# Electronic Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2011 data_global _journal_name_full Chem.Commun. _journal_coden_cambridge 0182 _journal_year ? _journal_volume ? _journal_page_first ? _publ_author_address ; ; _publ_contact_author_address ; Dept. of Chem. McGill University 801 Sherbrooke St.W. Montreal H3A2K6, QC, Can. ; _publ_contact_author_email dmitrii.perepichka@mcgill.ca _publ_contact_author_fax '(514) 398 3797' _publ_contact_author_phone '(514) 398 6233' _publ_contact_author_name 'Dmitrii Perepichka' loop_ _publ_author_name 'Brandon Djukic' 'Dmitrii Perepichka' data_pere13 _database_code_depnum_ccdc_archive 'CCDC 843802' #TrackingRef '- PERE13.cif' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ; _chemical_name_common Anthra[2,3-c:7,6-c']dithiophene-5,11-dione _chemical_melting_point >240\%C _chemical_formula_moiety 'C18 H8 O2 S2' _chemical_formula_sum 'C18 H8 O2 S2' _chemical_formula_weight 320.36 _chemical_compound_source 'Synthesized by the authors. See text' loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.3331 0.5567 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M P21/c _symmetry_space_group_name_hall '-P 2ybc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 6.2500(9) _cell_length_b 5.4472(7) _cell_length_c 19.18(2) _cell_angle_alpha 90 _cell_angle_beta 99.046(9) _cell_angle_gamma 90 _cell_volume 644.9(7) _cell_formula_units_Z 2 _cell_measurement_temperature 100 _cell_measurement_reflns_used 3348 _cell_measurement_theta_min 4.67 _cell_measurement_theta_max 69.89 _exptl_crystal_description Plate _exptl_crystal_colour Yellow _exptl_crystal_size_max 0.08 _exptl_crystal_size_mid 0.06 _exptl_crystal_size_min 0.01 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.650 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 328 _exptl_absorpt_coefficient_mu 3.775 _exptl_absorpt_correction_Type multi-scan _exptl_absorpt_correction_T_min 0.7447 _exptl_absorpt_correction_T_max 0.9630 _exptl_absorpt_process_details 'Sadabs (Sheldrick, 2008)' _exptl_special_details ; X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker smart diffractometer equiped with an APEX II CCD Detector, a graphite monochromator. The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total). ; _diffrn_ambient_temperature 100 _diffrn_radiation_wavelength 1.54178 _diffrn_radiation_type CuK\a _diffrn_radiation_source 'Incoatec I\muS Microsource ' _diffrn_radiation_monochromator 'Quazar MX' _diffrn_measurement_device_type 'Bruker APEX II' _diffrn_measurement_method \w _diffrn_detector_area_resol_mean 8.3 _diffrn_reflns_number 10443 _diffrn_reflns_av_R_equivalents 0.058 _diffrn_reflns_av_sigmaI/netI 0.0333 _diffrn_reflns_limit_h_min -7 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -23 _diffrn_reflns_limit_l_max 23 _diffrn_reflns_theta_min 2.33 _diffrn_reflns_theta_max 71.30 _reflns_number_total 1234 _reflns_number_gt 1107 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'APEX2 (Bruker AXS, 2009)' _computing_cell_refinement 'SAINT V7.68A(Bruker AXS, 2009)' _computing_data_reduction 'SAINT V7.68A(Bruker AXS, 2009)' _computing_structure_solution 'SHELXS97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL97 (Sheldrick, 2008)' _computing_molecular_graphics 'SHELXTL v6.12 (Bruker AXS, 2001)' _computing_publication_material 'UdMX (Maris, 2004)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1671P)^2^+2.2796P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1234 _refine_ls_number_parameters 101 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.1019 _refine_ls_R_factor_gt 0.0940 _refine_ls_wR_factor_ref 0.2756 _refine_ls_wR_factor_gt 0.2623 _refine_ls_goodness_of_fit_ref 1.140 _refine_ls_restrained_S_all 1.140 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group S1 S 1.3269(3) 0.5763(4) 0.21487(10) 0.0411(6) Uani 1 1 d . . . O1 O 0.3450(8) 0.9098(10) 0.0551(3) 0.0349(13) Uani 1 1 d . . . C1 C 1.1124(12) 0.7609(14) 0.2010(3) 0.0304(15) Uani 1 1 d . . . H1 H 1.0936 0.9072 0.2263 0.036 Uiso 1 1 calc R . . C2 C 0.9588(13) 0.6597(13) 0.1435(3) 0.0310(16) Uani 1 1 d . . . C3 C 0.7516(12) 0.7495(14) 0.1135(3) 0.0305(15) Uani 1 1 d . . . H3 H 0.6957 0.8947 0.1314 0.037 Uiso 1 1 calc R . . C4 C 0.6337(12) 0.6259(14) 0.0591(3) 0.0313(16) Uani 1 1 d . . . C5 C 0.4155(12) 0.7281(13) 0.0297(4) 0.0301(15) Uani 1 1 d . . . C6 C 0.2897(11) 0.5956(14) -0.0312(3) 0.0296(15) Uani 1 1 d . . . C7 C 0.0918(14) 0.6887(13) -0.0594(4) 0.0331(16) Uani 1 1 d . . . H7 H 0.0400 0.8348 -0.0408 0.040 Uiso 1 1 calc R . . C8 C -0.0353(12) 0.5667(14) -0.1166(3) 0.0294(14) Uani 1 1 d . . . C9 C -0.2449(11) 0.6333(13) -0.1526(4) 0.0301(15) Uani 1 1 d . . . H9 H -0.3250 0.7739 -0.1427 0.036 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 S1 0.0442(12) 0.0401(10) 0.0356(9) -0.0001(8) -0.0042(8) -0.0015(10) O1 0.035(3) 0.034(3) 0.034(2) -0.001(2) -0.001(2) 0.003(2) C1 0.037(4) 0.027(3) 0.027(3) 0.006(3) 0.006(3) 0.000(3) C2 0.035(4) 0.031(4) 0.025(3) 0.000(3) 0.001(3) -0.003(3) C3 0.036(4) 0.027(3) 0.029(3) -0.003(3) 0.004(3) -0.002(3) C4 0.033(4) 0.029(3) 0.029(3) 0.005(3) -0.004(3) -0.004(3) C5 0.028(4) 0.030(3) 0.031(3) 0.006(3) 0.001(3) 0.006(3) C6 0.030(4) 0.029(3) 0.029(3) 0.005(3) 0.000(3) -0.003(3) C7 0.040(4) 0.025(3) 0.033(4) 0.004(3) 0.003(3) 0.001(3) C8 0.026(3) 0.028(3) 0.032(3) 0.004(3) -0.001(3) 0.000(3) C9 0.024(4) 0.030(3) 0.035(3) 0.002(3) -0.002(3) -0.001(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_site_symmetry_1 _geom_bond_site_symmetry_2 _geom_bond_distance _geom_bond_publ_flag S1 C1 . . 1.664(8) y S1 C9 . 3_665 1.673(7) y O1 C5 . . 1.216(9) y C1 C2 . . 1.452(10) y C1 H1 . . 0.9500 ? C2 C3 . . 1.419(10) y C2 C8 . 3_665 1.447(10) y C3 C4 . . 1.358(9) y C3 H3 . . 0.9500 ? C4 C6 . 3_665 1.432(10) y C4 C5 . . 1.499(10) y C5 C6 . . 1.489(9) y C6 C7 . . 1.367(11) y C6 C4 . 3_665 1.432(10) y C7 C8 . . 1.414(10) y C7 H7 . . 0.9500 ? C8 C9 . . 1.429(10) y C8 C2 . 3_665 1.447(10) y C9 S1 . 3_665 1.673(7) y C9 H9 . . 0.9500 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_2 _geom_angle_site_symmetry_3 _geom_angle _geom_angle_publ_flag C1 S1 C9 . . 3_665 98.6(4) y C2 C1 S1 . . . 108.2(5) y C2 C1 H1 . . . 125.9 ? S1 C1 H1 . . . 125.9 ? C3 C2 C8 . . 3_665 118.8(6) y C3 C2 C1 . . . 129.0(7) y C8 C2 C1 3_665 . . 112.2(6) y C4 C3 C2 . . . 119.4(7) y C4 C3 H3 . . . 120.3 ? C2 C3 H3 . . . 120.3 ? C3 C4 C6 . . 3_665 122.2(7) y C3 C4 C5 . . . 117.1(7) y C6 C4 C5 3_665 . . 120.7(6) y O1 C5 C6 . . . 122.0(6) y O1 C5 C4 . . . 121.2(7) y C6 C5 C4 . . . 116.8(6) y C7 C6 C4 . . 3_665 119.9(7) y C7 C6 C5 . . . 117.7(7) y C4 C6 C5 3_665 . . 122.4(6) y C6 C7 C8 . . . 119.7(7) y C6 C7 H7 . . . 120.1 ? C8 C7 H7 . . . 120.1 ? C7 C8 C9 . . . 128.0(7) y C7 C8 C2 . . 3_665 120.0(7) y C9 C8 C2 . . 3_665 111.9(6) y C8 C9 S1 . . 3_665 109.1(5) y C8 C9 H9 . . . 125.5 ? S1 C9 H9 3_665 . . 125.5 ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion _geom_torsion_publ_flag C9 S1 C1 C2 3_665 . . . -0.1(5) y S1 C1 C2 C3 . . . . 178.9(6) y S1 C1 C2 C8 . . . 3_665 0.5(7) y C8 C2 C3 C4 3_665 . . . -2.2(10) y C1 C2 C3 C4 . . . . 179.5(7) y C2 C3 C4 C6 . . . 3_665 0.9(11) y C2 C3 C4 C5 . . . . 179.7(6) y C3 C4 C5 O1 . . . . -2.1(11) y C6 C4 C5 O1 3_665 . . . 176.6(6) y C3 C4 C5 C6 . . . . 178.4(6) y C6 C4 C5 C6 3_665 . . . -2.8(10) y O1 C5 C6 C7 . . . . 1.7(10) y C4 C5 C6 C7 . . . . -178.9(7) y O1 C5 C6 C4 . . . 3_665 -176.6(7) y C4 C5 C6 C4 . . . 3_665 2.9(11) y C4 C6 C7 C8 3_665 . . . -0.6(11) y C5 C6 C7 C8 . . . . -178.9(6) y C6 C7 C8 C9 . . . . 179.4(7) y C6 C7 C8 C2 . . . 3_665 1.9(11) y C7 C8 C9 S1 . . . 3_665 -178.5(6) y C2 C8 C9 S1 3_665 . . 3_665 -0.8(7) y _diffrn_measured_fraction_theta_max 0.940 _diffrn_reflns_theta_full 71.30 _diffrn_measured_fraction_theta_full 0.940 _refine_diff_density_max 0.690 _refine_diff_density_min -0.587 _refine_diff_density_rms 0.127 _vrf_PLAT029_pere13 ; PROBLEM: diffrn_measured_fraction_theta_full Low ....... 0.94 RESPONSE: All available geometric data up to the given 2theta-limit was collected with an optimized data collection strategy. Missing data is due to geometric restraints of the instruments. ; _vrf_RFACR01_pere13 ; PROBLEM: The value of the weighted R factor is > 0.25 RESPONSE: The structure solved without difficulties by SHELXS indicated one problem because the R1 factor is too high (0.24). The TWINROTMAT procedure in PLATON (Spek, 2008) indicated a twin matrix: -1 0 0 0 -1 0 1 0 1. For the rest of the refinement process, using of this twin law with refining BASF parameter (basf:333), R1 factor final decreases to 0.093. ;