1 2	Electronic Supplementary Information
3	A triple helical structure supported solely by C–H…O hydrogen bond
4	Kwang-Ming Lee, Jack C. C. Chen, Hsing-Yin Chen,* and Ivan J. B. Lin*
5 6 7 8	*To whom correspondence should be addressed. E-mail: hychen@kmu.edu.tw; Phone: (+886)73121101 #2807; Fax: (+886)73125339; E-mail: ijblin@mail.ndhu.edu.tw; Phone: (+886)3863359; Fax: (+886)3863357
9	
10	
11	
12	
13	1. X-ray crystallographic analysis
14	2. Computational method
15	3. Figure S1. Molecular mechanics optimized structure for a nanomer
16	4. Figure S2. Molecular structure and crystal packing of 2
17	5. Crystal data for 1
18	6. References
19 20 21 22 23 24 25 26 27 28 29 30 31	
32	

33 X-ray crystallographic analysis

34	Single-crystal X-ray diffraction data of 1 were collected by using a Bruker P4
35	diffractometer with a graphite monochromator using Mo-K radiation ($\lambda = 0.71073$ Å)
36	in ω scan modes. All structures were solved by the direct method and refined (based
37	on F^2 using all independent data) by full matrix least-squares methods (Bruker
38	SHELXTL 97). ^{S1} The PF_6^- anion is found to be disordered with two independent
39	orientations having occupancies of 0.5 and 0.5. Non-hydrogen atoms were refined
40	with anisotropic thermal parameters. Hydrogen atoms were found in a difference map.
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	

63 Computational method

The density functional theory (DFT) M06-2X/6-311++G** and ab initio 64 $MP2/6-311++G^{**}$ calculations were used to evaluate the binding energies of the 65 selected dimers and model complexes. The M06-2X functional developed by Truhlar 66 and co-workers has been shown to bear considerably improved performance in 67 describing diverse noncovalent weak interactions,^{S2} which are a familiar drawback for 68 other popular functionals, and thus is a suitable choice for the purpose of the present 69 study. The coordinates for the selected dimers and the model complexes were 70 71 extracted from the crystal structure; for the model complexes, hydrogen atoms were added to complete the valence. The geometry optimizations and frequency analyses 72 73 for the hexamer in acetonitrile and water were carried out at M06-2X/6-31G level under the consideration of solvent effect. The reported association free energies for 74 75 the hexamer in water and acetonitrile have been corrected for the standard state of 1 M in solution instead of 1 atm in gas phase, which is the default implementation in 76 most quantum chemistry packages. The inclusion of the solvent effect was achieved 77 by using the integral equation formalism version of the polarization continuum model. 78 Natural population analysis was applied to obtain the atomic charge distribution for 79 80 the hexamer. All the DFT and *ab initio* calculations were performed by Gaussian 09 program.^{S3} For the molecular mechanics (MM) calculation of the nanomer, we used 81

82	the OPLS force field supplemented by the M06-2X/6-311++G** derived atomic
83	charges. The triple helix of the nanomer was placed in a 45 Å \times 45 Å \times 45 Å periodic
84	box of 3010 TIP3P water molecules. ^{S4} The truncation of nonbonded potential energy
85	was treated by a potential switching function turned on at a distance of 11 Å and
86	turned off at a distance of 15 Å. The MM calculation was achieved by HyperChem
87	package. ^{S5}
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Fig. S1 The molecular mechanics optimized structure for a nanomer in a 45 Å \times 45 Å \times 45 Å box filled with 3010 water molecules. Top panel: the view perpendicular to the

- 124 axis. Bottom panel: the view along the helical axis.

Fig. S2 The molecular structure of 1-acetamido-3-(2-pyrimidyl)-imidazolium cation (2) and the crystal packing of its PF_6^- salt. (a) Stacking of the tri-layer structure. (b) One-dimensional anti-oriented catemer was formed by N–H…O and C–H…O hydrogen bonds.

159 Crystal data for 1:

Chemical formula	$C_9H_{10}F_6N_5OP$
Formula Mass	349.19
Crystal system	Orthorhombic
a/Å	5.5476(8)
b/Å	11.7755(16)
c/Å	20.368(2)
$\alpha / ^{\circ}$	90
$\beta/^{\circ}$	90
y/°	90
Unit cell volume/Å ³	1330.5(3)
Temperature/K	293(2)
Space group	$P2_{1}2_{1}2_{1}$
No. of formula units per unit cell, Z	4
Radiation type	ΜοΚα
Absorption coefficient, μ/mm^{-1}	0.288
No. of reflections measured	2785
No. of independent reflections	2346
R _{int}	0.0172
Final R_1 values $(I > 2\sigma(I))$	0.0368
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.0944
Final R_1 values (all data)	0.0427
Final $wR(F^2)$ values (all data)	0.0993
Goodness of fit on F^2	1.036
Flack parameter	-0.02(14)
CCDC number	180990

171 References

- 172 [S1] G. M. Sheldrick, *Acta Crystallogr.* 2008, A64, 112.
- 173 [S2] Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
- 174 [S3] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
- 175 Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A.
- 176 Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino,
- 177 G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
- 178 M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery,
- 179 Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
- 180 Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.
- 181 S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.
- 182 Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
- 183 A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
- 184 Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O.
- 185 Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc.,
- 186 Wallingford CT, 2009.
- 187 [S4] W. L. Jorgensen, J. Chandrasekhas, J. D. Madura, R. W. Impey and M. L. Klein,
- 188 J. Chem. Phys. 1983, 79, 926.
- 189 [S5] HyperChem Professional 8.0.3, Hypercube, Inc., 1115 NW 4th Street,
- 190 Gainesville, FL 32601.