyl ester 11³ were prepared according to the reported procedures. Other known reagents and solvents were purchased and used as received.

^{1.} Kim, T.-S.; Kim, D.-R.; Ahn, H.-C.; Shin, D.; Ahn, D.-R. ChemBioChem 2009, 11, 75–78.

^{2.} Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Org. Chem. 2005, 70, 5725-5728.

^{3.} Sheikh, Md. C.; Takagi, S.; Yoshimura, T.; Morita, H. Tetrahedron 2010, 66, 7272–7278.

4-Formylbenzenepropanal (1d): A solution of methyl 4-(methoxycarbonyl)benzenepropanoate (5.00 g, 22.5 mmol) in THF (30 mL) was added dropwise to a slurry of LiAlH₄ (2.14 g, 56.3 mmol) in THF (50 mL) at 0 °C. When the addition was complete, the cooling bath was removed, and the mixture was stirred at rt. After 15 min, the mixture was cooled to 0 °C, and the reaction was carefully quenched with H₂O (2.1 mL), 15% NaOH (2.1 mL), and H₂O (6.4 mL). After 40 min, the mixture was filtered through Celite (EtOAc wash), dried over Na₂SO₄, and concentrated *in vacuo* to give 4-(hydroxymethyl)benzenepropanol (**S1**) (3.48 g, 93%) as colorless oil: ¹H NMR: 1.68 (br s, 2H), 1.85–1.91 (m, 2H), 2.70 (t, *J* = 7.8, 2H), 3.66 (t, *J* = 6.3, 2H), 4.65 (s, 2H), 7.19 (d, *J* = 8.0, 2H), 7.28 (d, *J* = 8.0, 2H). ¹³C NMR: 31.7 (CH₂), 34.2 (CH₂), 62.2 (CH₂), 65.2 (CH₂), 127.2 (CH), 128.6 (CH), 138.4 (C), 141.3 (C). IR: 3341, 2932, 2870, 1420, 1042. MS *m/z*: 166 (M⁺). HRMS–EI (*m/z*): (M⁺) calcd for C₁₀H₁₄O₂, 166.0994; found, 166.0993.

The diol S1 was converted into the titled compound according to the reported procedure.⁴

trans-4-Formylcyclohexanepropanal (1e): A mixture of 4-carboxybenzenpropanoic acid (2.50 g, 12.8 mmol) and 5% Rh/C (500 mg) in EtOH (100 mL) was stirred under H₂ (5 atm) in a sealed tube at 70 °C for 16 h. After cooled, the mixture was filtered through Celite, and the residue was washed with hot EtOH. Concentration of the combined filtrate and washings *in vacuo* gave a 1:2 *trans,cis*-mixture of 4-carboxycyclohexanepropanoic acid (S2) (2.57 g, 99%). The mixture was dissolved in 6 N NaOH (24 mL), stirred in a sealed tube at 200 °C for 41 h, and acidified (pH 1) by 10% HCl. The resulting precipitates were collected by filtration, washed with cold EtOH, and dried at 60 °C at 8 mmHg to give *trans*-S2 (2.05 g, 80% yield, a single diastereomer) as white solids of mp 117–120 °C: ¹H NMR (CD₃OD): 0.94–1.02 (m, 2H), 1.24–1.28 (m, 1H), 1.35–1.43 (m, 2H), 1.52 (q, *J* = 7.5, 2H), 1.82–1.85 (m, 2H), 1.96–1.99 (m, 2H), 2.17–2.24 (m, 1H), 2.31 (t, *J* = 7.5, 2H), 4.93 (br s, 2H). ¹³C NMR (CD₃OD): 30.2 (CH₂), 32.5 (CH₂), 33.1 (CH₂), 33.3 (CH₂), 37.9 (CH), 44.5 (CH), 177.8 (C), 180.0 (C). IR: 2940, 1705. FABMS *m*/*z*: 199 (M – H). HRMS–FAB (*m*/*z*): [M – H][–] calcd for C₁₀H₁₅O₄, 199.0970; found, 199.0970.

The dicarboxylic acid S2 (2.50 g, 12.5 mmol) in THF (20 mL) was added dropwise to a slurry of $LiAlH_4$ (1.19 g, 31.3 mmol) in THF (80 mL) at 0 °C, and the cooling bath was removed. After 3 h, satd potassium sodium tartrate (200 mL) was added at 0 °C. The mixture was stirred for 12 h at rt

^{4.} Tanaka, K.; Shibata, Y.; Suda, T.; Hagiwara, Y.; Hirano, M. Org. Lett. 2007, 9, 1215-1218.

and extracted with CHCl₃. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The resulting residue was purified by column chromatography (hexane/ EtOAc 1:3) to give *trans*-4-(hydroxymethyl)cyclohexanepropanol (**S3**) (1.84 g, 85% yield) as colorless oil: ¹H NMR: 0.91–0.96 (m, 4H), 1.18–1.45 (m, 6H), 1.55–1.61 (m, 2H), 1.78–1.80 (m, 4H), 3.45 (d, J = 6.6, 2H), 3.63 (t, J = 6.9, 2H). ¹³C NMR: 29.4 (CH₂), 30.1 (CH₂), 32.6 (CH₂), 33.2 (CH₂), 37.6 (CH), 40.6 (CH), 63.3 (CH₂), 68.6 (CH₂). IR: 3333, 2855, 1450, 1057. MS *m/z*: 172 (M⁺). Anal. Calcd for C₁₀H₂₀O₂: C, 69.72; H, 11.70. Found: C, 69.44; H, 11.92.

The diol **S3** (1.72 g, 10.0 mmol), TEMPO (94 mg, 0.6 mmol), and KBr (2.6 g, 22 mmol) were added to a two-phase mixture of CH₂Cl₂ (100 mL) and H₂O (40 mL) at 0 °C. A 12% NaOCl solution (12.4 mL) was added dropwise over 30 min under vigorous stirring. After 15 min, MeOH (8 mL) was added, and the whole was stirred at rt for 20 min and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The resulting residue was purified by column chromatography (hexane/EtOAc 10:1) to give the titled compound (1.17 g, 70% yield) as colorless oil: ¹H NMR: 0.91–1.00 (m, 2H), 1.17–1.27 (m, 3H), 1.54 (q, *J* = 7.8, 2H), 1.83–1.86 (m, 2H), 1.96–1.99 (m, 2H), 2.12–2.19 (m, 1H), 2.44 (dt, *J* = 7.8, 1.7, 2H), 9.59 (d, *J* = 1.4, 1H), 9.75 (t, *J* = 1.7, 1H). ¹³C NMR: 25.6 (CH₂), 28.8 (CH₂), 31.5 (CH₂), 36.5 (CH), 41.3 (CH₂), 50.1 (CH), 202.5 (CH), 204.4 (CH). IR: 2855, 1720, 1450. MS *m/z*: 168 (M ⁺). Anal. Calcd for C₁₀H₁₆O₂: C, 71.39; H, 9.59. Found: C, 71.28; H, 9.49.

$$O = N$$

 $N = N^{+}C_{6}F_{5}$
 BF_{4}^{-}

Triazolium tetrafluoroborate 2b: 3-Morphlinone was prepared according to the procedure reported in patent:⁵ To a solution of ethanol amine (6.0 ml, 0.10 mol) in *i*-PrOH (100 mL), was portionwise added small pieces of sodium (2.3 g, 0.10 mol). The mixture was heated at 50 °C for 5 h, and the resulting yellow solution was cooled in an ice-water bath. Ethyl chloroacetate (9.6 mL, 0.090 mol) was dropwise added at 0–6 °C, and the resulting yellow suspension was heated at 80 °C for 2 h. Insoluble materials were removed by paper filtration and washed with *i*-PrOH. The combined filtrate and washings were concentrated *in vacuo*, and the resulting brown solids were recrystallized from *i*-PrOH/EtOAc to afford 3-morpholinone (3.5 g, 34%) as colorless needles of mp 106–107 °C.

To a solution of the above morpholinone (1.0 g, 10 mmol) in CH_2Cl_2 (200 mL), was added trimethyloxonium tetrafluoroborate (1.5 g, 10 mmol), and the mixture was stirred for 9 h at rt. Then, pentafluorophenylhydrazine (2.0 g, 10 mmol) was added, and the mixture was stirred for another 9 h. The mixture was concentrated *in vacuo*, and the residue was dissolved in chlorobenzene (100 mL) followed by addition of triethyl orthoformate (13.3 mL, 40 mmol). The mixture was heated at 130 °C for 12 h. Then, additional triethyl orthoformate (13.3 mL, 40 mmol) was added and stirring

^{5.} Chu, H.; Liu, S.; Luo, Y.; Ren, H.; Tang, M. Preparation Method of 3-Morpholone. CN 101735165 (A), June 16, 2010.

at 130 °C was continued. After 12 h, toluene (100 mL) was added at rt, and the resulting brown solids were collected by filtration. Recrystallization from EtOH gave the titled compound (686 mg, 18%) as pale brown solids of mp 179–181 °C: ¹H NMR (acetone-d₆): 4.38 (t, J = 5.2, 2H), 4.77 (t, J = 5.2, 2H), 5.28 (s, 2H), 10.4 (s, 2H). ¹³C NMR (acetone-d₆): 46.8 (CH₂), 62.3 (CH₂), 63.4 (CH₂), 112.1 (m, C), 139.1 (m, C), 144.0 (m, C), 144.6 (m, C), 147.1 (CH), 152.5 (C). IR: 3140, 2955, 1597, 1528, 1450, 1072. FABMS *m/z*: 292 (M – BF₄). HRMS–FAB (*m/z*): [M – BF₄]⁺ calcd for C₁₁H₇F₅N₃O, 292.0504; found, 292.0510.

Conversion of Aldehyde to Amide, Carboxylic Acid, and Ester The Typical Procedure without L-Proline.

Ph NEt₂

N,N-Diethyl-3-phenylpropanamide (3a): To a stirred ice-cooled solution of hydrocinnamaldehyde (1a) (134 mg, 1.0 mmol) in CH_2Cl_2 (2 mL), were added Et_2NH (0.21 mL, 2.0 mmol) and NCS (134 mg, 1.0 mmol), and the cooling bath was removed. After 0.5 h, the aldehyde was no longer detected by TLC monitoring. To the mixture, were added HOBt (27 mg, 0.20 mmol) and a premixed solution of triazolium salt 2a (24 mg, 0.050 mmol) and Et_3N (0.17 mL, 1.2 mmol) in CH_2Cl_2 (8 mL). After 12 h, the mixture was concentrated *in vacuo*, and the resulting residue was purified by column chromatography (hexane/EtOAc 2:1) to give the titled compound (180 mg, 88% yield) as colorless oil: ¹H and ¹³C NMR, IR, and MS were identical to those reported.⁶

N,*N*-Diethylheptanamide (3b): Following the procedure without L-proline, the titled compound was obtained in 91% yield (168 mg) as colorless oil: MS m/z: 185 (M⁺), 156, 142, 128, 100. ¹H and ¹³C NMR, and IR were identical to those reported.⁷

4-(*tert*-Butyldimethylsiloxy)-*N*,*N*-diethylheptanamide (3c): Following the procedure without L-proline, using 0.10 mmol 2a, the titled compound was obtained in 87% yield (240 mg) as colorless oil: ¹H NMR: 0.05 (s, 6H), 0.89 (s, 9H), 1.11 (t, *J* = 7.2, 3H), 1.17 (t, *J* = 7.2, 3H), 1.84–1.88 (m, 2H), 2.39 (t, *J* = 7.5, 2H), 3.32 (q, *J* = 7.2, 2H), 3.37 (q, *J* = 7.2, 2H), 3.66 (t, *J* = 6.0, 2H). ¹³C NMR: -5.4 (CH₃), 13.1 (CH₃), 14.3 (CH₃), 18.2 (C), 25.9 (CH₃), 28.5 (CH₂), 29.2 (CH₂), 40.0 (CH₂), 41.9 (CH₂), 62.2 (CH₂), 172.0 (C). IR: 2932, 2862, 1643, 1103. MS *m*/*z*: 273 (M⁺), 217 (M⁺ – C₄H₈). HRMS–FAB (*m*/*z*): [M + H]⁺ calcd for C₁₄H₃₂NO₂Si, 274.2202; found, 274.2199.

^{6.} Concellon, J, M.; Rodríguez-Solla, H. Chem. Eur. J. 2001, 7, 4266–4271.

^{7.} White, J, M.; Tunoori, A, R.; Turunen, B, J.; Georg, A, J. J. Org. Chem. 2004, 69, 2573–2576.

The Typical Procedure with L-Proline.

N,*N*-**Dibenzyl-3-phenylpropanamide (3d):** To a stirred ice-cooled solution of hydrocinnamaldehyde (**1a**) (134 mg, 1.0 mmol) in CH₂Cl₂ (2 mL), were added L-proline (5 mg, 0.05 mmol) and NCS (134 mg, 1.0 mmol), and the cooling bath was removed. After 9 h, the aldehyde was no longer detected by TLC monitoring. To the mixture, were added HOBt (27 mg, 0.2 mmol), a premixed solution of triazolium salt **2a** (24 mg, 0.050 mmol) and Et₃N (0.17 mL, 1.2 mmol) in CH₂Cl₂ (8 mL), and Bn₂NH (0.29 mL, 1.5 mmol). After 11 h, the mixture was concentrated *in vacuo*, and the resulting residue was purified by column chromatography (hexane/EtOAc 5:1) to give the titled compound (234 mg, 71% yield) as white solids of mp 103–105 °C (lit⁸ 104–105 °C): ¹H and ¹³C NMR, IR, and MS were identical to those reported.⁹

N-Benzyl-3-phenylpropanamide (3e): Following the procedure with L-proline, except that BnNH₂ in place of Bn₂NH was added over 3 h, purification by column chromatography (hexane/EtOAc 4:3) gave the titled compound (172 mg, 72% yield) as light yellow solids of mp 79–81 °C (lit.¹⁰ 80–82 °C): IR: 3287, 1636, 1543. MS m/z: 239 (M⁺), 148, 105, 91. ¹H and ¹³C NMR were identical to those reported.¹¹

N-Methoxy-*N*-methyl-3-phenylpropanamide (3f): Following the procedure with L-proline, except that *N*,*O*-dimethylhydroxylamine hydrochloride (147 mg, 1.5 mmol) was used in place of Bn₂NH, purification by column chromatography (hexane/EtOAc 4:1) gave the titled compound (157 mg, 81% yield) as colorless oil: IR: 2939, 1666, 1450, 733. MS m/z: 193 (M⁺), 133, 105. ¹H and ¹³C NMR were identical to those reported.¹²

tert-Butyl (S)-3-phenyl-2-(3-phenylpropanamido)propanoate (3g): Following the procedure with L-proline, except that L-phenylalanine *tert*-butyl ester hydrochloride (387 mg, 1.5 mmol) was added in place of Bn_2NH , purification by column chromatography (hexane/EtOAc 5:1) gave the titled

^{8.} Yasui, Y; Tsuchida, S; Miyabe, H; Takemoto, Y. J. Org. Chem. 2007, 72, 5898-5900.

^{9.} Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Angew. Chem. Int. Ed. 2009, 48, 9507–9510.

^{10.} Saito, Y.; Ouchi, H.; Takahata, H. Tetrahedron 2008, 64, 11129-11135.

^{11.} Watson, A, J, A.; Maxwell, A, C.; Williams, M, J. Org. Lett. 2009, 11, 2667–2670.

^{12.} Chiang, P.-C.; Kim, Y.; Bode, J. W. Chem. Commun. 2009, 4566–4568.

compound (270 mg, 76% yield) with >99% ee as colorless oil: $[\alpha]_D^{25}$ +70.9 (*c* 1.02, CHCl₃). ¹H NMR: 1.39 (s, 9H), 2.45 (ddd, *J* = 7.1, 7.5, 16.1, 1H), 2.53 (ddd, *J* = 6.3, 7.1, 16.1, 1H), 2.90–3.00 (m, 2H), 3.01 (dd, *J* = 6.5, 13.7, 1H), 3.06 (dd, *J* = 5.2, 13.7, 1H), 4.76 (ddd, *J* = 5.2, 6.5, 7.5, 1H), 5.85 (d, *J* = 7.5, 1H), 7.00–7.02 (m, 2H), 7.19–7.32 (m, 8H). ¹³C NMR: 27.9 (CH₃), 31.4 (CH₂), 38.0 (CH₂), 38.2 (CH₂), 53.3 (CH), 82.3 (C), 126.2 (CH), 126.8 (CH), 128.2 (CH), 128.3 (CH), 128.5 (CH), 129.5 (CH), 136.0 (C), 140.7 (C), 170.6 (C), 171.3 (C). IR: 3302, 1736, 1651, 1535. MS *m/z*: 353 (M⁺), 280. HRMS–FAB (*m/z*): [M + H]⁺ calcd for C₂₂H₂₈NO₃, 354.2069; found, 354.2068. Enantiopurity was confirmed by HPLC (*vide infra*).

N,*N*-Diethyl-3-(4-formylphenyl)propanamide (3h): Following the procedure without L-proline in 0.50 mmol scale using 10 mol % 2a, purification by column chromatography by column chromatography (hexane/EtOAc 2:1) to give the titled compound (96 mg, 82% yield) as pale yellow oil: ¹H NMR: 1.10 (t, J = 7.2, 3H), 1.11 (t, J = 7.2, 3H), 2.63 (t, J = 8.0, 2H), 3.08 (t, J = 7.8, 2H), 3.24 (q, J = 7.2, 2H), 3.38 (q, J = 7.2, 2H), 7.40 (d, J = 8.0, 2H), 7.81 (d, J = 8.0, 2H), 9.98 (s, 1H). ¹³C NMR: 13.1 (CH₃), 14.3 (CH₃), 31.6 (CH₂), 34.3 (CH₂), 40.3 (CH₂), 41.9 (CH₂), 129.2 (CH), 130.0 (CH), 134.7 (C), 149.1 (C), 170.5 (C), 191.9 (CH). IR: 2978, 2932, 1697, 1636, 1435. MS *m/z*: 233 (M⁺), 204, 133. HRMS–FAB (*m/z*): [M + H]⁺ calcd for C₁₄H₂₀NO₂, 234.1494; found, 234.1494.

N-Benzyl-3-(4-formylphenyl)propanamide (3i): Following the procedure with L-proline in 0.70 mmol scale using 10 mol % 2a, except that 2 equiv BnNH₂ in place of Bn₂NH was added over 3 h, purification by column chromatography (hexane/EtOAc 1:1) gave the titled compound (121 mg, 65% yield) as light yellow oil: ¹H NMR: 2.54 (t, J = 7.7, 2H), 3.08 (t, J = 7.7, 2H), 4.40 (d, J = 5.8, 2H), 5.70 (s, 1H), 7.15 (d, J = 7.5, 2H), 7.26–7.30 (m, 3H), 7.36 (d, J = 8.0, 2H), 7.78 (d, J = 8.0, 2H), 9.96 (s, 1H). ¹³C NMR: 31.7 (CH₂), 37.7 (CH₂), 43.6 (CH₂), 127.6 (CH), 127.7 (CH), 128.7 (CH), 129.1 (CH), 130.1 (CH), 134.8 (C), 138.0 (C), 148.2 (C), 171.1 (C), 191.9 (CH). IR: 2924, 1697, 1651, 1072. MS *m/z*: 267 (M⁺), 148, 106, 91. HRMS–FAB (*m/z*): [M + H]⁺ calcd for C₁₇H₁₈NO₂, 268.1338; found, 268.1331.

*trans- and cis-N*₃*N*-**Diethyl-3-(4-formylcyclohexyl)propanamide (3j)**: Following the procedure without L-proline using 20 mol % **2a**, purification by column chromatography (CHCl₃) gave an 83:17 diastereomer mixture of the titled compound (213 mg, 89% yield) as pale yellow oil: ¹H NMR (*trans*): 0.95–1.04 (m, 2H), 1.10 (t, J = 7.2, 3H), 1.21–1.29 (m, 3H), 1.51–1.65 (m, 2H), 1.86–1.89 (m, 2H), 1.96–1.99 (m, 2H), 2.17 (tt, J = 12.2, 3.4, 1H), 2.30 (t, J = 7.9, 2H), 3.29 (t, J = 7.2, 2H), 3.36 (t, J = 7.2, 2H), 9.60 (s, 1H). (*cis*): 0.95–1.04 (m, 2H), 1.09 (t, J = 7.2, 3H), 1.15 (t, J = 7.2, 3H), 1.37 (m, 1H), 1.51–1.65 (m, 6H), 2.07–2.11 (m, 2H), 2.26 (t, J = 7.9, 2H), 2.38 (m, 1H), 3.27 (t, J = 7.2, 2H), 3.35 (t, J = 7.2, 2H), 9.68 (s, 1H). ¹³C NMR (*trans*): 13.1 (CH₃), 14.4 (CH₃), 25.8 (CH₂), 30.5 (CH₂), 31.7 (CH₂), 32.4 (CH₂), 36.9 (CH), 40.06 (CH₂), 41.9 (CH₂), 50.4 (CH), 172.1 (CH), 204.7 (CH). (*cis*): 13.1 (CH₃), 14.4 (CH₃), 23.9 (CH₂), 29.3 (CH₂), 31.4 (CH₂), 32.1 (CH₂), 36.0 (CH), 40.02 (CH₂), 41.9 (CH₂), 47.3 (CH₂), 172.2 (C), 205.6 (CH). IR: 2924, 2855, 1720, 1636, 1450. MS *m*/*z*: 239 (M⁺), 210, 115. HRMS–FAB (*m*/*z*): [M + H]⁺ calcd for C₁₄H₂₆NO₂, 240.1964; found, 240.1966.

Hydrocinnamic acid (8a): To a stirred ice-cooled solution of hydrocinnamaldehyde (1a) (134 mg, 1.0 mmol) in CH₂Cl₂ (42 mL), were added Et₂NH (0.11 mL, 1.1 mmol) and NCS (134 mg, 1.0 mmol), and the cooling bath was removed. After 0.5 h, the aldehyde was no longer detected by TLC monitoring. To the mixture, were added H₂O (0.04 mL, 2 mmol) and a premixed solution of triazolium salt 2c (19 mg, 0.050 mmol) and Et₃N (0.17 mL, 1.2 mmol) in CH₂Cl₂ (8 mL). After 7 h, the mixture was concentrated *in vacuo*, and the resulting residue, whose ¹H NMR showed no trace of **3a**, was dissolved in EtOAc (10 mL) and extracted with 10% Na₂CO₃ (10 mL). The aqueous layer was acidified to pH 1 by 10% HCl and extracted with CHCl₃. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo* to give the titled compound (127 mg, 85% yield) as white solids of mp 45–47 °C (lit.¹³ 47.6–47.7 °C): ¹H and ¹³C NMR, IR, and MS were identical to those reported.^{13,14}

^{13.} Nambu, H.; Hata, K.; Matsugi, M.; Kita, Y. Chem. Eur. J. 2005, 11. 719-727.

^{14.} Concellón, J. M.; Rodríguez-Solla, H. Chem. Eur. J. 2002, 11. 4493-4497.

4-Formylbenzenepropanoic acid (8d): The above procedure was followed using 10 mol % **2c** to give the titled compound (130 mg, 73% yield) as white solids of mp 134–136 °C: ¹³C NMR: 30.8 (CH₂), 35.0 (CH₂), 129.0 (CH), 130.1 (CH), 134.8 (C), 147.7 (C), 177.2 (C), 192.0 (CH). IR: 3433, 2932, 1697, 1605, 1057. MS *m/z*: 178 (M⁺). ¹H NMR was identical to those reported.¹³

Benzyl hydrocinnamate (9): To a stirred ice-cooled solution of hydrocinnamaldehyde (**1a**) (134 mg, 1.0 mmol) in CH_2Cl_2 (2 mL), were added Et_2NH (0.11 mL, 1.1 mmol) and NCS (134 mg, 1.0 mmol), and the cooling bath was removed. After 0.5 h, the aldehyde was no longer detected by TLC monitoring. To the mixture, were added BnOH (0.21 mL, 2.0 mmol) and a premixed solution of triazolium salt **2c** (19 mg, 0.050 mmol) and Et_3N (0.17 mL, 1.2 mmol) in CH_2Cl_2 (8 mL). After 5 h, the mixture was concentrated *in vacuo*, and the resulting residue was purified by column chromatography (hexane/EtOAc 20:1) to give the titled compound (210 mg, 87% yield) as colorless oil: ¹H and ¹³C NMR, IR, and MS were identical to those reported.¹⁵

Allyl hydrocinnamate (10): The above procedure was followed to give the titled compound (157 mg, 83% yield) as colorless oil: ¹H and ¹³C NMR, IR, and MS were identical to those reported.¹⁵

^{15.} Iwasaki, T.; Maegawa, Y.; Hayashi, Y.; Ohshima, T.; Mashima, K. J. Org. Chem. 2008, 73, 5147–5150.

HPLC traces of 3g (Daicel Chiralcel AD-3; hexane/*i*-PrOH = 9:1; 1 mL/min; 254 nm).

DFT calculations of NHC complexes: All the calculations were performed using Gaussian 03W program¹⁶ at B3LYP/6-311+G(d,p) level of theory with tight SCF convergence and ultrafine integration grids. Basis set superposition error (BSSE) was corrected using counterpoise corrections. Difference of the stability between complexes ($\Delta\Delta G$) was calculated by the following equation:

$$\begin{split} \Delta\Delta G &= \Delta G_{\rm NHC-HOt} - \Delta G_{\rm NHC-H_2O} \\ &= (G_{\rm NHC-HOt} + E_{\rm BSSE\,(\rm NHC-HOt}) - G_{\rm NHC} - G_{\rm HOt}) - (G_{\rm NHC-H_2O} + E_{\rm BSSE\,(\rm NHC-H_2O}) - G_{\rm NHC} - G_{\rm H_2O}) \\ &= G_{\rm NHC-HOt} + E_{\rm BSSE\,(\rm NHC-HOt)} - G_{\rm HOt} - G_{\rm NHC-H_2O} - E_{\rm BSSE\,(\rm NHC-H_2O)} + G_{\rm H_2O} \\ &= -677.601914 + 0.001261613 + 317.444376 + 436.599820 - 0.000816811 - 76.455479 \text{ au} \\ &= -0.012752 \text{ au} \\ &= -8.00199 \text{ kcal/mol} \end{split}$$

where ΔG , G, and E_{BSSE} stand for stability in free energy, free energy, and BSSE energy, respectively, and subscripts NHC–HOt, NHC–H₂O, NHC, HOt, and H₂O stand for a complex of 1,3,4-trimethyl-4,5-dihydro-1*H*-1,2,4-triazol-5-ylidene with 1-hydroxy-1*H*-1,2,3-triazole, a complex of 1,3,4-trimethyl-4,5-dihydro-1*H*-1,2,4-triazol-5-ylidene with water, 1,3,4-trimethyl-4,5-dihydro-1*H*-1,2,4-triazol-5-ylidene, 1-hydroxy-1*H*-1,2,3-triazole, and water, respectively.

^{16.} Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

Complex of 1,3,4-trimethyl-4,5-dihydro-1*H*-1,2,4-triazol-5-ylidene with 1-hydroxy-1*H*-1,2,3-triazole (NHC–HOt).

Atomic	Coordinates (Angstroms)		
Туре	Х	Y	Z
Ν	3.05966600	0.68830400	-0.39794700
Ν	1.87297800	1.31624800	-0.09655600
С	0.88904300	0.49151600	0.28513800
Ν	1.49239200	-0.73186800	0.21843600
С	2.80109800	-0.57450700	-0.19520800
С	1.79636100	2.76356600	-0.21519000
Н	0.79187100	3.07227500	0.06640500
Н	2.00283800	3.06203500	-1.24397500
Н	2.52725100	3.22816700	0.44808300
С	0.84655700	-2.00128800	0.55616500
Н	1.26065400	-2.40152600	1.48429800
Н	1.00102900	-2.72201900	-0.24836600
Н	-0.22134000	-1.82319800	0.67310800
С	3.77314100	-1.68530000	-0.38594600
Н	4.73199500	-1.27076000	-0.69351600
Н	3.43071100	-2.38353100	-1.15502100
Н	3.91481800	-2.25156700	0.53875900
Н	-0.63008600	0.86578700	0.76293600
0	-1.60785300	1.12878200	1.08396700
Ν	-2.46400100	0.37734700	0.35556000
Ν	-2.39334200	-0.95736600	0.34977000
С	-3.49156400	0.83384200	-0.39160100
Н	-3.70289000	1.88326200	-0.49244600
Ν	-3.36906600	-1.38962600	-0.41889000
С	-4.06653300	-0.32259800	-0.88021800
Н	-4.92304600	-0.44183400	-1.52345600

Complex of 1,3,4-trimethyl-4,5-dihydro-1*H*-1,2,4-triazol-5-ylidene and water (NHC-H₂O).

Coordinates (Angstroms)		
Х	Y	Z
-1.46879800	0.98553200	-0.00868500
-0.14297400	1.37023900	0.00593600
0.74360800	0.36223800	0.02188500
-0.08883600	-0.72890400	0.01725900
-1.40779400	-0.31657400	-0.00206900
0.16545700	2.78933500	-0.00149400
1.24805700	2.89425900	-0.00092800
-0.25561500	3.26895100	0.88396300
-0.25190500	3.25728600	-0.89472300
0.37379200	-2.11429800	0.02221400
0.03750200	-2.63292700	-0.87842600
-0.00542400	-2.64056800	0.90118600
1.46173900	-2.10594000	0.04743700
-2.58653300	-1.22630100	-0.01363900
-3.49798200	-0.63040800	-0.02973500
-2.60293400	-1.86712000	0.87280300
-2.57782600	-1.87652900	-0.89327800
2.66469100	-0.14654600	-0.03402800
3.47767400	-0.70147400	-0.08764300
4.13137000	-0.26313500	0.46392100
-1.46879800	0.98553200	-0.00868500
-0.14297400	1.37023900	0.00593600
0.74360800	0.36223800	0.02188500
-0.08883600	-0.72890400	0.01725900
-1.40779400	-0.31657400	-0.00206900
0.16545700	2.78933500	-0.00149400
	$\begin{array}{c} X \\ -1.46879800 \\ -0.14297400 \\ 0.74360800 \\ -0.08883600 \\ -1.40779400 \\ 0.16545700 \\ 1.24805700 \\ 0.16545700 \\ 1.24805700 \\ -0.25561500 \\ -0.25190500 \\ 0.37379200 \\ 0.37379200 \\ 0.03750200 \\ -0.00542400 \\ 1.46173900 \\ -2.58653300 \\ -3.49798200 \\ -2.60293400 \\ -2.60293400 \\ -2.57782600 \\ 2.66469100 \\ 3.47767400 \\ 4.13137000 \\ -1.46879800 \\ -0.14297400 \\ 0.74360800 \\ -0.08883600 \\ -1.40779400 \\ 0.16545700 \end{array}$	XY -1.46879800 0.98553200 -0.14297400 1.37023900 0.74360800 0.36223800 -0.08883600 -0.72890400 -1.40779400 -0.31657400 0.16545700 2.78933500 1.24805700 2.89425900 -0.25561500 3.26895100 -0.25190500 3.25728600 0.37379200 -2.11429800 0.03750200 -2.63292700 -0.00542400 -2.64056800 1.46173900 -2.10594000 -2.58653300 -1.22630100 -3.49798200 -0.63040800 -2.57782600 -1.87652900 2.66469100 -0.14654600 3.47767400 -0.70147400 4.13137000 -0.26313500 -1.46879800 0.98553200 -0.14297400 1.37023900 0.74360800 -0.31657400 -1.40779400 -0.31657400 -1.40779400 -0.31657400 -1.40779400 2.78933500

1-Hydroxy-1H-1,2,3-triazole (HOt).

Zero-point vibrational energy	162864.7 (Joul	les/Mol)	
	38.92560 (Kcal	l/Mol)	
Zero-point correction =		0.062032 (Hartree/Partic	le)
Thermal correction to Energy =	:	0.066948	
Thermal correction to Enthalpy	=	0.067892	
Thermal correction to Gibbs Fre	ee Energy =	0.033874	
Sum of electronic and zero-poir	nt Energies =	-317.405819	
Sum of electronic and thermal H	Energies =	-317.400904	
Sum of electronic and thermal H	Enthalpies =	-317.399960	
Sum of electronic and thermal H	Free Energies =	-317.433977	
Energies $(RB + HF - LYP) =$		-317.467851392	

Atomic	Coordinates (Angstroms)		
Туре	X	Y	Z
Н	-2.21611600	-0.81674700	0.00078000
0	-1.96471100	0.12095900	-0.00007600
Ν	-0.59650600	0.06531500	0.00001200
Ν	0.03377200	-1.10333200	-0.00002200
С	0.23682600	1.12316400	-0.00007000
Н	-0.11034300	2.14069900	0.00002100
Ν	1.24805700	2.89425900	-0.00092800
С	1.31920600	-0.83120200	-0.00007700
Н	1.47870100	0.51425300	0.00011100
С	2.45568200	0.96841600	0.00017000

Water (H₂O).

Zero–point vibrational energy 55966.2 (Joule	es/Mol)
13.37625 (Kca	l/Mol)
Zero–point correction =	0.021316 (Hartree/Particle)
Thermal correction to Energy =	0.024152
Thermal correction to Enthalpy =	0.025096
Thermal correction to Gibbs Free Energy =	0.003015
Sum of electronic and zero–point Energies =	-76.426132
Sum of electronic and thermal Energies =	-76.423297
Sum of electronic and thermal Enthalpies =	-76.422353
Sum of electronic and thermal Free Energies =	-76.444433
Energies $(RB + HF - LYP) =$	-76.4474485616

Atomic	Coordinates (Angstroms)		
Туре	Х	Y	Z
Н	0.75705200	-0.47472800	0.00000000
Ο	0.00000000	0.11868300	0.00000000
Н	-0.75705200	-0.47473300	0.00000000

trans-**S2** (1 H NMR)

trans-S2 (¹³C NMR)

S3 (¹H NMR)

S3 (¹³C NMR)

$1e(^{1}HNMR)$

1e (¹³C NMR)

			D
			10
			20
-55.6265			
			30
3020 00			
2003 95-			0
9208 17-		i vitavit	
1041.00			0
101109-			Q
			_
			Q.
			70
22425 27.0000			
8782.77 ₇			80
			06
			100
			Ed
			10 P
			-
			0
			12
			_
			13
			140
			150
			160
	\sim		170
	$\langle \rangle$		80
			7
	I I		o
			5
			_
2734.202-			201
204.3940			0
			21

2b (¹H NMR)

2b (¹³C NMR)

 $3g(^{1}HNMR)$

 $3g(^{13}C NMR)$

3h (¹H NMR)

3h (¹³C NMR)

3i (¹H NMR)

3i (¹³C NMR)

3j (¹H NMR)

3j (¹³C NMR)

