Structural Diversity for Phosphine Complexes of Stibenium and Stibinidenium Cations

Saurabh S. Chitnis,§#, Brendan Peters,§ Eamonn Conrad,§ Neil Burford,*§# Robert McDonald† and Michael J. Ferguson,†

[§]Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada;

[#]Current address: Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6,

Canada, Email: nburford@uvic.ca

[†]X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton,

Alberta T6G 2G2, Canada

Supporting Information

Experimental

General: Reactions were carried out in an Innovative Technologies glovebox under atmosphere of dry N_2 . CH_2Cl_2 and pentane were purified on an MBraun solvent purification system and stored over 4 Å molecular sieves. MeCN was purchased from Aldrich, distilled from CaH_2 under an atmosphere of argon and stored over 4 Å molecular sieves. Et_2O was distilled from sodium/benzophenone under an atmosphere of argon and stored over 4 Å molecular sieves. Deuterated solvents were purchased from Aldrich and dried using 4 Å molecular sieves. The diphosphines dmpm, dppm, dmpe and dppe were obtained from Aldrich and used as received. AlCl₃ and SbCl₃ were purchased from Aldrich and sublimed before use. $Me_3SiOSO_2CF_3$ and PMe_3 were purchased from Aldrich and distilled prior to use.

NMR spectra were obtained at room temperature, unless otherwise stated, on a Bruker AVANCE 500 1 H (500.13 MHz, 11.7 T) and Bruker AVANCE 300 1 H (300.15 MHz, 7.02 T). Chemical shifts (δ) are reported in ppm. 13 C (125.76 MHz) chemical shifts are referenced to δ_{TMS}

= 0.00 ppm, ³¹P (202.46 MHz, 121.56 MHz) chemical shifts are referenced to δ_{H3PO4} (85%) = 0.00 ppm. ¹⁹F (282.44 MHz) chemical shifts are referenced to $\delta_{CF3C6H3}$ (0.5%) = 0.00 ppm. Spectra were obtained on aliquots of reaction mixture in appropriate deuterated solvent in a 5 mm tube. The tubes were capped and sealed with Teflon and Parafilm prior to removal from the inert atmosphere.

Raman spectra were obtained in sealed capillaries under N_2 at room temperature. Peaks are reported in wavenumbers (cm⁻¹) with ranked intensities in parentheses, where a value of 100 is indicative of the most intense peak in the spectrum. Melting points were recorded on an Electrothermal apparatus in sealed capillary tubes under N_2 . Elemental analyses of selected samples were performed by Canadian Microanalytical Services Ltd. Delta, British Columbia, Canada.

Isolation and characterization of [dmpmSbCl₂] 1a [SO₃CF₃]

SbCl₃ (0.228 g, 1.00 mmol) and TMSOTf (0.223 g, 1.00 mmol) were combined in CH₂Cl₂ (7 mL) and stirred for 30 minutes to yield a clear and colourless solution. A solution of dmpm (0.136 g, 1.00 mmol) in CH₂Cl₂ (7 mL) was added drop-wise over 30 seconds. A white precipitate was immediately observed. The reaction mixture was stirred overnight to obtain a light yellow suspension. Removal of volatiles under dynamic vacuum at room temperature over 4 h yielded a light yellow powder, which was washed with CH₂Cl₂ (3 x 1 mL) and MeCN (3 x 1 mL), and spectroscopically assigned as [dmpmSbCl₂] **1a** [SO₃CF₃]; Yield: 0.400 g, 84 %; mp 166 °C dec.; Raman: 83.8 (62), 114.2 (46), 151.8 (23), 169.2 (30), 196.2 (34), 216.9 (35), 255.5 (46), 276.7 (49), 310.9 (58), 338.4 (16), 350.9 (16), 364.9 (35), 511 (2), 573.2 (6), 615.6 (5), 656.1 (10), 694.7 (7), 725.1 (4), 743.9 (13), 761.2 (28), 1025.9 (45), 1162.3 (4), 1224.5 (8), 1298.8 (4), 1407.3 (9), 2770.7 (1), 2856 (25), 2910.5 (100), 2918.2 (36), 2972.7 (16), 3000.7 (15.3), 3012.2 (10); ¹H NMR (CD₃CN, 300 MHz, 293 K): 2.13(*m*, 1025.9 (36), 2972.7 (16), 3000.7 (15.3), 3012.2 (10); ¹H NMR (CD₃CN, 300 MHz, 293 K): 2.13(*m*, 1025.9 (36), 2972.7 (16), 3000.7 (15.3), 3012.2 (10); ¹H NMR (CD₃CN, 300 MHz, 293 K): 2.13(*m*, 1025.9 (36), 2972.7 (16), 3000.7 (15.3), 3012.2 (10); ¹H NMR (CD₃CN, 300 MHz, 293 K): 2.13(*m*, 1025.9 (36), 2972.7 (16), 3000.7 (15.3), 3012.2 (10); ¹H NMR (CD₃CN, 300 MHz, 293 K): 2.13(*m*, 1025.9 (36), 2972.7 (16), 3000.7 (15.3), 3012.2 (10); ¹H NMR (CD₃CN, 300 MHz, 293 K): 2.13(*m*, 1025.9 (36), 2972.7 (16), 3000.7 (15.3), 3012.2 (10); ¹H NMR (CD₃CN, 300 MHz, 293 K): 2.13(*m*, 1025.9 (36), 2972.7 (16), 3000.7 (15.3), 3012.2 (10); ¹H NMR (CD₃CN, 300 MHz, 293 K): 2.13(*m*, 1025.9 (36), 2972.7 (16), 3000.7 (15.3), 3012.2 (10); ¹H NMR (CD₃CN, 300 MHz, 293 K): 2.13(*m*, 1025.9 (36), 2972.7 (16), 3000.7 (15.3), 3012.2 (10); ¹H NMR (CD₃CN, 300 MHz, 293 K): 2.13(*m*, 1025.9 (36), 2972.7 (16), 3000.7 (15.3), 3012.2

12H), 4.05 (*t*, 2H, ${}^{2}J_{PH} = 12$ Hz); ${}^{19}F$ NMR (CD₃CN, 282.44 MHz, 293 K): -79.3 (*s*); ${}^{31}P{}^{1}H$ NMR (CD₃CN, 121.56 MHz, 293 K): 1.4 (*s*).

Isolation and characterization of [dppmSbCl₂] 1b [AlCl₄]

SbCl₃ (1.140 g, 5.00 mmol) and AlCl₃ (0.666 g, 5.00 mmol) were combined in CH₂Cl₂ (45 mL) and stirred for 30 minutes to yield a yellow suspension. A solution of dppm (1.922 g, 5.00 mmol) in CH₂Cl₂ (15 mL) was added drop-wise over one minute and stirred for an additional 40 minutes. The resulting bright-yellow reaction mixture was clear and exhibited one signal in its ${}^{31}P{}^{1}H{}$ NMR spectrum (5 ppm). Removal of volatiles under dynamic vacuum at room-temperature over 16 hours yielded a bright-yellow powder (3.844 g), which was re-dissolved in CH₂Cl₂ (12 mL), filtered, layered with pentane (3 mL) and stored in the freezer at -30 °C. Large, yellow block shaped crystals were obtained after 3 days, isolated by decantation and washed with cold pentane (3 x 5 mL) and identified as [dppmSbCl₂] **1b** [AlCl₄]; Yield: 2.913 g, 78 %; mp 115 °C dec.; Elemental Analysis Calcd. (Found): C 40.26 (39.52), H 2.97 (2.89); Raman: 83.8 (81), 116.6 (40), 136.9 (25), 176.4 (50), 205.8 (14), 218.4 (7), 268 (8), 301.3 (72), 329.2 (19), 334.5 (28), 346.1 (17), 407.3 (5), 420.4 (3), 434.8 (2), 452.2 (3), 464.2 (2), 491.7 (5), 493.2 (6), 527.4 (8), 614.2 (9), 671.5 (4), 693.2 (2), 740.9 (2), 748.7 (3), 983 (3), 998.4 (89.9), 1024.9 (37), 1034.1 (6), 1.87.6 (17), 1095.8 (22), 1158.9 (2), 1164.3 (6), 1188.8 (6), 1331.6 (2), 1435.7 (6), 1479.6 (4), 1573.6 (13), 1582.3 (100), 2918.2 (10), 2964.5 (5), 3001.1 (1), 3057.1 (45), 3061.9 (32), 3140.5 (1), 3157.3 (1).; ¹H NMR (CD₂Cl₂, 500 MHz, 293 K): 4.31 (t, 2H, ${}^{2}J_{PH} = 9.9$ Hz), 7.50 (t, 8H, ${}^{3}J_{PH} = 7.4$ Hz), 7.55-7.63 (m, 12H); ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂, 282.44 MHz, 293 K): 23.5 (t, ${}^{1}J_{PC} = 10.4$ Hz), 125.0 (t, ${}^{1}J_{PC} = 17.9$ Hz), 130.4 (t, ${}^{2}J_{PC} = 5.1$ Hz), 133.7 (s), 133.8 (m); ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂, 202.46 MHz, 293 K): 5.2 (s).

Isolation and characterization of [dmpeSbCl₂] 2a [SO₃CF₃]

SbCl₃ (0.456 g, 2.00 mmol) and TMSOTf (0.446 g, 2.00 mmol) were combined in CH₂Cl₂ (7 mL) and stirred for 30 minutes to yield a clear and colourless solution. A solution of dmpe (0.300 g, 2.00 mmol) in CH₂Cl₂ (7 mL) was added drop-wise over 30 seconds. A mixture of brown and white precipitate formed immediately and the reaction was slightly exothermic. The reaction mixture was stirred for 3 h to yield a dark brown powder under a clear and colourless supernatant. The ${}^{31}P{}^{1}H$ NMR spectrum of this supernatant exhibited no signals. Removal of volatiles under dynamic vacuum at room temperature over 4 h yielded a brown powder (1.104 g) and the ${}^{31}P{}^{1}H$ NMR spectrum of this powder in MeCN exhibited one signal (34 ppm). The powder was dissolved in a 1:1 mixture by volume of MeCN and Et₂O and placed in the freezer at -30 °C. Small colorless block shaped crystal were obtained after one week, were isolated by decantation, washed with a cold mixture of MeCN/Et₂O (3 x 1 mL), and characterization as [dmpeSbCl₂] 2a [SO₃CF₃]; Yield (total of three crops over 2 weeks): 0.691 g, 76 %; mp 175-220 °C darkens, 220-230 °C dec.; Elemental Analysis Calcd. (Found): C 17.09 (17.11), H 3.28 (3.02); Raman: decomposition in laser; ¹H NMR (CD₃CN, 500 MHz, 293 K): 2.05 (*d*, 12H, ${}^{2}J_{PH} = 14.3$ Hz), 2.72 (*m*, 4H); ${}^{13}C{}^{1}H$ NMR (CD₃CN, 125.76 MHz, 293 K): 8.9 (d, ${}^{1}J_{PC}$ = 36.8 Hz), 25.1 (d, ${}^{1}J_{PC}$ = 32.7 Hz), 118.4 (s); ${}^{19}F$ NMR (CD₃CN, 282.44 MHz, 293 K): -79.0 (*s*); ³¹P{¹H} NMR (CD₃CN, 202.46 MHz, 293 K): 34.1 (*s*).

Isolation and characterization of [dppeSbCl₂] 2b [AlCl₄]•CH₂Cl₂

SbCl₃ (0.228 g, 1.00 mmol) and AlCl₃ (0.134 g, 1.00 mmol) were combined in CH₂Cl₂ (7 mL) and stirred for 30 minutes to yield a yellow suspension. A solution of dppe (0.399 g, 1.00 mmol) in CH₂Cl₂ (7 mL) was added drop-wise over 30 seconds. The resulting clear and light-yellow solution was stirred for an additional 20 minutes to give a clear orange solution, the ${}^{31}P{}^{1}H$ NMR spectrum of which exhibited one signal (17 ppm). Removal of volatiles under dynamic vacuum at room-temperature over 4 hours yielded an orange-brown powder (0.736 g), which was recrystallized in CH₂Cl₂ (12 mL) at -30

^oC to give a small amount of light-orange crystals after two weeks that were characterized as [dppeSbCl₂] **2b** [AlCl₄]•CH₂Cl₂; Yield: 0.135 g, 18%; mp 104 ^oC dec.; Raman: decomposition in laser; ¹H NMR (CD₂Cl₂, 500 MHz, 293 K): 3.41 (*m*, 4H), 7.59-7.71 (*m*, 20H); ¹³C{¹H} NMR (CD₂Cl₂, 125.76 MHz, 293 K): 130.6 (*t*, ¹J_{PC} = 5.4 Hz), 133.8 (*m*), 133.9 (*s*); ³¹P{¹H} NMR (CD₂Cl₂, 202.46 MHz, 293 K): 17.5 (*s*). While it was not possible to recover the bulk of the material in this fashion, the NMR spectra of the bulk powder and the crystals were identical.

Isolation and characterization of [(Me₃P)₂SbCl₂] 4 [SO₃CF₃]

SbCl₃ (0.228 g, 1.00 mmol) and TMSOTf (0.222 g, 1.00 mmol) were combined in CH₂Cl₂ (4 mL) and stirred for 30 minutes to yield a clear and colourless solution. This was added drop-wise to a stirring solution of PMe₃ (0.228 g, 3.00 mmol) in CH₂Cl₂ (4 mL) over 30 seconds to produce a cloudy white suspension. The reaction mixture was allowed to stir for 1 hour yielding a fine white powder and a clear and colourless supernatant, the ${}^{31}P{}^{1}H$ NMR spectrum of which exhibited two signals (5.8 ppm, 85% and -2.2 ppm, 15%). Removal of solvent under dynamic vacuum at room temperature over 4 hours yielded a fine white powder (0.515 g), which was recrystallized in MeCN (10 mL) at -30 °C. Highly-reflective colourless block shaped crystals were obtained after 5 days, isolated by decantation, washed with cold MeCN (3 x 3 mL), and characterized as [(Me₃P)₂SbCl₂] 4 [SO₃CF₃]; Yield: 0.401 g, 80%; mp: 135 °C dec.; Elemental Analysis Calcd. (Found): C 17.02 (16.97), H 3.67 (3.41); Raman: 84.8 (37), 115.2 (13), 123.4 (35), 140.7 (43), 184.6 (9), 208.7 (17), 212.1 (14), 250.2 (88), 272.4 (12), 317.7 (7), 350.4 (30), 520.6 (1), 576.1 (10), 674.4 (48), 757.8 (35), 765.6 (26), 1024.9 (85), 1226.9 (5), 1246.2 (3), 1415.9 (8), 1418.3 (8), 1433.3 (4), 2920.6 (100), 2989.6 (18), 2996.3 (31), 3006.9 (22); ¹H NMR (CD₃CN, 500 MHz, 293 K): 2.08 (*d*, 18H, ${}^{2}J_{PH} = 14.1 \text{ Hz}$); ${}^{13}C{}^{1}H$ NMR (CD₃CN, 125.76 MHz, 293 K): 11.6 (d, ${}^{1}J_{PC}$ = 34.4 Hz), 118.5 (s); ${}^{19}F$ NMR (CD₃CN, 282.44 MHz, 293 K): -79.1 (s); ³¹P{¹H} NMR (CD₃CN, 202.46 MHz, 293 K): 6.2 (*s*).

Isolation and characterization of [dppmSbCl] 6b [AlCl₄]₂•CH₂Cl₂•C₅H₁₂

SbCl₃ (0.228 g, 1.00 mmol) and AlCl₃ (0.532 g, 4.00 mmol) were combined in CH₂Cl₂ (8 mL) and stirred for 12 hours to obtain a light yellow suspension. A solution of dppm (0.384 g, 1.00 mmol) in CH₂Cl₂ (5 mL) was added at once to immediately yield a yellow, cloudy solution. The reaction mixture was allowed to stir for 30 minutes to give a light yellow solution, the ³¹P{¹H} NMR spectrum of which exhibited one signal (-3 ppm). The slightly cloudy solution was filtered, concentrated to 4 mL under vacuum, layered with pentane (1 mL) and placed in the freezer at -30 °C. A small amount of shiny transparent crystals formed below an orange oil after two weeks and were identified as **6b**[AlCl₄]₂•CH₂Cl₂•C₅H₁₂ by X-ray crystallography. The orange oil was washed repeatedly with a 1:10 mixture of Et₂O and hexane and under vacuum gave a light yellow powder characterized as **6b**[AlCl₄]₂•Et₂O, Yield: 0.784 g, 85 %; mp 100-104 °C; Elemental Analysis Calcd. (Found): C 36.54 (36.04), H 3.38 (3.22); ¹H NMR (CD₂Cl₂, 500 MHz, 293 K): 3.79 (*t*, 2H, ²J_{PH} = 7.4 Hz), 7.35 (*m*, 8H), 7.44 (*m*, 4H), 7.59 (*m*, 8H); ³¹P{¹H} NMR (CD₂Cl₂, 202.46 MHz, 293 K): -2.3 (*s*).

Isolation and characterization of [dppeSbCl] 7b [Al₂Cl₇]₂

SbCl₃ (0.456 g, 2.00 mmol) and AlCl₃ (1.068 g, 8.00 mmol) were combined in CH₂Cl₂ (8 mL) and stirred for 40 minutes to obtain a light yellow suspension. A solution of dppe (0.797 g, 2.00 mmol) in CH₂Cl₂ (5 mL) was added at once to immediately yield a golden-yellow, clear solution. The reaction mixture was allowed to stir at room temperature for 1.5 hours and the resulting clear and yellow solution had a ³¹P{¹H} NMR spectrum which exhibited one signal (49 ppm). The reaction mixture was filtered, concentrated to 5 mL under vacuum, layered with pentane (2 mL) and placed in the freezer at -30 °C giving an oil containing a small amount of light orange block crystals that were identified as **7b**[AlCl₄]₂ by X-ray crystallography. The orange oil was washed repeatedly with a 1:10 mixture of

Et₂O and hexane and under vacuum gave a light yellow powder characterized as **7b**[Al₂Cl₇]₂•Et₂O, Yield: 0.294 g, 12 %; mp 77-79 °C; Elemental Analysis: Calcd. (Found): C 29.20 (28.60), H 2.78 (2.24); Raman: 123 (19), 174.9 (45), 182.2 (24), 191.8 (14), 216.9 (3), 247.3 (2), 269.5 (9), 316.7 (33), 366.8 (13), 370.7 (48), 426.6 (8), 435.3 (13), 457.5 (4), 523.4 (7), 615.5 (11), 682.6 (4), 810.9 (2), 999.38 (100), 1027.8 (32), 1100.1 (24), 1168.1 (7), 1198.5 (1), 1440.5 (4), 1578.9 (16), 1583.7 (76), 2909.5 (11), 2926.4 (5), 2941.4 (12), 2960.6 (4), 3062.4 (23), 3068.6 (40); ¹H NMR (CD₂Cl₂, 500 MHz, 293 K): 3.89 (*m*, 4H), 7.68-7.72 (*m*, 8H), 7.81-7.84 (*m*, 8H), 7.95-7.99 (*m*, 4H); ¹³C{¹H} NMR (CD₂Cl₂, 282.44 MHz, 293 K): 26.6 (*d*, ¹J_{PC} = 32 Hz), 116.0 (*d*, ¹J_{PC} = 59 Hz), 132.3(*s*), 133.9 (*m*), 137.6 (*s*); ³¹P{¹H} NMR (CD₂Cl₂, 202.46 MHz, 293 K): 49.1 (*s*).

NMR Detection of [(Me₃P)₂SbCl][OTf]₂

 $[(Me_3P)_2SbCl_2][OTf]$ (0.400 g, 0.80 mmol) was dissolved in MeCN (4 mL) to give a clear and colourless solution. A solution of excess TMSOTf (0.600 g, 2.70 mmol) in MeCN (4 mL) was added drop-wise over 30 seconds to give a clear and pale-yellow solution which was allowed to stir overnight at room temperature. The ³¹P{¹H} NMR spectrum of the one-phase reaction mixture exhibited one signal (12.5 ppm) assigned to [(Me_3P)_2SbCl][OTf]_2.

NMR Detection of [dppmSbCl] 6b [OTf]₂

SbCl₃ (0.228 g, 1.00 mmol) and TMSOTf (0.666 g, 3.00 mmol) were combined in CH₂Cl₂ (4 mL) and stirred for 40 minutes to yield a clear and colourless solution. This solution was added drop-wise to a solution of dppm (0.384 g, 1.00 mmol) in CH₂Cl₂ (4 mL) over 30 seconds to immediately give a clear and golden-yellow solution. Stirring for 15 minutes yielded a one-phase reaction mixture, the ${}^{31}P{}^{1}H$ NMR spectrum of which exhibited one signal (-2.6 ppm) assigned to [dppmSbCl][OTf]₂.

NMR Detection of [dmpeSbCl] 7a [OTf]2

SbCl₃ (0.228 g, 1.00 mmol) and TMSOTf (1.332 g, 6.00 mmol) were combined in MeCN (4 mL) and stirred for 15 minutes to yield a clear and colourless solution. This solution was added drop-wise to a stirring solution of dmpe (0.300 g, 2.00 mmol) in MeCN (4 mL) over 30 seconds. A yellow colour appeared immediately upon commencing addition, deepened to a dark-orange half-way through the addition, and returned to a clear and golden-yellow colour by the end of the addition. Stirring for 15 minutes yielded a one-phase reaction mixture, the ${}^{31}P{}^{1}H$ NMR spectrum of which exhibited one signal (59.7 ppm) assigned to [dmpeSbCl][OTf]₂.

Structures were solved by direct methods and refined using full matrix least squares on F2. (G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, A64, 112–122.) Refinement details are summarized in Table S1. **Table S1** Crystal data for [dppmSbCl₂] **1b** [AlCl₄], [dmpeSbCl₂] **2a** [SO₃CF₃], [dppeSbCl₂] **2b**[AlCl₄]•CH₂Cl₂, [(Me₃P)₂SbCl₂] **4** [SO₃CF₃], [dppmSbCl] **6b** [AlCl₄]₂ and [dppeSbCl] **7b**[Al₂Cl₇]₂•CH₂Cl₂•C₅H₁₂.

	[dppmSbCl ₂] 1b	[dmpeSbCl ₂] 2a	[dppeSbCl ₂] 2b	$[(Me_3P)_2SbCl_2]$
	[AlCl ₄]	[OTf]	[AlCl ₄]•CH ₂ Cl ₂	4[OTf]
Empirical	C25H22AlCl6P2Sb	C7H16Cl2F3O3P2SSb	C27H26AlCl8P2Sb	C7H18Cl2F3O3P2SSb
Formula				
Formula	745.80	491.85	844.75	493.86
Weight				
Crystal	triclinic	orthorhombic	triclinic	monoclinic
System				
Space	$P\overline{1}$ (No. 2)	P212121 (No. 19)	P1 (No. 2)	<i>C</i> 2/ <i>c</i> (No. 15)
Group				
a (Å)	10.3131 (2)	11.1129 (3)	10.5270 (3)	25.4578 (11)
b (Å)	11.7645 (3)	11.3226 (3)	12.8155 (3)	6.4594 (3)
c (Å)	13.2776 (3)	13.0683 (4)	14.0046 (3)	22.9155 (10)
a (deg)	81.5321 (3)	90	74.3015 (3)	90
β (deg)	73.3679 (3)	90	71.3838 (3)	113.8940 (4)
γ (deg)	86.3619 (3)	90	87.5567 (3)	90
$V(Å^3)$	1526.32 (6)	1644.34 (8)	1721.72 (7)	3445.3 (3)
$Dc (g cm^{-3})$	1.623	1.987	1.629	1.904
Radiation, λ	Graphite-	Graphite-	Graphite-	Graphite-
(Å)	monochromatic Mo	monochromatic Mo	monochromatic Mo	monochromatic Mo
	$K\alpha$ (0.71073)	$K\alpha$ (0.71073)	$K\alpha$ (0.71073)	$K\alpha$ (0.71073)
Temp (K)	173	173	173	173
GoF	1.023	1.117	1.021	1.116
R1	0.0200	0.0131	0.0236	0.0156
wR2	0.0480	0.0329	0.0582	0.0400

Table S1 continued. Crystal data for [dppmSbCl2]**1b** [AlCl4], [dmpeSbCl2]**2a** [SO3CF3],[dppeSbCl2]**2b** [AlCl4]•CH2Cl2, [(Me3P)2SbCl2]**4** [SO3CF3], [dppmSbCl]**6b** [AlCl4]2 and[dppeSbCl]**7b** [Al2Cl7]2•CH2Cl2•C5H12.

	[dppmSbCl] 6b	[dppeSbCl ₂] 7b
	$[AlCl_4]_2 \bullet CH_2Cl_2 \bullet C_5H_{12}$	$[Al_2Cl_7]_2$
Empirical	$C_{31}H_{36}Al_2Cl_9P_2Sb$	C26H24Al4Cl15P2Sb
Formula		
Formula	1090.16	1159.81
Weight		
Crystal	Monoclinic	Triclinic
System		
Space	$P2_1/n$	P1 (No. 2)
Group		
a (Å)	16.299 (2)	12.2162 (7)
b (Å)	10.3844 (15)	12.2162 (7)
c (Å)	25.251 (4)	17.8399 (11)
a (deg)	90	72.2279 (7)
β (deg)	98.272 (2)	73.7807 (7)
γ (deg)	90	63.2388 (7)
V (Å ³)	4229.3 (10)	2240.2 (2)
Dc (g cm ⁻³)	1.712	1.719
Radiation, λ	Graphite-monochromatic	Graphite-
(Å)	Μο Κα (0.71073)	monochromatic Mo
		Κα (0.71073)
Temp (K)	173	173
GoF	1.063	1.062
R1	0.0479	0.0262
wR2	0.1257	0.0652