Supporting Information

Highly Regioselective Lewis Acid-Catalyzed [3+2] Cycloadditions of Alkynes with Donor-acceptor Oxiranes by Selective Carbon-Carbon

Bond Cleavage of Epoxides.

Renrong Liu,^a Mei Zhang,^a and Junliang Zhang*^{a,b}

 ^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China Fax:(+86)-021-6223-5039; e-mail :jlzhang@chem.ecnu.edu.cn
 ^b State key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic

Chemistry, Chinese Academy of Sciences.

General Information. Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. ¹H NMR spectra, ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer in chloroform-d₃. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration). Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. ClCH₂CH₂Cl (DCE), was freshly distilled from CaH₂; toluene was freshly distilled from sodium metal prior to use. Lewis-acid purchased from Alfa or Aldrich were used directly. Commercially available reagents were used without further purification. 4 Å molecular sieves purchased from Sinopharm Chemical Reagent Co.,Ltd were powdered and dried at 300 °C in muffle furnace for 8-10 hours prior to use.

Ph		Lewis acid (5 mol%)	PMP /= COMe</th		
Me	1a 2a	4 Å MS Ph solvent, rt, 3 h	COMe 3a		
Entry	Catalyst	Solvent	Yield 3a $(\%)^b$		
1	Sc(OTf) ₃	DCE	98		
2	Yb(OTf) ₃	DCE	73		
3	Y(OTf) ₃	DCE	67		
4	In(OTf) ₃	DCE	92		
5	Sn(OTf) ₂	DCE	78		
6	Ni(ClO ₄) ₂ ·6H ₂ O	DCE	67		
7	Sc(OTf) ₃	DCM	95		
8	Sc(OTf) ₃	toluene	82		
9	C	DCE	0		
10	d	DCE	9		
11	e	PhCl	5		

 Table 1. Screening Reaction Conditions.^a

N/0

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), 5 mol % of catalyst, and 80 mg of activated 4 Å MS in 2 mL of solvent at room temperature. ^{*b*} Isolated yield and no other stereoisomer is detected. PMP = 4-MeOC₆H₄. ^{*c*} No Lewis acid was added. ^{*d*} No Lewis acid was added, 100°C in sealed tube, 12 hours. ^{*e*} No Lewis acid was added, 160°C, 10 hours.

Synthesis of Oxiranyl diketones

The substrate **1a-1m**, **5**, **6** were synthesized according to the procedure of references.^{[1],[2]} The spectral data of **1a-1b**,^[4] **1h-1j**,^[2] **1l**,^[3] **1m**^[1] are consisted with the literature.

1. 1,1'-(3-*p*-Tolyloxirane-2,2-diyl)diethanone (1c)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ_H 7.16 (s, 4 H), 4.37 (s, 1 H), 2.33 (s, 3 H), 2.28 (s, 3 H), 1.64 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 201.8, 199.5, 139.2, 129.4, 128.7, 126.0, 72.7, 62.1, 29.8, 25.2, 21.2 ppm; IR (neat) v (cm⁻¹) 3664, 2987, 2902, 1700, 1407, 1252, 1066, 1055, 870, 812; MS (70 eV): m/z (%): 218 (0.49) [M⁺], 43 (100); HRMS calcd for C₁₃H₁₄O₃: 218.0943, found: 218.0944.

2. 1,1'-(3-(4-Bromophenyl)oxirane-2,2-diyl)diethanone (1d)

White solid, m.p.121-122°C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.49 (d, 2 H, J = 8.0 Hz), 7.17 (d, 2 H, J = 8.0 Hz), 4.37 (s, 1 H), 2.28 (s, 3 H), 2.03 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 201.3, 198.8, 131.9, 130.7, 127.8, 123.4, 72.4, 61.3, 29.7, 25.2 ppm; IR (neat) v (cm⁻¹) 3089, 2989, 1718, 1699, 1490, 1413, 1360, 1255, 1169, 1086, 1071, 1011, 890, 807, 642; MS (70 eV): m/z (%): 282 (0.18) [M⁺], 284 (0.21) [M⁺+2], 43 (100); HRMS calcd for C₁₂H₁₁O₃Br: 281.9892, found: 281.9894.

3. 1,1'-(3-(2-Bromophenyl)oxirane-2,2-diyl)diethanone (1e)

White solid, m.p. 71-73 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.55 (d, 1 H, J = 8.0 Hz), 7.30-7.34 (m, 2 H), 7.23-7.26 (m, 1 H), 4.50 (s, 1 H), 2.35 (s, 3 H), 2.06 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 201.1, 198.7, 132.4, 131.3, 130.6, 127.9, 127.6, 122.2, 71.7, 62.4, 29.6, 25.5 ppm; IR (neat) v (cm⁻¹) 3005, 1712, 1519, 1391, 1353, 1247, 1175, 1104, 1029; MS (70 eV): m/z (%): 282 (3.53) [M⁺], 284 (3.41) [M⁺+2], 43 (100); HRMS calcd for C₁₂H₁₁O₃Br (M)⁺: 281.9892, found: 281.9892.

4. 1,1'-(3-(3-Bromophenyl)oxirane-2,2-diyl)diethanone (1f)

Yellow oil, ¹H NMR (400 MHz, CDCl₃) δ_H 7.46-7.50 (m, 2 H), 7.19-7.28 (m, 2 H), 4.36 (s, 1 H), 2.28 (s, 3 H), 2.05 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 201.1, 198.8, 134.0, 132.4, 130.3, 129.3, 124.7, 122.8, 72.3, 61.1, 29.8, 25.3 ppm; IR (neat) v (cm⁻¹) 3066, 2926, 1706, 1570, 1421, 1360, 1250, 1170, 1100, 1071; MS (70 eV): m/z (%): 282 (18.0) [M⁺], 282 (16.0) [M⁺+2], 126.9 (100); HRMS calcd for C₁₂H₁₁O₃Br (M)⁺: 281.9892, found: 281.9895.

5. 1,1'-(3-(4-Fluorophenyl)oxirane-2,2-diyl)diethanone (1g)

Colorless oil, Z¹H NMR (400 MHz, CDCl₃) δ_H 7.27 (s, 2 H), 7.06 (t, 2 H, J = 8.4 Hz), 4.38 (s, 1 H), 2.28 (s, 3 H), 2.03 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 201.5, 199.1, 163.1 (d, ${}^{1}J_{C,F} = 248$ Hz), 128.1, (d, ${}^{3}J_{C,F} = 9$ Hz), 127.5, 115.9 (d, ${}^{2}J_{C,F} = 22$ Hz), 72.6, 61.4, 29.8, 25.3 ppm; IR (neat) v (cm⁻¹) 1725, 1708, 1608, 1513, 1421, 1361, 1289, 1228, 1158, 1101; MS (70 eV): m/z (%): 222 (9.51) [M⁺], 43 (100); HRMS calcd for C₁₂H₁₁O₃F: 222.0692, found: 222.0694.

6. Ethyl 2-acetyl-3-phenyloxirane-2-carboxylate (1k)

Colorless oil, ¹H NMR (400 MHz, CDCl₃) δ_H 7.33 (s, 5 H), 4.43 (s, 1 H), 3.97-4.07 (m, 2 H), 2.32 (s, 3 H), 0.95 (t, 3 H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ_C 199.4, 163.9, 132.0, 129.0, 128.3, 126.0, 68.2, 61.9, 61.7, 25.2, 13.6 ppm; IR (neat) v (cm⁻¹) 2984, 1748, 1714, 1457, 1372, 1314, 1257, 1221, 1200, 1109, 1031; MS (70 eV): m/z (%): 234 (9.07) [M⁺], 43 (100); HRMS calcd for C₁₃H₁₄O₄: 234.0892, found: 234.0893.

Colorless oil, ¹H NMR (400 MHz, CDCl₃) δ_H 7.41 (d, 2 H, J = 7.6 Hz), 7.25-7.32 (m, 4 H), 7.23 (d, 1 H, J = 7.2 Hz), 7.11 (d, 1 H, J = 8.0 Hz), 6.96 (t, 1 H, J = 7.2 Hz), 5.00 (d, 1 H, J = 17.6 Hz), 4.96 (d, 1 H, J = 17.6 Hz), 4.83 (s, 1 H), 3.87 (s, 3 H), 3.52 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 166.0, 164.1, 156.5, 131.7, 130.0, 128.7, 128.3, 126.2, 122.1, 121.2, 121.1, 112.2, 87.5, 83.6, 62.6, 59.2, 57.0, 53.4, 52.5 ppm; IR (neat) v (cm⁻¹) 3658, 2955, 1750, 1604, 1492, 1439. 1372, 1335, 1274, 1238, 1219, 1190, 1163, 1121, 1047, 1016; ESI-MS: m/z: 367.0 [M+H]⁺; HR-ESI-MS calcd for C₂₁H₁₉O₆ [M+H]⁺: 367.11739, found: 367.11761.

Dimethyl 3-(2-(3-(4-methoxyphenyl)prop-2-ynyloxy)phenyl)oxirane-2,2-dicar boxylate (6)

White solid, m.p. 118-120 °C.¹H NMR (400 MHz, CDCl₃) δ_H 7.29-7.37 (m, 3 H), 7.22 (d, 1 H, J = 7.6 Hz), 7.11 (d, 1 H, J = 8.0 Hz), 6.95 (t, 1 H, J = 7.2 Hz), 6.82 (d, 2 H, J = 8.0 Hz), 4,98 (d, 1 H, J = 14.0 Hz), 4.94 (d, 1 H, J = 14.0 Hz), 4.83 (s, 1 H), 3.86 (s, 3 H), 3.79 (s, 3 H), 3.52 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 166.0, 164.1, 159.9, 156.5, 133.2, 129.9, 126.2, 121.2, 121.0, 114.1, 113.9, 112.2, 87.4, 82.3, 62.6, 59.2, 57.1, 55.2, 53.4, 52.5 ppm; IR (neat) v (cm⁻¹) 3652, 2955, 1751, 1605, 1510, 1493, 1457, 1439, 1335, 1290, 1244, 1219, 1174, 1121, 1108, 1030; MS (70 eV): m/z (%): 396 (0.23) [M⁺], 145 (100); HRMS calcd for C₂₂H₂₀O₇ (M)⁺: 396.1209, found: 396.1209.

Typical procedure for Sc(OTf)₃ catalyzed [3+2] cycloaddition reaction.

In an inert atmosphere glovebox, a flame-dried vial was charged with 80 mg of activated 4Å molecular sieves powder (MS), and a magnetic stir bar. Outside of the glovebox, the vial was placed under an N_2 atmosphere and added the alkyle 2 (0.4 mmol)., oxirane 1 (0.2 mmol) and 2 mL of DCE were added followed by 5 mol %

 $Sc(OTf)_3$, The reaction was stirred at room temperature and detected by TLC, the reaction mixture was then passed over a plug of silica with 30 mL of EtOAc. The solvent was removed under reduced pressure and the residue was purified by flash chromatography, eluting with (hexanes: EtOAc = 5:1) to afford the desired product.

9. 1,1'-(3-(4-Methoxyphenyl)-5-phenyl-2,5-dihydrofuran-2,2-diyl)diethanone (3a)

The reaction of **1a** (40.8 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 65.6 mg (89%) of **3a**, white solid, m.p. 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.32-7.39 (m, 7 H), 6.83 (d, 2 H, J = 8.0 Hz), 6.43 (s, 1 H), 6.08 (s, 1 H), 3.78 (s, 3 H), 2.32 (s, 3 H), 2.17 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 206.4, 205.1, 159.9, 139.4, 139.2, 129.2, 128.9, 127.5, 127.4, 123.8, 113.9, 101.0, 88.8, 55.3, 26.7, 26.0; MS (70 eV): IR (neat) ν (cm⁻¹) 3072, 3013, 2935, 2839, 1721, 1707, 1606, 1574, 1518, 1490, 1355, 1302, 1282, 1262, 1221, 1117, 1085, 1026; MS (70 eV): m/z(%): 336 (0.65) [M⁺], 43 (100); HRMS calcd for C₂₁H₂₀O₄ (M)⁺: 336.1362, found: 336.1367.

10. 1,1'-(4-Butyl-3-(4-methoxyphenyl)-5-phenyl-2,5-dihydrofuran-2,2-diyl)dietha none (3b)

The reaction of **1a** (40.8 mg, 0.2 mmol), **2b** (76.2 mg, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 69.3 mg (88%) of **3b**, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ_H 7.37-7.44 (m, 3 H), 7.34 (d, 2 H, J = 7.2 Hz), 7.15 (d, 2 H, J = 8.4 Hz), 6.87 (d, 2 H, J= 8.4 Hz), 5.93 (s, 1 H), 3.80 (s, 3 H), 2.34 (s, 3 H), 2.13-2.22 (m, 1 H), 2.13 (s, 3 H), 1.70-1.75 (m, 1 H), 1.09-1.26 (m, 4 H), 0.73 (t, 3 H, J = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ_C 206.0, 204.9, 159.1, 143.8, 139.0, 133.0, 130.9, 128.9, 128.8, 127.9, 124.6, 113.6, 102.6, 90.9, 55.1, 29.6, 27.0, 26.0, 25.8, 22.3, 13.6 ppm; IR (neat) ν (cm⁻¹) 2956, 2933, 2861, 1711, 1608, 1511, 1457, 1352, 1248, 1179, 1125, 1061, 1032; MS (70 eV): m/z (%): 392 (0.28) [M⁺], 43 (100); HRMS calcd for C₂₅H₂₈O₄(M)⁺: 392.1988, found: 392.1989.

11. 1,1'-(4-Cyclopropyl-3-(4-methoxyphenyl)-5-phenyl-2,5-dihydrofuran-2,2-diyl) diethanone (3c)

The reaction of **1a** (40.8 mg, 0.2 mmol), **2c** (69 mg, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 69 mg (92%) of **3c**, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ_H 7.30-7.42 (m, 7 H), 6.88 (d, 2 H, J = 7.6 Hz), 5.73 (s, 1 H), 3.80 (s, 3 H), 2.32 (s, 3 H), 2.08 (s, 3 H), 1.40-1.45 (m, 1 H), 0.54-0.60 (m, 1 H), 0.40-0.50 (m, 2 H), 0.01-0.06 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 206.2, 205.2, 159.0, 142.6, 139.4, 133.3, 131.1, 128.9, 128.7, 128.0, 124.5, 113.5, 102.2, 90.1, 55.1, 26.9, 25.8, 9.3, 6.6, 5.9 ppm; IR (neat) v (cm⁻¹) 3006, 2960, 2837, 1753, 1710, 1669, 1607, 1572, 1543, 1458, 1418, 1352, 1290, 1247, 1177, 1077, 1029; MS (70 eV): m/z (%): 376 (0.01) [M⁺], 43 (100); HRMS calcd for C₂₄H₂₄O₄ (M)⁺: 376.1675, found: 376.1676.

12. 1,1'-(5-Phenyl-3-(thiophen-2-yl)-2,5-dihydrofuran-2,2-diyl)diethanone (3d)

The reaction of **1a** (40.8 mg, 0.2 mmol), **2d** (44 mg, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 55.8 mg (90%) of **3d**, colorless oil.. ¹H NMR (400 MHz, CDCl₃) δ_H 7.30-7.39 (m, 5 H), 7.21-7.23 (m, 1 H), 7.06 (s, 1 H), 6.95 (d, 1 H, J = 3.2 Hz), 6.40 (s, 1 H), 6.10 (s, 1 H), 2.32 (s, 3 H), 2.17 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 205.8, 204.2, 138.9, 133.7, 133.3, 128.83, 128.78, 128.6, 128.0, 127.8, 127.2, 125.9, 100.8, 88.8, 26.4, 25.6 ppm; IR (neat) v (cm⁻¹) 3105, 3070, 3030, 2924, 2856, 1726, 1710, 1624, 1493, 1454, 1301, 1211, 1080, 1038, 1001; MS (70 eV): m/z (%): 312 (0.12) [M⁺], 105 (100); HRMS calcd for C₁₈H₁₆O₃S (M)⁺: 310.0820, found: 310.0817.

13. 1,1'-(5-Phenyl-3-p-tolyl-2,5-dihydrofuran-2,2-diyl)diethanone (3e).

The reaction of **1a** (40.8 mg, 0.2 mmol), **2e** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 43.5 mg (68%) of **3e**, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ_H 7.30-7.39 (m, 7 H), 7.11 (d, 2 H, J = 8.0 Hz), 6.50 (s, 1 H), 6.08 (s, 1 H), 2.32 (s, 6 H), 2.17 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 206.1, 204.8, 139.5, 139.2, 138.6, 129.1, 128.8, 128.6, 128.3, 127.6, 127.3, 126.4, 100.9, 88.7, 26.6, 25.9, 21.2 ppm; IR (neat) v (cm⁻¹) 3031, 2921, 2861, 1710, 1672, 1605, 1512, 1475, 1451, 1415, 1352, 1251, 1071, 1028, 1002; MS (70 eV): m/z (%): 320 (0.90) [M⁺], 43 (100); HRMS calcd for C₂₁H₂₀O₃ (M)⁺: 320.1412, found: 320.1411.

14. 1,1'-(4-(3-Chloropropyl)-3-(4-methoxyphenyl)-5-phenyl-2,5-dihydrofuran-2,2 -diyl)diethanone (3f)

The reaction of **1a** (40.8 mg, 0.2 mmol), **2f** (84 mg, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 79 mg (96%) of **3f**, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ_H 7.38-7.45 (m, 3 H), 7.35 (d, 2 H, J = 7.6 Hz), 7.15 (d, 2 H, J = 8.4 Hz), 6.87 (d, 2 H, J= 8.4 Hz), 5.90 (s, 1 H), 3.79 (s, 3 H), 3.26-3.36 (m, 2 H), 2.30-2.40 (m, 1 H), 2.33 (s, 3 H), 2.15 (s, 3 H), 1.89-1.99 (m, 1 H), 1.59-1.76 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 205.5, 204.7, 159.3, 141.8, 138.6, 134.4, 130.7, 129.1, 128.9, 127.9, 124.1, 113.7, 102.5, 90.8, 55.1, 43.9, 30.2, 26.9, 26.1, 23.6 ppm; IR (neat) ν (cm⁻¹) 3004, 2956, 2837, 1711, 1670, 1608, 1572, 1510, 1444, 1353, 1247, 1177, 1109, 1071, 1029; MS (70 eV): *m/z* (%): 412 (0.09) [M⁺], 43 (100); HRMS calcd for C₂₄H₂₅O₄Cl (M)⁺: 412.1441, found: 412.1439.

15. 1,1'-(3,4-Bis(4-methoxyphenyl)-5-phenyl-2,5-dihydrofuran-2,2-diyl)diethanon

e (3g).

The reaction of **1a** (40.8 mg, 0.2 mmol), **2g** (96 mg, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 61 mg (69%) of **3g**, including 9% product with double bond migration. colorless oil. ¹H NMR (400 MHz, CDCl₃) δ_H 7.29-7.33 (m, 5 H), 7.20 (d, 2 H, J = 8.4 Hz), 6.93 (d, 2 H, J = 8.0 Hz), 6.78 (d, 2 H, J = 8.4 Hz), 6.59 (d, 2 H, J = 8.4 Hz), 6.36 (s, 1 H), 3.76 (s, 3 H), 3.65 (s, 3 H), 2.31 (s, 3 H), 2.11 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 206.0, 205.3, 159.2, 159.1, 140.1, 138.9, 133.1, 131.5, 130.2, 128.7, 128.3, 124.7, 113.8, 113.6, 102.9, 91.2, 55.0, 55.0, 27.0, 25.8 ppm; IR (neat) v (cm⁻¹) 3063, 3004, 2837, 1710, 1671, 1606, 1572, 1509, 1458, 1417, 1352, 1291, 1247, 1178, 1107, 1080, 1029; MS (70 eV): m/z (%): 442 (0.23) [M⁺], 43 (100); HRMS calcd for C₂₈H₂₆O₅ (M)⁺: 442.1780, found: 442.1783.

16. (4-Bromo-3-(4-methoxyphenyl)-5-phenyl-2,5-dihydrofuran-2,2-diyl)bis(phen ylmethanone) (3h)

The reaction of **1b** (81.2 mg, 0.2 mmol), **2h** (84 mg, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Ni(ClO₄)₂ 6H₂O (0.01 mmol, 3.6 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 100 mg (82%) of **3h**. ¹H NMR (400 MHz, CDCl₃) δ_H 7.96-7.99 (m, 2 H), 7.85-7.88 (m, 2 H), 7.57 (t, 1 H, J = 7.6 Hz), 7.46 (t, 2 H, J = 7.2 Hz), 7.21-7.41 (m, 10 H), 6.85 (d, 2 H, J = 8.0 Hz), 6.05 (s, 1 H), 3.74 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 196.8, 195.2, 159.7, 138.7, 136.7, 135.5, 134.4, 133.4, 132.8, 131.2, 129.8, 129.2, 129.1, 128.7, 128.6, 128.4, 128.2, 123.3, 122.5, 113.6, 101.7, 91.7, 55.1 ppm; IR (neat) v (cm⁻¹) 3064, 2953, 2836, 1690, 1597, 1509, 1446, 1248, 1178, 1125, 1052, 1029; MS (70 eV): m/z (%): 538 (0.40) [M⁺], 540 (0.43) [M⁺+2], 77 (100); HRMS calcd for C₃₁H₂₃O₄Br (M)⁺: 538.0780, found: 538.0783.

17. 1,1'-(3-(4-Methoxyphenyl)-5-p-tolyl-2,5-dihydrofuran-2,2-diyl)diethanone (3i)

The reaction of **1c** (43.6 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 67.4 mg (97%) of **3i**, yellow solid, m.p. 43-45 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.37 (d, 2 H, J = 7.6 Hz), 7.17-7.24 (m, 4 H), 6.83 (d, 2 H, J = 7.2Hz), 6.41 (s, 1 H), 6.04 (s, 1 H), 3.78 (s, 3 H), 2.35 (s, 3 H), 2.31 (s, 3 H), 2.16 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 206.4, 205.1, 159.7, 138.9, 138.6, 136.3, 129.4, 129.0, 127.5, 127.3, 123.7, 113.7, 100.8, 88.6, 55.2, 26.6, 25.8, 21.1 ppm; IR (neat) v(cm⁻¹) 3006, 2936, 2839, 1753, 1710, 1667, 1607, 1573, 1482, 1420, 1382, 1292, 1181, 1075, 1030; MS (70 eV): m/z (%): 350 (0.75) [M⁺], 43 (100); HRMS calcd for C₂₂H₂₂O₄ (M)⁺: 350.1518, found: 350.1516.

18. 1,1'-(5-(4-bromophenyl)-3-(4-methoxyphenyl)-2,5-dihydrofuran-2,2-diyl)diet hanone (3j)

The reaction of **1d** (56.4 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 81.4 mg (98%) of **3j**, white solid, m.p. 104-106 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.51 (d, 2 H, J = 6.8 Hz), 7.36 (d, 2 H, J = 7.2 Hz), 7.21 (d, 2 H, J =7.2 Hz), 6.83 (d, 2 H, J = 7.6 Hz), 6.40 (s, 1 H), 6.04 (s, 1 H), 3.78 (s, 3 H), 2.31 (s, 3 H), 2.16 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 206.1, 204.6, 159.9, 139.4, 138.3, 131.9, 129.1, 128.9, 126.7, 123.3, 122.7, 113.7, 100.9, 87.9, 55.2, 26.6, 25.8 ppm; IR (neat) ν (cm⁻¹) 3397, 3083, 2945, 2844, 1727, 1706, 1605, 1571, 1511, 1489, 1417, 1352, 1223, 1184, 1072, 1026, 1010; MS (70 eV): m/z (%): 414 (0.29) [M⁺], 416 (0.27) [M⁺+2], 43 (100); HRMS calcd for C₂₁H₁₉O₄Br (M)⁺: 414.0467, found: 414.0463.

19. 1,1'-(5-(2-Bromophenyl)-3-(4-methoxyphenyl)-2,5-dihydrofuran-2,2-diyl)diet hanone (3k).

The reaction of **1e** (56.4 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 10 mol % Sc(OTf)₃ (0.02 mmol, 9.8 mg) in DCE (2 mL) was carried out at r.t. for 12 hours to afford 78 mg (95%) of **3k**, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ_H 7.60 (d, 1 H, J = 8.0 Hz), 7.29-7.38 (m, 4 H), 7.19 (t, 1 H, J = 7.2 Hz), 6.82 (d, 2 H, J = 8.4 Hz), 6.52 (s, 1 H), 6.48 (s, 1 H), 3.78 (s, 3 H), 2.36 (s, 3 H), 2.22 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 206.4, 204.2, 159.8, 139.1, 138.3, 133.0, 129.9, 129.1, 128.1, 127.9, 126.5, 123.5, 122.6, 113.7, 101.0, 87.3, 55.2, 26.7, 25.9 ppm; IR (neat) v (cm⁻¹) 3068, 3005, 2934, 2837, 1711, 1607, 1571, 1512, 1465, 1439, 1352, 1255, 1217, 1183, 1118, 1077, 1027; MS (70 eV): m/z (%): 414 (0.18) [M⁺], 416 (0.17) [M⁺+2], 43 (100); HRMS calcd for C₂₁H₁₉O₄Br (M)⁺: 414.0467, found: 414.0466.

20. 1,1'-(5-(3-Bromophenyl)-3-(4-methoxyphenyl)-2,5-dihydrofuran-2,2-diyl)diet hanone (3l)

The reaction of **1f** (56.4 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 69.9 mg (85%) of **3l**, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ_H 7.47-7.50 (m, 2 H), 7.36 (d, 2 H, J = 7.2 Hz), 7.26 (s, 2 H), 6.83 (d, 2 H, J = 7.6 Hz), 6.40 (s, 1 H), 6.03 (s, 1 H), 3.78 (s, 3 H), 2.31 (s, 3 H), 2.18 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 205.9, 204.5, 159.9, 141.6, 139.5, 131.7, 130.4, 130.3, 129.1, 126.5, 125.6, 123.3, 122.8, 113.8, 101.0, 87.8, 55.2, 26.6, 25.9 ppm; IR (neat) v (cm⁻¹) 3066, 3006, 2932, 1710, 1607, 1569, 1513, 1471, 1439, 1357, 1254, 1183, 1096, 1078, 1026; MS (70 eV): m/z (%): 414 (0.15) [M⁺], 416 (0.14) [M⁺+2], 43 (100); HRMS calcd for C₂₁H₁₉O₄Br (M)⁺: 414.0467, found: 414.0468.

21. 1,1'-(5-(4-Fluorophenyl)-3-(4-methoxyphenyl)-2,5-dihydrofuran-2,2-diyl)diet hanone (3m)

The reaction of **1a** (44.4 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 3 hours to afford 63.7 mg (90%) of **3m**, white solid, m.p. 76-78 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.37 (d, 2 H *J* = 7.6 Hz), 7.29-7.33 (m, 2 H), 7.07 (t, 2 H, *J* = 7.6 Hz), 6.84 (d, 2 H, *J* = 8.0 Hz), 6.41 (s, 1 H), 6.07 (s, 1 H), 3.80 (s, 3 H), 2.31 (s, 3 H), 2.16 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 206.3, 204.8, 162.9 (d, ^{*1*}*J*_{*C*-*F*} = 246 Hz), 159.9, 139.3, 135.2, 129.2 (d, ²*J*_{*C*-*F*} = 9 Hz), 127.0, 123.5, 115.7 (d, ³*J*_{*C*-*F*} = 21 Hz), 113.8, 100.9, 88.0, 55.2, 26.6, 25.8 ppm; IR (neat) *v* (cm⁻¹) 2839, 1712, 1607, 1510, 1421, 1353, 1257, 1221, 1184, 1158, 1075, 1033; MS (70 eV): *m/z* (%): 354 (0.65) [M⁺], 43 (100); HRMS calcd for C₂₁H₁₉O₄F (M)⁺: 354.1267, found: 354.1268.

22. (3-(4-Methoxyphenyl)-5-phenyl-2,5-dihydrofuran-2,2-diyl)bis(phenylmethan one) (3n)

The reaction of **1b** (81.2 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 2 hours to afford 85.5 mg (93%) of **3n**, white solid, m.p. 68-70 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 8.01 (d, 2 H, J = 7.6 Hz), 7.92 (d, 2 H, J = 8.0 Hz), 7.54 (t, 1 H, J =7.6 Hz), 7.39-7.48 (m, 5 H), 7.20-7.30 (m, 7 H), 6.80 (d, 2 H, J = 8.0 Hz), 6.53 (s, 1 H), 6.17 (s, 1 H), 3.71 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 198.5, 196.4, 159.7, 141.4, 138.8, 135.9, 134.7, 133.0, 132.6, 130.0, 129.7, 129.2, 128.49, 128.45, 128.3, 128.0, 127.1, 124.3, 113.6, 101.6, 88.9, 55.1 ppm; IR (neat) ν (cm⁻¹) 3058, 3029, 2936, 2836, 1782, 1728, 1689, 1598, 1577, 1511, 1448, 1419, 1254, 1180, 1118, 1066, 1028; MS (70 eV): m/z (%): 460 (1.20) [M⁺], 105 (100); HRMS calcd for C₃₁H₂₄O₄ (M)⁺: 460.1675, found: 460.1676.

23. (3-(4-Methoxyphenyl)-5-(naphthalen-1-yl)-2,5-dihydrofuran-2,2-diyl)bis(phe nylmethanone) (30)

The reaction of **1h** (75.6 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 2 hours to afford 91.8 mg (90%) of **3o**, white solid, m.p. 190-192 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 8.10 (d, 2 H, J = 7.6 Hz), 8.05 (d, 1 H, J = 7.2 Hz), 7.87 (d, 2 H, J =7.2 Hz), 7.82 (d, 1 H, J = 6.8 Hz), 7.76 (d, 1 H, J = 7.6 Hz), 7.58 (t, 1 H, J = 7.2 Hz), 7.43-7.51 (m, 7 H), 7.32-7.38 (m, 2 H), 7.18 (t, 2 H, J = 7.6Hz), 6.87 (s, 1 H), 6.82 (d, 3 H, J = 4.8 Hz), 3.75 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 197.7, 196.9, 159.7, 142.6, 135.7, 134.9, 134.2, 133.7, 133.0, 132.6, 130.9, 129.9, 129.7, 129.6, 128.9, 128.7, 128.4, 127.9, 127.2, 126.3, 125.7, 125.2, 124.6, 124.1, 123.3, 113.7, 101.3, 85.0, 55.2 ppm; IR (neat) v (cm⁻¹) 3390, 2934, 2361, 1749, 1684, 1602, 1510, 1446, 1366, 1285, 1255, 1182, 1111, 1074, 1028; MS (70 eV): m/z (%): 510 (1.10) [M⁺], 105 (100); HRMS calcd for C₃₅H₂₆O₄ (M)⁺: 530.1831, found: 530.1823.

24. (3,5-Bis(4-methoxyphenyl)-2,5-dihydrofuran-2,2-diyl)bis(phenylmethanone) (3p)

The reaction of **1i** (40.8 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 2 hours to afford 91.6 mg (94%) of **3p**, yellow oil.. ¹H NMR (400 MHz, CDCl₃) δ_H 8.01 (d, 2 H, J = 7.6 Hz), 7.91 (d, 2 H, J = 7.6 Hz), 7.55 (t, 1 H, J = 7.2 Hz), 7.39-7.48 (m, 5 H), 7.28 (t, 2 H, J = 7.2 Hz), 7.18 (d, 2 H, J = 8.0 Hz), 6.76-6.83 (m, 4 H), 6.50 (s, 1 H), 6.12 (s, 1 H), 3.74 (s, 3 H), 3.71 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 198.6, 196.6, 159.7, 141.4, 136.0, 134.8, 133.0, 132.6, 130.9, 130.0, 129.8, 129.2, 128.8, 128.5, 128.0, 124.4, 113.9, 113.6, 101.4, 88.7, 55.2, 55.1 ppm; IR (neat) v(cm⁻¹) 3067, 3003, 2933, 2836, 1771, 1688, 1607, 1510, 1446, 1249, 1176, 1116, 1065, 1029; MS (70 eV): m/z (%): 490 (1.40) [M⁺], 105 (100); HRMS calcd for C₃₂H₂₆O₅(M)⁺: 490.1780, found: 490.1783. $\label{eq:25.1} \textbf{25.} (5-(4-Bromophenyl)-3-(4-methoxyphenyl)-2, 5-dihydrofuran-2, 2-diyl) bis (phenyl)-2, 5-dihydrofuran-2, 5-dihydrofu$

ylmethanone) (3q)

The reaction of **1j** (40.8 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 2 hours to afford 101 mg (94%) of **3q**, white solid, m.p. 72-74 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.99 (d, 2 H, J = 7.6 Hz), 7.88 (d, 2 H, J = 7.6 Hz), 7.56 (t, 1 H, J = 7.2Hz), 7.42-7.47 (m, 5 H), 7.36 (d, 2 H, J = 7.6 Hz), 7.30 (t, 2 H, J = 7.6 Hz), 7.10 (d, 2 H, J = 8.0 Hz), 6.81 (d, 2 H, J = 8.0 Hz), 6.49 (s, 1 H), 6.12 (s, 1 H), 3.74 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 198.3, 196.4, 159.8, 141.9, 137.9, 135.9, 134.6, 133.1, 132.8, 131.7, 129.9, 129.8, 129.1, 128.8, 128.5, 128.1, 127.5, 124.1, 122.4, 113.7, 101.5, 88.2, 55.2 ppm; IR (neat) ν (cm⁻¹) 3063, 2958, 2837, 1781, 1689, 1598, 1511, 1488, 1447, 1409, 1253, 1180, 1117, 1067, 1028, 1010; MS (70 eV): m/z (%): 538 (0.07) [M⁺], 540 (0.09) [M⁺+2], 105 (100); HRMS calcd for C₃₁H₂₃O₄Br (M)⁺: 538.0780, found: 538.0778.

26. Ethyl 2-acetyl-3-(4-methoxyphenyl)-5-phenyl-2,5-dihydrofuran-2-carboxylate (3r)

The reaction of **1k** (46.8 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 4 hours to afford 68 mg (93%) of **3r** (dr=7:1), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ_H 7.44 (d, 2 H, J = 7.6 Hz), 7.30-7.40 (m, 5 H), 6.84 (d, 2 H, J = 7.2 Hz), 6.40 (s, 1 H), 6.11 (s, 1 H), 4.26 (q, 2 H, $J_I = 7.2$ Hz, $J_2 = 7.2$ Hz), 3.79 (s, 3 H), 2.25 (s, 3 H), 1.24 (t, 3 H, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ_C 203.0, 169.3, 159.7, 139.2, 129.2, 129.1, 128.6, 128.44, 128.38, 127.2, 123.9, 113.6, 96.9, 88.5, 61.9, 55.2, 26.1, 13.9 ppm; IR (neat) v (cm⁻¹) 3064, 3033, 2936, 2838, 1721, 1608, 1576, 1541, 1454, 1420, 1353, 1253, 1182, 1097, 1030; MS (70 eV): m/z (%): 366 (0.61) [M⁺], 43 (100); HRMS calcd for C₂₂H₂₂O₅ (M)⁺: 366.1467, found: 366.1470.

27. Ethyl 2-benzoyl-3-(4-methoxyphenyl)-5-phenyl-2,5-dihydrofuran-2-carboxyla

te (3s)

The reaction of **11** (59.2 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 4 hours to afford 72.7 mg (85%) of **3s** (d r = 4:1), Major isomer: yellow solid, m.p. 58-60 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 8.04 (d, 2 H, J = 8.0 Hz), 7.50 (t, 3 H, J = 8.4 Hz), 7.37 (t, 2 H, J = 7.6 Hz), 7.19-7.24 (m, 5 H), 6.84 (d, 2 H, J = 8.4 Hz), 6.38 (s, 1 H), 6.26 (s, 1 H), 4.10 (q, 2 H, J_I = 6.8 Hz, J_2 = 6.0 Hz), 3.78 (s, 3 H), 0.99 (t, 3 H, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ_C 193.4, 170.3, 159.6, 139.5, 138.8, 134.9, 132.9, 129.8, 129.6, 129.5, 128.5, 128.2, 127.0, 124.4, 113.4, 96.3, 89.6, 61.8, 55.2, 13.7 ppm; IR (neat) v (cm⁻¹) 3063, 2981, 2935, 2838, 1748, 1728, 1690, 1606, 1512, 1450, 1367, 1254, 1224, 1183, 1118, 1075, 1029, 1002; MS (70 eV): m/z (%): 428 (1.99) [M⁺], 77 (100);

Minor isomer: white solid, m.p. 145-147 °C. HRMS calcd for $C_{27}H_{24}O_5$ (M)⁺: 428.1624, found: 428.1619. ¹H NMR (400 MHz, CDCl₃) δ_H 8.08 (d, 2 H, J = 7.6 Hz), 7.61 (d, 2 H, J = 7.6 Hz), 7.53 (t, 1 H, J = 7.6 Hz), 7.40-7.46 (m, 6 H), 7.33-7.38 (m, 1 H), 6.84 (d, 2 H, J = 8.0 Hz), 6.30 (s, 1 H), 5.97 (s, 1 H), 4.08 (q, 2 H, J_I = 7.2 Hz, J_2 = 7.2 Hz), 3.80 (s, 3 H), 0.98 (t, 3 H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ_C 194.1, 169.6, 159.7, 139.9, 139.5, 135.1, 133.0, 130.0, 129.8, 129.5, 128.6, 128.5, 128.3, 127.5, 124.5, 113.4, 97.0, 88.8, 61.8, 55.2, 13.6 ppm; IR (neat) v (cm⁻¹) 3057, 3028, 2873, 1749, 1682, 1602, 1509, 1447, 1418, 1391, 1366, 1284, 1255, 1225, 1111, 1074, 1029; MS (70 eV): m/z (%): 428 (1.89) [M⁺], 105 (100); HRMS calcd for $C_{27}H_{24}O_5$ (M)⁺: 428.1624, found: 428.1629.

28. Dimethyl 3-(4-methoxyphenyl)-5-phenylfuran-2,2(5H)-dicarboxylate (3t)

The reaction of **1m** (47.2 mg, 0.2 mmol), **2a** (55 µL, 0.4 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 2 hours to afford 39 mg (53%) of **3t**, white solid, m.p. 100-102 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.42-7.44 (m, 4 H), 7.31-7.39 (m, 3 H), 6.85 (d, 2 H, J = 7.8 Hz),

6.31 (s, 1 H), 6.10 (s, 1 H), 3.80 (s, 6 H), 3.78 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 169.0, 168.4, 159.7, 139.3, 137.9, 129.6, 129.1, 128.5, 127.2, 123.7, 113.6, 93.4, 89.0, 55.2, 52.9 ppm; IR (neat) v (cm⁻¹) 3081, 3037, 3011, 2988, 2962, 2842, 2565, 1744, 1730, 1605, 1511, 1361, 1259, 1105, 1053, 1024; MS (70 eV): m/z (%): 368 (3.55) [M⁺], 105 (100); HRMS calcd for C₂₁H₂₀O₆ (M)⁺: 368.1260, found: 368.1272.

29. Dimethyl 3-phenyl-2H-furo[3,2-c]chromene-2,2(4H,9bH)-dicarboxylate (7).

The reaction of **5** (73.2 mg, 0.2 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCE (2 mL) was carried out at r.t. for 12 hours to afford 31.5 mg (43%) of **7**, white solid, m.p. 55-57 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.48 (d, 1 H, J = 7.2 Hz), 7.36 (s, 3 H), 7.21-7.23 (m, 3 H), 6.99-7.03 (m, 1 H), 6.85 (d, 1 H, J = 8.0 Hz), 6.13 (s, 1 H), 4.87 (d, 1 H, J = 13.2 Hz), 4.80 (d, 1 H, J = 13.2 Hz), 3.80 (s, 3 H), 3.64 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 168.3, 167.3, 152.7, 136.2, 132.5, 131.0, 129.13, 129.06, 128.6, 128.3, 126.4, 124.8, 121.5, 116.7, 96.3, 81.6, 62.8, 52.9, 52.8 ppm; IR (neat) v (cm⁻¹) 2954, 1739, 1609, 1580, 1484, 1461, 1435, 1258, 1220, 1198, 1129, 1111, 1075, 1036; MS (70 eV): m/z (%): 366 (4.01) [M⁺], 115 (100); HRMS calcd for C₂₁H₁₈O₆ (M)⁺: 366.1103, found: 366.1105.

30. Dimethyl 3-(4-methoxyphenyl)-2H-furo[3,2-c]chromene-2,2(4H,9bH)-dicarboxylate (8).

The reaction of **6** (79.2 mg, 0.2 mmol), 80 mg of 4Å MS and 5 mol % Sc(OTf)₃ (0.01 mmol, 4.9 mg) in DCM (2 mL) was carried out at r.t. for 12 hours to afford 60 mg (76%) of **7**, white solid, m.p. 69-71 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.47 (d, 1 H, J = 7.6 Hz), 7.14-7.22 (m, 3 H), 7.00 (d, 1 H, J = 7.2 Hz), 6.83-6.90 (m, 3 H), 6.10 (s, 1 H), 4.88 (d, 1 H, J = 13.2 Hz), 4.82 (d, 1 H, J = 13.2 Hz), 3.82 (s, 3 H), 3.80 (s, 3 H), 3.65 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 168.5, 167.5, 159.8, 152.8, 135.2,

132.2, 130.8, 130.5, 129.1, 126.4, 125.0, 123.2, 121.5, 116.7, 113.8, 96.2, 81.5, 63.0, 55.2, 52.9 ppm; IR (neat) v (cm⁻¹) 2954, 1740, 1608, 1579, 1512, 1484, 1459, 1249, 1221, 1181, 1153, 1130, 1110, 1074, 1033; MS (70 eV): m/z (%): 396 (23.15) [M⁺], 249 (100); HRMS calcd for C₂₂H₂₀O₇ (M)⁺: 396.1209, found: 396.1211.

31. 1,1'-(3-(4-Methoxyphenyl)-5-phenyltetrahydrofuran-2,2-diyl)diethanone (9)

The reaction of **3a** (50.4 mg, 0.15 mmol), Pd/C(2.4 mg) in EtOAc (3 mL) was carried out in the presence of H₂ (balloon) at r.t. for 12 hours to afford 48 mg (95%) of **9** (dr = 2.2 :1), colorless oil. The major isomer: ¹H NMR (400 MHz, CDCl₃) δ_H 7.30-7.40 (m, 5 H), 7.22 (d, 2 H, J = 8.0 Hz), 6.86 (d, 2 H, J = 8.0 Hz), 5.71 (t, 1 H, J = 7.2 Hz), 4.40-4.50 (m, 1 H), 3.79 (s, 3 H), 2.55-2.61 (m, 1 H), 2.30-2.40 (m, 1 H), 2.37 (s, 3 H), 1.79 (s, 3 H).

The minor isomer: H NMR (400 MHz, CDCl₃) δ_H 7.57 (d, 2 H, J = 7.2 Hz), 7.44 (t, 2 H, J = 7.2 Hz), 7.30-7.40 (m, 1 H), 7.17 (d, 2 H, J = 8.0 Hz), 6.80 (d, 2 H, J = 8.0 Hz), 4.92-4.97 (m, 1 H), 4.40-4.50 (m, 1 H), 3.76 (s, 3 H), 2.65-2.75 (m, 1 H), 2.30-2.40 (m, 1 H), 2.40 (s, 3 H), 1.91 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃) δ_C 206.2, 204.1, 158.7, 141.1, 140.0, 130.7, 129.6, 129.5, 128.62, 128.55, 128.1, 127.9, 126.0, 125.9, 114.1, 113.8, 101.6, 98.9, 83.3, 81.2, 55.2, 55.1, 47.9, 47.8, 41.3, 40.6, 28.0, 27.1, 26.2, 26.1 ppm; IR (neat) *ν* (cm⁻¹) 2956, 2933, 2833, 1727, 1708, 1610, 1582, 1513, 1457, 1420, 1353, 1291, 1249, 1181, 1115, 1068, 1031; MS (70 eV): *m/z* (%): 338 (0.79) [M⁺], 43 (100); HRMS calcd for C₂₁H₂₂O₄ (M)⁺: 338.1518, found: 338.1513.

32. 1-(3-(4-Methoxyphenyl)-5-phenylfuran-2-yl)ethanone (10)

Method A: The reaction of **3a** (50.4 mg, 0.15 mmol), DDQ (1.5eq., 51 mg) in THF (1.5 mL) was carried out at r.t. for 20 hours to afford 37.2 mg (85%) of **10**. Method B: The reaction of **3a** (50.4 mg, 0.15 mmol), Cs₂CO₃ (1.0eq., 49 mg) in CH₃OH (3 mL) was refluxed for 12 hours to afford 36.8 mg (84%) of **10**. white solid, m.p. 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.81 (d, 2 H, J = 7.2 Hz), 7.69 (d, 2

H, J = 7.6 Hz), 7.46 (t, 2 H, J = 7.2 Hz), 7.40 (t, 1 H, J = 7.2 Hz), 6.96 (d, 2 H, J = 7.6 Hz), 6.89 (s, 1 H), 3.85 (s, 3 H), 2.56 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 187.6, 159.9, 155.3, 146.0, 135.4, 130.6, 129.3, 128.9, 124.8, 124.1, 113.6, 109.8, 55.3, 27.6 ppm; IR (neat) v (cm⁻¹) 2921, 2849, 1752, 1664, 1610, 1575, 1532, 1502, 1451, 1420, 1387, 1353, 1294, 1256, 1211, 1183, 1153, 1071, 1025; MS (70 eV): m/z (%): 292 (4.82) [M⁺], 43 (100); HRMS calcd for C₁₉H₁₆O₃(M)⁺: 292.1099, found: 292.1101.

33. 1-(3-(4-Methoxyphenyl)-5-phenyl-4,5-dihydrofuran-2-yl)ethanone (11)

The reaction of **3a** (50.4 mg, 0.15 mmol), KOH (1.0 eq, 8.4mg) in CH₃OH (3 mL) was carried out at r.t. for 13 hours to afford 40 mg (90%) of **11**, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ_H 7.54 (d, 2 H, J = 7.6 Hz), 7.39-7.50 (m, 4 H), 7.35 (d, 1 H, J = 6.0 Hz), 6.89 (d, 2 H, J = 7.2 Hz), 5.64 (t, 1 H, J = 9.6 Hz), 3.82 (s, 3 H), 3.54-3.62 (m, 1 H), 3.19-3.26 (m, 1 H), 2.34 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 192.5, 159.4, 146.6, 141.9, 129.8, 128.6, 128.0, 125.6, 125.2, 122.7, 113.4, 80.1, 55.2, 44.9, 29.1 ppm; IR (neat) v (cm⁻¹) 2960, 2934, 2838, 1720, 1688, 1604, 1511, 1455, 1420, 1356, 1295, 1253, 1221, 1179, 1133, 1111, 1028; MS (70 eV): m/z (%): 294 (0.73) [M⁺], 43 (100); HRMS calcd for C₁₉H₁₈O₃ (M)⁺: 294.1256, found: 294.1248.

34. 3-(4-Methoxyphenyl)-5-phenylfuran-2(5H)-one (12)

The reaction of **3a** (67.2 mg, 0.2 mmol), *m*-CPBA (0.6 mmol, 122 mg), NaHCO₃ (0.6 mmol, 52 mg) in DCM (2 mL) was carried out at r.t. for 8 hours to afford 23 mg (38%) of **12**, (PE:DCM:Et₂O = 3:2:0.1), white solid, m.p. 85-87 °C. ¹H NMR (400 MHz, CDCl₃) δ_H 7.87 (d, 2 H, J = 8.4 Hz), 7.50 (s, 1 H), 7.33-7.39 (m, 3 H), 7.32 (d, 2 H, J = 5.2 Hz), 6.94 (d, 2 H, J = 8.4 Hz), 6.00 (s, 1 H), 3.84 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ_C 172.0, 160.5, 145.0, 135.1, 130.2, 129.2, 129.0, 128.5, 126.6, 121.8, 114.1, 81.5, 55.3 ppm; IR (neat) ν (cm⁻¹) 3095, 2953, 2833, 1737, 1608, 1574, 1511, 1438, 1333, 1308, 1267, 1236, 1182, 1127, 1058, 1039; MS (70 eV): *m/z* (%): 266 (3.64) [M⁺], 43 (100); HRMS calcd for C₁₇H₁₄O₃ (M)⁺: 266.0493, found: 266.0491.

SI- Fig. 1. X-ray structure of the major product of 3s.

References:

- 1. V.K. Yadav, K. K. Kapoor, Tetrahedron 1995, 51, 8573.
- 2. Z. Chen, L. Wei, J. Zhang, Org. Lett. 2011, 13, 1170.
- 3. B.-F. Sun, R. Hong, Y.-B. Kang, L.Deng, J. Am. Chem. Soc 2009, 131, 10384.
- 4. M. Ochiai, A. Nakanishi, T. Suefuji, Org. Lett. 2000, 2, 2923.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011			
201.26 198.84	131.86 130.72 127.75 123.42	77.32 77.00 76.68 72.39 61.34	29.73

Br COMe

			1					1			1					1	1		1			
21	0 200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

ppm

Electronic Supplementary Material (ESI) for Chemical Communications	
This journal is © The Royal Society of Chemistry 2011	

201.47	164.38 161.90	128.10 128.01 127.47 115.98	77.32 77.00 76.68 72.59 61.42	29.77	
		Me 0		lrr5-139-1C	
		F F			
Normal Jurgenson and state of the state of the Normal Jurgenson and the state of th	like was been welke in a state of the state	na styl del y blad het het het fallen og skal filler gran han fan litt blad yf an teathjelen meneter gelende me	the second se	n stal fan it jaar fal an an de tek se san sen te je at oorder je skel de een de tekste de je san se An stal de te je stal de tekste stal se san sen te je at oorde je stal de je stal de je stal de tekste stal sen	ni d a navis pasiji ja maja dagi je d na sadaji se ka na dagi se ka na dagi se ka na da sa ka na ka na ka na ka Na ka navis pasiji na ka na
210 200 190			90 80 70 60 5 ¹	0 40 30 20 10	

lrr4-002-1H

ppm

0.000

HHHHOOOOODHHHOOOOOHHHHOOOOOOHHHHOOOOOOHHHHHOOOOOOHHHHHOOOOOOHHHHOOOOOOHHHHHOOOOOOHHHHHHHOOOOOOHHHHHHHHHH	0 H O O	400
04H908HH90488H	N H Q O	- 1 0 U
∞ ∞ ∞ 0 0 0 0 0 0 0 0 0 0	0000	2 1 8
	• • • •	• • •
000001111111	440	m m m
		$\langle / $

--0.00(

COMe

Ph

|0| |-| |0| |-|

löl

lrr5-140-1C

-0.000

000000044400000040 00000044 • • • • • • •

Г 80 4 Г М 10	0040	0047	N	50	740100
40004 NW	0410	6 L U M	00	46	0 0 0 / M U
44000000	4 M H O	$\square \square \square \square$		$\sim \sim$	\square \square \square \square \square \square
	• • • •	• • • •	•	• •	
00 1111	\circ \circ \circ \circ	オオオ	\sim	$\sim \sim$	$\dashv \dashv \dashv \dashv \dashv \dashv \dashv$

ppm

-0.00C

--0.000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m	6	m	00
こ こ こ て し ゆ む こ こ ら ゆ ら			L()	0
87997777	00	ы	\sim	•
	•	•	•	0
00001111111	m	\sim	,	

......

....

210 200 190 180 170 160 150 140 130 120 110 100

ppm

Signal 1: VWD1 A, Wavelength=220 nm

Peak	RetTime	Туре	Width	A	Area Height		Area	
#	[min]		[min]	mAU	*s	[mAU]	00
1	11.924	VV	0.4171	9544	.48145	353.	24939	49.8994
2	14.929	VB	0.5239	9582	.97363	279.	37442	50.1006
Total	ls :			1.912	275e4	632.	62381	

Area Percent Report

:	Signal	
:	1.0000	
:	1.0000	
Dilution	Factor with	ISTDs
	: : Dilution	: Signal : 1.0000 : 1.0000 A Dilution Factor with

Signal 1: VWD1 A, Wavelength=220 nm

Peak	RetTime	Туре	Width	A	rea	Height		Area	
#	[min]		[min]	mAU	*s	[mAU]	8	
1	12.410	BB	0.4550	4844	.50146	163.	45033	60.8920	
2	15.632	VB	0.6058	3111	.39355	77.	16866	39.1080	
Total	ls :			7955	.89502	240.	61900		