Electronic Supporting Information for:

One-pot regioselective synthesis and X-ray crystal structure of a stable [60] fullerene trisadduct with the e_{edge} , e_{face} , trans-1 addition pattern

Maria Riala, Marios S. Markoulides, Eleni E. Moushi and Nikos Chronakis*

Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus. Fax: +357 22 892801; Tel: +357 22 892781;

E-mail:nchronak@ucy.ac.cy

Table of Contents

Tuble of Contents	
General experimental	S2
X-ray crystallography	S2
Experimental procedure for the synthesis of 1	S3
Experimental procedure for the synthesis of 2	S3
Experimental procedure for the synthesis of 3	S4
Experimental procedure for the synthesis of 4	S5
Experimental procedure for the synthesis of 5	S5
Experimental procedure for the synthesis of 6	S6
Experimental procedure for the synthesis of 7	S 7
Experimental procedure for the synthesis of 8	S 8
Experimental procedure for the synthesis of 9	S9
Experimental procedure for the synthesis of 10	S10
¹ H NMR and ¹³ C NMR spectra of 2	S11
¹ H NMR and ¹³ C NMR spectra of 3	S12
¹ H NMR and ¹³ C NMR spectra of 4	S13
¹ H NMR and ¹³ C NMR spectra of 5	S14
¹ H NMR and ¹³ C NMR spectra of 6	S15
¹ H NMR and ¹³ C NMR spectra of 7	S16
¹ H NMR and ¹³ C NMR spectra of 8	S17
¹ H NMR and ¹³ C NMR spectra of 9	S18
¹ H NMR and ¹³ C NMR spectra of 10	S19
UV-Vis spectra of 9 and 10	S20
High resolution MALDI-TOF mass spectra of 9 and 10	S21
X-ray crystallographic information (crystal data/structure refinement) for 9 and 10	S22
Crystal packing, interactions and measured distances in the crystal structure of 9	S23
Crystal packing, interactions and measured distances in the crystal structure of 10	S24
References	S25

General experimental

All starting materials were purchased from commercial sources and used without further purification. The solvents were dried using standard techniques. Reactions were monitored by thin layer chromatography on silica gel 60 F₂₅₄ (Merck) aluminum plates. After development TLC plates were stained with phosphomolybdic acid (PMA). Products were isolated by column chromatography (silica gel 60, particle size 0.04-0.063 mm, Merck). ¹H- and ¹³C NMR spectra were recorded on a Bruker Avance 300 MHz and a Bruker Avance III 500 Ultrashield Plus 500 MHz spectrometers. The chemical shifts are given in ppm relative to the appropriate solvent peak as standard reference. The resonance multiplicity is indicated as s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet), or combinations of those. Broad resonances are designated with br. High resolution (EI and ESI) mass spectra were recorded on a Thermo Finnigan Mat 95 instrument. Atmospheric pressure chemical ionisation (APCI) mass spectra were recorded on a Micromass Platform II spectrometer. High resolution MALDI TOF mass spectra were recorded on a Bruker Autoflex III Smartbeam instrument using graphite as a matrix. UV/Vis spectra were recorded on a Shimadzu UV-3600 spectrometer. IR spectra were recorded on a Shimadzu IR Prestige-21 spectrometer. The spectra were measured as a film on NaCl plates. Melting points (mp) were determined on a Stuart Scientific SMP10 apparatus and were uncorrected.

X-ray Crystallography

Data were collected on an Oxford-Diffraction diffractometer, equipped with a CCD area detector and a graphite monochromator utilizing Mo-K_a radiation (l = 0.71073 Å). Suitable crystals were attached to glass fibers using paratone-N oil and transferred to a goniostat where they were cooled for data collection. Unit cell dimensions were determined and refined by using 9172 (2.94≤ θ ≤28.95°) and 22893 (2.89≤ θ ≤28.98°) reflections for 9·2CH₂Cl₂ and 10·1CH₂Cl₂ respectively. Empirical absorption corrections (multi-scan based on symmetry-related measurements) were applied using CrysAlis RED software.¹ The structures were solved by direct methods using SIR92^{2a} and refined on F^2 using full-matrix least squares using SHELXL97.^{2b} Programs used: CrysAlis CCD¹ for data collection, CrysAlis RED¹ for cell refinement and data reduction, and DIAMOND^{3a} and MERCURY^{3b} for molecular graphics. The non-H atoms were treated anisotropically whereas, the hydrogen atoms were placed in calculated, ideal positions and refined as riding on their respective carbon atoms.

Unit cell data and structure refinement details are listed in Table S1, page S22. Full details can be found in the CIF files provided in the Supporting Information material.

Compound 10·1CH₂Cl₂ contains severely disordered lattice CH₂Cl₂ molecules that could not be modeled properly thus, program SQUEEZE, a part of the PLATON package of crystallographic software was used to calculate the solvent disorder area and remove its contribution from the intensity data.⁴

(2-Bromoethoxy)(*tert*-butyl)dimethylsilane (1)^{5,6}

(2-Bromo-ethoxy)-tert-butyl-dimethyl-silane 1 was synthesized according to a literature procedure.¹ ¹H-, ¹³C NMR resonances and IR were in good agreement with the data reported in the literature.⁶

[3,5-Bis(2-{[*tert*-butyl(dimethyl)silyl]oxy}ethoxy)phenyl|methanol (2)⁷

3,5-Dihydroxybenzyl alcohol (2.12 g, 15.10 mmol), 18-crown-6 (3.00 g, 12.80 mmol), anhydrous K₂CO₃ (26.13 g, 18.90 mmol), (500 mL) acetone and (2-bromoethoxy)(tertdrv butyl)dimethylsilane 1 (18.00 g, 75.60 mmol) were placed in a dry 1000 mL single-necked round-bottomed flask fitted with a

condenser and a magnetic stirrer. The resulting mixture was stirred for two days at 56 °C, under nitrogen atmosphere. The solution was concentrated and the residue was partitioned between equal volumes of CH₂Cl₂ and water. The organic layer was separated, washed with water, brine and dried over anhydrous MgSO₄. Removal of the solvent under reduced pressure gave an oil which was purified by column chromatography on silica gel (hexane : EtOAc = 7 : 3) to afford product 2 as a yellow oil (5.27 g, 76%).

 $R_f = 0.33$ (SiO₂, hexane : EtOAc = 7 : 3, stain: PMA).

¹**H NMR** (300 MHz, CDCl₃): $\delta_{\rm H}$ 6.52 (2H, d, ⁴ $J_{\rm H-H}$ = 2.4 Hz, 2 x ortho-CH ar.), 6.40 (1H, apparent t, ${}^{4}J_{H-H} = 2.4$ Hz, *para*-CH ar.), 4.62 (2H, d, J = 5.7 Hz, CH₂OH), 4.04-4.00 (4H, m, OCH₂CH₂O), 3.97-3.93 (4H, m, OCH₂CH₂O), 1.61 (1H, t, J = 6.0 Hz, OH), 0.91 (18H, s, 2 x $C(CH_3)_3$, 0.10 (12H, s, 2 x Si(CH_3)_2).

¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 160.29 (*meta-C* ar.), 143.23 (*C* ar.), 105.24 (*ortho-C*H ar.), 100.83 (*para-C*H ar.), 69.35 (OCH₂CH₂O), 65.41 (CCH₂OH), 61.95 (OCH₂CH₂O), 25.91 (-SiC(CH₃)₃), 18.41 (-SiC(CH₃)₃), -5.19 (-Si(CH₃)₂).

IR, ν_{max} (NaCl, evap. film)/cm⁻¹: 3385, 3084, 2955, 2936, 2858, 1603, 1464, 1398, 1359, 1254, 1173, 1014, 841.

HRMS (EI+): calculated for C₂₃H₄₄O₅Si₂ [M]⁺ requires 456.2722; found: 456.2718.

tert-Butyl(2-{3-(2-{[isopropyl(dimethyl)silyl]oxy}ethoxy)-5-[(tetrahydro-2*H*-pyran-2-yloxy)methyl]phenoxy}ethoxy)dimethylsilane (3)⁸

Pyridinium *p*-toluenesulfonate (PPTS) (0.40 g, 1.59 mmol) was added into a dry 250 mL single-necked round-bottomed flask, containing a stirred solution of **2** (5.10 g, 11.18 mmol) and dihydropyran (DHP) (2.70 mL, 2.49 g, 29.59 mmol) in dry CH₂Cl₂ (80 mL), under a nitrogen atmosphere. The resulting

mixture was stirred for twelve hours at room temperature. The solution was then washed with brine and finally dried over anhydrous MgSO₄. Removal of the solvent under reduced pressure gave an oil which was purified by column chromatography on silica gel (CH₂Cl₂ : EtOAc = 9.5 : 0.5) to afford product **3** as a yellow oil (5.30 g, 87%).

 $R_f = 0.88$ (SiO₂, CH₂Cl₂ : EtOAc = 9.5 : 0.5, stain: PMA).

¹**H** NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 6.52 (2H, d, ⁴*J*_{H-H} = 2.1 Hz, 2 x *ortho*-CH ar.), 6.39 (1H, apparent t, ⁴*J*_{H-H} = 2.2 Hz, *para*-CH ar.), 4.71 (1H, d, *J* = 12.3 Hz, CCH₂OCH), 4.69 (1H, t, *J* = 3.4 Hz, OCHO), 4.44 (1H, d, *J* = 12.3 Hz, CCH₂OCH), 4.03-3.93 (8H, m, 2 x OCH₂CH₂O), 3.92-3.88 (1H, m, CH₂CH₂O), 3.58-3.50 (1H, m, CH₂CH₂O), 1.94-1.51 (6H, m, CH₂CH₂CH₂O), 0.91 (18H, s, 2 x C(CH₃)₃), 0.10 (12H, s, 2 x Si(CH₃)₂).

¹³C NMR (75 MHz, CDCl₃): *δ*_C 160.09 (*meta-C* ar.), 140.59 (*C* ar.), 106.23 (*ortho-C*H ar.), 100.72 (*para-C*H ar.), 97.64 (OCHO), 69.29 (OCH₂CH₂O), 68.66 (CCH₂OCH), 62.16 (CH₂CH₂CH₂CH₂O), 61.95 (OCH₂CH₂O), 30.56 (CH₂ from THP), 25.92 (-SiC(CH₃)₃), 25.46 (CH₂ from THP), 19.36 (CH₂ from THP), 18.40 (-SiC(CH₃)₃), -5.20 (-Si(CH₃)₂).

IR, *v*_{max} (NaCl, evap. film)/cm⁻¹: 3083, 2934, 2858, 1601, 1460, 1391, 1352, 1290, 1254, 1171, 1126, 1068, 1030, 837, 777.

HRMS (EI+): calculated for $C_{28}H_{52}O_6Si_2[M - CH_3]^+$ requires 525.3062; found: 525.3069.

2,2'-[{5-[(Tetrahydro-2*H*-pyran-2-yloxy)methyl]-1,3-phenylene}bis(oxy)]diethanol (4)⁹

In a dry 100 mL single-necked round-bottomed flask equipped with a magnetic stirrer, **3** (4.40 g, 8.14 mmol) was dissolved in dry THF (40 mL) under a nitrogen atmosphere. Tetrabutylammonium fluoride (TBAF) (7.30 mL, 6.59 g, 25.22 mmol) was then added and the resulting mixture was stirred for four hours at room temperature. The solvent was then removed

under reduced pressure and the residue was purified by column chromatography on silica gel (EtOAc : hexane = 9 : 1) to afford product **4** as a colourless oil (2.40 g, 94%).

 $R_f = 0.29$ (SiO₂, EtOAc : hexane = 9 : 1, stain: PMA).

¹**H** NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 6.56 (2H, d, ⁴ $J_{\rm H-H}$ = 2.1 Hz, 2 x *ortho-CH* ar.), 6.42 (1H, apparent t, ⁴ $J_{\rm H-H}$ = 2.1 Hz, *para-CH* ar.), 4.72 (1H, d, *J* = 12.3 Hz, CCH₂OCHO), 4.69 (1H, t, *J* = 3.9 Hz, CCH₂OCHO), 4.44 (1H, d, *J* = 12.3 Hz, CCH₂OCHO), 4.08-4.05 (4H, m, OCH₂CH₂O), 3.97-3.92 (4H, m, OCH₂CH₂O), 3.91-3.87 (1H, m, CH₂CH₂CH₂CH₂O), 3.58-3.51 (1H, m, CH₂CH₂CH₂CH₂CH₂CH₂O), 2.07 (2H, t, *J* = 6.0 Hz, 2 x OH), 1.89-1.52 (6H, m, CH₂CH₂CH₂CH₂O).

¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 159.80 (*meta-C* ar.), 140.96 (*C* ar.), 106.47 (*ortho-C*H ar.), 100.68 (*para-C*H ar.), 97.74 (OCHO), 69.22 (OCH₂CH₂O), 68.55 (CCH₂OCH), 62.20 (CH₂CH₂CH₂CH₂O), 61.42 (OCH₂CH₂O), 30.53 (CH₂ from THP), 25.41 (CH₂ from THP), 19.34 (CH₂ from THP).

IR, *v*_{max} (NaCl, evap. film)/cm⁻¹: 3364, 3031, 2926, 2866, 1597, 1448, 1358, 1321, 1294, 1167, 1061, 901, 835, 743, 696.

HRMS (ESI-): calculated for $C_{16}H_{23}O_6$ [M - H]⁻ requires 311.1500; found: 311.1488.

15-[(Tetrahydro-2*H*-pyran-2-yloxy)methyl]-2,5,9,12-tetraoxabicyclo[11.3.1]heptadeca-1(17),13,15-triene-6,8-dione (5)

In a dry 1000 mL three-necked round-bottomed flask equipped with gas inlet, dropping funnel and magnetic stirrer, **4** (0.25 g, 0.66 mmol) was dissolved in dry CH_2Cl_2 (550 mL) followed by the addition of pyridine (0.11 mL, 1.32 mmol) and KBF₄ (0.83 g, 6.60 mmol). The mixture was stirred at room temperature for 15 minutes. Subsequently, a solution of malonyl dichloride (0.08 mL, 0.79 mmol) in dry CH_2Cl_2 (125 mL) was added dropwise during a

period of 7 hours. After stirring overnight at room temperature the mixture was filtered to remove the remaining KBF₄ and the filtrate was washed with water. The organic phase was dried over anhydrous MgSO₄, filtered, absorbed on SiO₂ and chromatographed on a SiO₂ column (hexane : EtOAc = 6 : 4) to afford the product **5** as a white solid (0.018 mg, 7%).

 $R_f = 0.37$ (SiO₂, hexane : EtOAc = 6 : 4, stain: PMA).

m.p. 108 °C.

¹**H NMR** (300 MHz, CDCl₃): $\delta_{\rm H}$ 6.73 (1H, br s, *para*-CH ar.), 6.58 (2H, d, ${}^{4}J_{\rm H-H}$ = 1.8 Hz, 2 x *ortho*-CH ar.), 4.72-4.68 (2H, m, CCH₂OCHO), 4.43-4.38 (9H, m, CCH₂OCHO and 2 x OCH₂CH₂O), 3.94-3.87 (1H, m, CH₂CH₂CH₂CH₂O), 3.57-3.52 (1H, m, CH₂CH₂CH₂CH₂O), 3.37 (2H, s, COCH₂CO), 1.93-1.52 (6H, m, CH₂CH₂CH₂CH₂O).

¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 165.87 (*C*=O), 160.00 (*meta-C* ar.), 141.01 (*C* ar.), 110.11 (*ortho-C*H ar.), 100.08 (*para-C*H ar.), 97.74 (OCHO), 68.19 (CCH₂OCH), 66.72 (OCH₂CH₂O), 66.54 (OCH₂CH₂O), 62.02 (CH₂CH₂CH₂CH₂O), 41.84 (COCH₂CO), 30.49 (CH₂ from THP), 25.43 (CH₂ from THP), 19.23 (CH₂ from THP).

IR, *v*_{max} (NaCl, evap. film)/cm⁻¹: 2918, 2849, 2361, 2332, 1738, 1611, 1589, 1454, 1367, 1312, 1259, 1161, 1117, 1074, 1032, 970, 905, 868, 814, 683.

HRMS (EI+): calculated for $C_{14}H_{15}O_6 [M - C_5H_9O_2]^+$ requires 279.0863; found: 279.0851.

15-(Hydroxymethyl)-2,5,9,12-tetraoxabicyclo[11.3.1]heptadeca-1(17),13,15-triene-6,8dione (6)

In a 50 mL single-necked round-bottomed flask equipped with magnetic stirrer, 5 (0.130 g, 0.340 mmol) was dissolved in MeOH-CH₂Cl₂ (5 : 2, 14 mL) followed by the addition of a catalytic amount of PPTS (0.008 g, 0.034 mmol). After stirring at room temperature for 48 hours, the mixture was diluted with CH₂Cl₂ and washed with water and brine. The organic phase was dried over anhydrous MgSO₄ and filtered. Evaporation of the solvent under reduced

pressure afforded the crude mixture which was chromatographed on a SiO₂ column (CH₂Cl₂ : EtOAc = 7 : 3) to afford product **6** as a white solid (0.091 g, 90%).

*R*_f = 0.40 (SiO₂, CH₂Cl₂ : EtOAc = 7 : 3, stain: PMA). **m.p.** 150 °C. ¹**H NMR** (500 MHz, CDCl₃): $\delta_{\rm H}$ 6.73 (1H, br s, *para*-CH ar.), 6.58 (2H, d, ${}^{4}J_{\rm H-H}$ = 1.5 Hz, 2 x *ortho*-CH ar.), 4.60 (2H, d, J = 6.0 Hz, CCH₂OH), 4.47-4.45 (4H, m, OCH₂CH₂O), 4.43-4.41 (4H, m, OCH₂CH₂O), 3.36 (2H, s, COCH₂CO), 1.63 (1H, t, J = 6.0 Hz, OH).

¹³C NMR (125 MHz, CDCl₃): $\delta_{\rm C}$ 165.85 (*C*=O), 160.20 (*meta-C* ar.), 143.55 (*C* ar.), 109.36 (*ortho-C*H ar.), 100.22 (*para-C*H ar.), 66.70 (OCH₂CH₂O), 66.53 (OCH₂CH₂O), 64.90 (CCH₂OH), 41.83 (COCH₂CO).

IR, *v*_{max} (NaCl, evap. film)/cm⁻¹: 3298, 2955, 2361, 2340, 1736, 1609, 1595, 1468, 1410, 1367, 1313, 1252, 1169, 1080, 1036, 1015, 972, 957, 843, 816, 702.

HRMS (EI+): calculated for C₁₄H₁₆O₇ [M]⁺ requires 296.0890; found: 296.0892.

[6,8-Dioxo-2,5,9,12-tetraoxabicyclo[11.3.1]heptadeca-1(17),13,15-trien-15-yl]methyl methyl malonate (7)¹⁰

In a dry 15 mL three-necked round-bottomed flask equipped with gas inlet, dropping funnel and magnetic stirrer, **6** (0.03 g, 0.10 mmol) was dissolved in dry CH_2Cl_2 (3 mL) followed by the addition of pyridine (8.00 µL, 0.10 mmol). The mixture was cooled to 0 °C and a solution of

methyl malonyl chloride (14.00 μ L, 0.13 mmol) in dry CH₂Cl₂ (1 mL) was added dropwise during a period of 20 minutes. After stirring at 0 °C for 2 hours the mixture was allowed to warm at room temperature and stirred for another 12 hours. The crude mixture was absorbed on SiO₂ and chromatographed on a SiO₂ column (CH₂Cl₂ : EtOAc = 7 : 3) to afford product 7 as a white solid (0.04 mg, 99%).

 $R_f = 0.82$ (SiO₂, CH₂Cl₂: EtOAc = 7 : 3, stain: PMA).

m.p. 113 °C.

¹**H NMR** (500 MHz, CDCl₃): $\delta_{\rm H}$ 6.77 (1H, apparent t, ${}^{4}J_{\rm H-H}$ = 2.2 Hz, *para*-CH ar.), 6.55 (2H, d, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, 2 x *ortho*-CH ar.), 5.09 (2H, s, CCH₂OCO), 4.46 (4H, m, OCH₂CH₂O), 4.42 (4H, m, OCH₂CH₂O), 3.76 (3H, s, OCH₃), 3.45 (2H, s, COCH₂CO), 3.37 (2H, s, COCH₂CO). ¹³C NMR (125 MHz, CDCl₃): $\delta_{\rm C}$ 166.78 (C=O), 166.22 (C=O), 165.81 (C=O), 160.17 (*meta*-C ar.), 137.67 (C ar.), 110.41 (*ortho*-CH ar.), 100.68 (*para*-CH ar.), 66.71 (OCH₂CH₂O), 66.55 (CCH₂OCO), 66.49 (OCH₂CH₂O), 52.54 (CO₂CH₃), 41.81 (COCH₂CO), 41.28 (COCH₂CO). **IR**, *v*_{max} (NaCl, evap. film)/cm⁻¹: 2920, 2853, 2359, 2340, 1751, 1722, 1591, 1462, 1371, 1323, 1263, 1161, 1080, 1020, 872, 837.

HRMS (EI+): calculated for C₁₈H₂₀O₁₀ [M]⁺ requires 396.1051; found: 396.1051.

Bis{[6,8-dioxo-2,5,9,12-tetraoxabicyclo[11.3.1]heptadeca-1(17),13,15-trien-15-yl]methyl} malonate (8)¹⁰

In a dry 15 mL three-necked roundbottomed flask equipped with gas inlet, dropping funnel and magnetic stirrer, **6** (0.06 g, 0.20 mmol) was dissolved in dry CH₂Cl₂ (2 mL) followed by the addition

of pyridine (16.00 μ L, 0.20 mmol). The mixture was cooled to 0 °C and a solution of malonyl dichloride (9.00 μ L, 0.09 mmol) in dry CH₂Cl₂ (1 mL) was added dropwise during a period of 20 minutes. After stirring at 0 °C for 2 hours the reaction mixture was allowed to warm at room temperature and stirred for another 12 h. The crude mixture was absorbed on SiO₂ and chromatographed on a SiO₂ column (CH₂Cl₂ : EtOAc = 7 : 3) to afford product **8** as a white solid (0.03 g, 50%) and unreacted **6** (17.00 mg, 29%).

 $R_f = 0.73$ (SiO₂, CH₂Cl₂ : EtOAc = 7 : 3, stain: PMA).

m.p. 173 °C.

¹**H NMR** (500 MHz, CDCl₃): $\delta_{\rm H}$ 6.77 (2H, br s, 2 x *para*-CH ar.), 6.56 (4H, br s, 4 x *ortho*-CH ar.), 5.09 (4H, s, 2 x CCH₂OCO), 4.46-4.45 (8H, m, 2 x OCH₂CH₂O), 4.42-4.40 (8H, m, 2 x OCH₂CH₂O), 3.49 (2H, s, COCH₂CO), 3.36 (4H, s, 2 x COCH₂CO).

¹³C NMR (125 MHz, CDCl₃): *δ*_C 166.11 (*C*=O), 165.83 (*C*=O), 160.19 (*meta*-*C* ar.), 137.65 (*C* ar.), 110.49 (*ortho*-*C*H ar.), 100.78 (*para*-*C*H ar.), 66.74 (OCH₂CH₂O), 66.62 (CCH₂O-), 66.50 (OCH₂CH₂O), 41.81 (COCH₂CO), 41.46 (COCH₂CO).

IR, *v*_{max} (NaCl, evap. film)/cm⁻¹: 2924, 2853, 2359, 2342, 1724, 1611, 1587, 1450, 1367, 1310, 1259, 1161, 1142, 1078, 1042, 957, 831, 667.

MS (APCI-), *m/z* (rel. intensity %): 659 ([M - H]⁻, 30%).

Equatorial bisadduct (9)

In a dry 250 mL three-necked round-bottomed flask equipped with gas inlet, dropping funnel and magnetic stirrer, C_{60} (0.064 mg, 0.089 mmol) was dissolved in dry toluene (70 mL) under an argon atmosphere. A solution of tether 7 (0.032 mg, 0.081 mmol) in dry CH₂Cl₂ (30 mL) was added to the reaction mixture followed by the addition of iodine (0.041 mg, 0.162 mmol). Subsequently, a solution

of DBU (0.050 mL, 0.324 mmol) in dry toluene (25 mL) was added dropwise. After stirring at room temperature for one day the crude reaction mixture was subjected to flash column chromatography on SiO₂. Unreacted C₆₀ and other impurities were eluted with toluene and the fullerene bisadduct **9** was then eluted with toluene : EtOAc = 9 : 1. Precipitation from CHCl₃-pentane afforded product **9** as a dark red solid (0.062 g, 68%).

 $R_f = 0.40$ (toluene : EtOAc = 9 :1).

¹**H** NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ 7.07 (1H, br s, *para*-CH ar.), 6.56 (2H, br s, 2 x *ortho*-CH ar.), 5.21 (2H, s, CCH₂OCO), 4.87-4.78 (4H, m, OCH₂CH₂O), 4.53 (2H, apparent t, *J* = 13.0 Hz, OCH₂CH₂O), 4.23 (2H, apparent d, *J* = 14.0 Hz, OCH₂CH₂O), 4.06 (3H, s, OCH₃).

¹³C NMR (125 MHz, CDCl₃): $\delta_{\rm C}$ 164.75 (*C*=O), 164.11 (*C*=O), 161.56 (*C*=O), 159.78 (*meta-C* ar.), 147.92, ^{*} 147.29, 146.46, 146.13, 146.06, 145.57, 145.15, 145.02, 144.84, 144.79, 144.66, 144.58, 144.33, 143.99, 143.93, 143.87, 143.55, 143.33, 142.85, 142.10, 141.95, 141.58, 140.99, 140.94, 138.65, 138.52, ^{*} 135.32 (*C* ar.), 113.25 (*ortho-CH* ar.), 101.86 (*para-CH* ar.), 71.79 (sp³ *C* of C₆₀), 71.42 (sp³ *C* of C₆₀), 69.43 (sp³ *C* of C₆₀), 69.33 (*CCH*₂O-), 67.44 (OCH₂CH₂O), 64.13 (OCH₂CH₂O), 54.03 (CO₂CH₃), 52.70 (COCCO), 52.31 (COCCO).

^{*} 26 Signals from 147.92 to 138.52 ppm for sp^2 carbons of C_{60}

UV/Vis (CHCl₃) λ_{max}/nm ($\epsilon/dm^3mol^{-1}cm^{-1}$): 253 (97006), 311 (34726), 362 (12467), 397 (3805), 408 (2494), 421 (2123), 481 (2593), 689 (108).

HRMS (MALDI TOF, negative mode, graphite): calculated for $C_{78}H_{16}O_{10}$ [M]⁻ requires 1112.0738; found: 1112.0739.

E_{edge}, e_{face}, trans-1 trisadduct (10)

In a dry 100 mL three-necked round-bottomed flask equipped with gas inlet, dropping funnel and magnetic stirrer, C_{60} (0.033 g, 0.045 mmol) was dissolved in dry toluene (35 mL) under an argon atmosphere. A solution of tether **8** (0.027 g, 0.041 mmol) in dry CH₂Cl₂ (15 mL) was added to the reaction mixture followed by the addition of iodine (0.031 g, 0.121

mmol). Subsequently, a solution of DBU (0.050 mL, 0.337 mmol) in dry toluene (20 mL) was added dropwise. After stirring at room temperature for one day the crude reaction mixture was subjected to flash column chromatography on SiO₂. Unreacted C₆₀ and other impurities were eluted with toluene and the fullerene trisadduct **10** was then eluted with toluene : EtOAc = 7 : 3. Precipitation from CHCl₃-pentane afforded product **10** as a dark red solid (0.037 g, 65%).

 $R_f = 0.58$ (SiO₂, toluene : EtOAc = 7 : 3).

¹**H NMR** (500 MHz, C₂D₄Cl₂): $\delta_{\rm H}$ 7.15 (2H, apparent t, J = 2 Hz, 2 x *para*-CH ar.), 6.59 (4H, d, J = 2.5 Hz, 4 x *ortho*-CH ar.), 5.22 (4H, s, 2 x CCH₂OCO), 4.91-4.85 (8H, m, 2 x OCH₂CH₂O), 4.60-4.56 (4H, m, OCH₂CH₂O), 4.28-4.53 (4H, m, OCH₂CH₂O), 4.30-4.26 (4H, m, OCH₂CH₂O).

¹³C NMR (125 MHz, C₂D₄Cl₂): $\delta_{\rm C}$ 164.77 (C=O), 161.98 (C=O), 160.15 (*meta-C* ar.), 147.38,^{*} 146.20, 146.02, 145.08, 144.76, 144.68, 144.34, 143.81, 143.70, 142.93, 141.77, 141.23, 139.93, 139.52,^{*} 135.93 (C ar.), 113.22 (*ortho-C*H ar.), 101.76 (*para-C*H ar.), 72.27 (sp³ C of C₆₀), 70.66 (sp³ C of C₆₀), 69.35 (CCH₂O-), 68.53 (sp³ C of C₆₀), 67.91 (OCH₂CH₂O), 64.30 (OCH₂CH₂O), 53.27 (COCCO), 46.73 (COCCO).

^{*} 14 Signals from 147.38 to 139.52 ppm for sp^2 carbons of C_{60}

UV/Vis (CHCl₃) λ_{max}/nm ($\epsilon/dm^3mol^{-1}cm^{-1}$): 251 (105227), 279 (77869), 305 (47816), 338 (29296), 405 (4188), 434 (3189), 462 (5125), 503 (2330), 622 (496), 695 (211).

HRMS (MALDI TOF, negative mode, graphite): calculated for $C_{91}H_{26}O_{16}K_2$ [M + 2K]⁻ requires 1453.0523; found: 1453.0534.

¹<u>H NMR spectrum of 2 (300 MHz, CDCl₃, 25 °C)</u>

¹³<u>C NMR spectrum of 2 (75 MHz, CDCl₃, 25 °C)</u>

¹³<u>C NMR spectrum of 3 (75 MHz, CDCl₃, 25 °C)</u>

¹<u>H NMR spectrum of 4 (300 MHz, CDCl₃, 25 °C)</u>

¹³<u>C NMR spectrum of 4 (75 MHz, CDCl₃, 25 °C)</u>

¹³C NMR spectrum of 5 (75 MHz, CDCl₃, 25 °C)

¹<u>H NMR spectrum of 6 (500 MHz, CDCl₃, 25 °C)</u>

¹³<u>C NMR spectrum of 7 (125 MHz, CDCl₃, 25 °C)</u>

13 C NMR spectrum of 8 (125 MHz, CDCl₃, 25 °C)

13 C NMR spectrum of 9 (125 MHz, CDCl₃, 25 °C)

¹<u>H NMR spectrum of 10 (500 MHz, CDCl₃, 25 °C)</u>

¹³<u>C NMR spectrum of 10 (125 MHz, C₂D₄Cl₂, 25 °C)</u>

UV-Vis spectrum of 9 (CHCl₃)

UV-Vis spectrum of 10 (CHCl₃)

High resolution MALDI-TOF mass spectrum of 9 (negative mode, graphite)

High resolution MALDI-TOF mass spectrum of 10 (negative mode, graphite)

X-ray crystallographic information (crystal data/structure refinement) of 9 and 10

	Compound 9	Compound 10
Formula	$C_{80}H_{20}Cl_4O_{10}$	$C_{92}H_{28}Cl_2O_{16}$
$M_{ m r}$	1282.76	1460.05
Crystal system	Triclinic	Triclinic
Space group	P -1	P -1
Temperature	100(2)	100(2)
<i>a</i> (Å)	10.4435(4)	13.4764(4)
b (Å)	12.5513(7)	19.7789(4)
<i>c</i> (Å)	19.9229(6)	26.0709(7)
α (deg)	79.988(4)	72.890(2)
β (deg)	89.625(3)	78.690(2)
γ (deg)	71.533(4)	70.885(2)
$V(\text{\AA}^3)$	2435.99(19)	6237.0(3)
Ζ	2	4
$D_{\text{calc.}}$ (g cm ⁻³)	1.743	1.555
F (000)	1296.0	2968
$R_1[I>2\sigma(I)]$	0.0452	0.0875
$wR_2[I>2\sigma(I)]$	0.1273	0.2324
R_1 (all data)	0.0545	0.1038
wR_2 (all data)	0.1273	0.2453
GOOF	1.052	1.114

Table S1. Crystallographic Data for Compounds 9 and 10

C69 672. 07 ¢74 ¢đ4o CI4 CI3 654 CI4 £3 **66**666 614 510 Ó10 C223 09 08 C75 @24 ćr сb e62 b

Crystal packing, interactions and measured distances in the crystal structure of 9

Figure	S1
— • •	

Table S2: Interactions and measured distances (Å) in the crystal structure of 9
---	---	--

a[CI(x)O(y)], (A)	
3.219	
3.203	
d [Cl(x)…C(y)], (Å)	
3.429	
3.442	
3.393	
3.385	
3.375	
d [C(x)···O(y)], (Å)	
3.123	
3.190	
3.190	
3.123	
d [C(x)…C(y)], (Å)	
3.339	
3.367	
3.242	
3.387	
3.248	
3.342	
	3.219 3.203 d [Cl(x)···C(y)], (Å) 3.429 3.442 3.393 3.385 3.375 d [C(x)···O(y)], (Å) 3.123 3.190 3.190 3.123 3.190 3.123 3.190 3.123 3.399 3.367 3.242 3.387 3.248 3.342

Crystal packing, interactions and measured distances in the crystal structure of 10

Figure S2

Cl(x)···O(y)	d [Cl(x)…O(y)], (Å)
Cl(4)…O(13)	3.159
Cl(x)···C(y)	d [Cl(x)…C(y)], (Å)
Cl(2)…C(16)	3.129
Cl(3)…C(117)	3.373
Cl(3)…C(118)	3.299
C(x)O(y)	d [C(x)···O(y)], (Å)
C(76)····O(17)	3.190
C(177)····O(8)	3.141
C(182)···O(30)	3.182
C(126)···O(9)	3.193
C(127)····O(2)	2.940
C(128)····O(2)	3.203
C(x)C(y)	d [C(x)…C(y)], (Å)
C(44)…C(171)	3.102
C(44)···C(172)	3.392
C(135)····C(36)	3.052
C(135)···C(53)	3.347

 Table S3: Interactions and measured distances (Å) in the crystal structure of 10

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

C(136)…C(35)	3.174
C(136)…C(36)	3.387
C(107)…C(26)	3.224
C(108)…C(25)	3.378
C(108)…C(26)	3.356
C(126)…C(77)	3.143
C(183)…C(141)	3.340

References

(1) Oxford Diffraction 2009. CrysAlis CCD and CrysAlis RED, version p171.33.34d, Oxford Diffraction Ltd, Abingdon, Oxford, England.

(2) (a) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, *J. Appl. Crystallogr.*, 1994, 27, 435. (b) G. M. Sheldrick, SHELXL97, University of Göttingen, Germany.

(3) (a) K. Brandenburg, 2006, DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany. (b) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453.

(4) A. L. Spek, "PLATON. A multipurpose crystallographic tool", Utrecht University, The Netherlands, 2003. (b) SQUEEZE: P. van der Sluis, A. L. Spek, *Acta Cryst., Sect. A*, 1990, 46, 194.

(5) N. K. Anand, C. M. Blazey, O. J. Bowles, J. Bussenius, S. Costanzo, J. K. Curtis, L. Dubenko, A. R. Kennedy, R. G. Khoury, A. I. Kim, J. –C. L. Manalo, C. J. Peto, K. D. Rice and T. H. Tsang, *PCT Int. Appl.*, WO2005009389, 2005.

(6) L. Louise-Leriche, E. Paunescu, G. Saint-Andre, R. Baati, A. Romieu, A. Wagner and P. –
Y. Renard, *Chem. Eur. J.*, 2010, 16, 3510.

(7) C. Francavilla, M. D. Drake, F. V. Bright and M. R. Detty, J. Am. Chem. Soc., 2001, **123**, 57.

(8) M. Miyashita, A. Yoshikoshi and P. A. Grieco, J. Org. Chem., 1977, 42, 3772.

(9) U. R. Kalkote, S. R. Ghorpade, S. P. Chavan and T. Ravindranathan, J. Org. Chem., 2001, 66, 8277.

(10) M. Braun, X. Camps, O. Vostrowsky, A. Hirsch, E. Endreβ, T. M. Bagerl, O. Birkert and G. Gauglitz, *Eur. J. Org. Chem.*, 2000, 1173.