Supporting Information

Phosphate Ligands in the Gold(I)-Catalysed Activation of Enynes

Mihai Raducan, María Moreno, Christophe Bour, and Antonio M. Echavarren*

Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona (Spain)

aechavarren@iciq.es

Contents

General methods	S-2
Synthesis of silver complexes 5 and 6	S-3
Synthesis of gold complexes 7 and 8	S-4
Reaction of 1,6-enyne 10 with gold catalyst 7	S-6
Reaction of alkynyl gold(I) complex 18 with acids	S-7
Reaction of 1,6-enyne 10 with gold catalyst 5	S-7
Synthesis of compound 17	S-7
Synthesis of compound 18	S-8
Hydration of 1-octyne	S-8
Synthesis of gold complex 19	S-9
Synthesis of gold complex 9b	S-9
Synthesis of gold complex 9c	S-10
Reaction of 1,6-enyne 10 with 19	S-10
Reaction of 1,6-enyne 10 with gold complex 9b	S-10
Reaction of 1,6-enyne 10 with gold complex 9c	S-10
Reaction of 1,6-enyne 10 with acids.	S-11
Reaction of 1,6-enyne 13 with acids.	S-11

Reaction of 1,6-enyne 10 with [Au(NTf ₂) (PPh ₃)]	S-11
¹ H-, ¹³ C, and ³¹ P NMR Spectra	S-12
X-Ray Crystal Structures of 5 and 7	S-19

General methods.

All commercially available reagents were used as received and handled under air. Unless otherwise stated, all reactions were run under Ar under anhydrous conditions. CH_2Cl_2 was dried under N₂ using a solvent purification system (SPS). EtOH was distilled under Ar from CaH₂. All other solvents were used as received. Thin layer chromatography was carried out using TLC-aluminum sheets with 0.2 mm of silica gel (Merck GF234). Chromatography purifications were carried out using flash grade silica gel (SDS Chromatogel 60 ACC, 40-60 μ m). NMR spectra were recorded at 23 °C on a Bruker Avance 400 Ultrashield and Broker Avance 500 Ultrashield apparatus. Mass spectra were recorded on a Waters LCT Premier (ESI) and Waters GCT (EI, CI) spectrometers. Elemental analyses were performed on a LECO CHNS 932 micro-analyzer at the Universidad Complutense de Madrid. ¹H NMR chemical shifts are referenced to TMS. ¹³C{¹H} NMR chemical shifts are referenced to the solvent signal. ³¹P{¹H} NMR chemical shifts are referenced to an external standard (85% aqueous H₃PO₄).

The following compounds have been described: 10^{1} , 11^{2} , 12^{3} , 13^{4} , 14^{4} , 15^{5} , 16^{5} , 20^{6} and 21^{6} .

¹ B. M. Trost, and R. Braslau, *Tetrahedron Lett.*, **1988**, 29, 1231–1234.

² T. R. Hoye and J. A. Suriano, *Organometallics*, **1992**, 11, 2044–2050.

³ J. W. Faller and P. P. Fontaine, *J. Org. Chem.*, **2006**, 691, 1912–1918.

⁴ (a) C. Nieto-Oberhuber, S. Lopez and A. M. Echavarren, J. Am. Chem. Soc., 2005, 127, 6178–6179; (b) C. Nieto-Oberhuber, P. Pérez-Galán, E. Herrero-Gómez, T. Lauterbach, C. Rodríguez, S. López, C. Bour, A. Rosellón, D. J. Cárdenas and A. M. Echavarren, J. Am. Chem. Soc. 2008, 130, 269–279.

⁵ C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan, and A.M. Echavarren, *Chem. Eur. J.*, **2006**, 12, 1677–1693.

⁶ M. Méndez, M. P. Muñoz, and A. M. Echavarren, J. Am. Chem. Soc., 2000, 122, 11549-11550.

Silver(I) Complex 5

Solid Ag₂O (8.9 mg, 38 µmol) was added to a solution of the SiPh₃-BINOL phosphoric acid 3 (44 mg, 51 µmol) in CH₂Cl₂ (1 mL) and the mixture was stirred vigorously at room temperature for 4 h. The mixture was filtered into a vial through a small pad of Celite that was washed with CH₂Cl₂ (4x1 mL). After evaporation of the solvent, the compound was precipitated from CH₂Cl₂ (2 mL)/ MeCN (4 mL) an allowed to stand for 7 h during which time the precipitate became crystalline. Decantation and washing with MeCN (2x0.5 mL) yielded the desired compound as a off-white powder which was vacuum dried (50 °C, overnight) (46 mg, 92%). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.98 (s, 4H), 7.80 (d, J = 8.2 Hz, 4H), 7.60-7.58 (m, 24H), 7.44 (ddd, J = 8.1, 6.8, 1.2 Hz, 4H), 7.30 (ddd, J = 8.5, 6.7, 1.2 Hz, 4H), 7.25-7.20 (m, 16H), 7.16-7.13 (m, 24H); ¹³C NMR (100 MHz, CD_2Cl_2) δ 152.85 (d, J = 9.3 Hz, C), 142.20 (C), 136.98 (CH), 135.25 (C), 134.72 (C), 130.99 (C), 128.98 (CH), 128.89 (CH), 127.78 (CH), 127.69 (CH), 127.50 (CH), 126.75 (d, J = 3.6 Hz, C), 125.54 (CH), 122.10 (d, J = 2.0 Hz, C); ³¹P NMR (162) MHz, CD₂Cl₂) δ 12.7 (t, J = 17 Hz, 2P); MALDI-MS calcd. for C₁₁₂H₈₁Ag₂O₈P₂Si₄ $[M+H]^+$: 1943.3, found: 1943.4; other peaks: calcd. for $[M+Ag]^+$: 2051.2, found: 2051.4; calcd. for [M/2+Ag]⁺: 1079.0, found: 1079.2; calcd. for [M/2+H]⁺: 973.1, found: 973.2.

Anal. Calcd. for $C_{112}H_{82}Ag_2O_9P_2Si_4$ (M+H₂O): C, 68.57; H, 4.21. Found: C, 68.69; H, 4.01.

Silver(I) Complex 6

Solid Ag₂O (21 mg, 91 µmol) was added to a solution of the *i*Pr₃Ph-BINOL phosphoric acid **4** (91 mg, 0.12 mmol) in CH₂Cl₂ (2.4 mL) and the mixture was stirred vigorously at room temperature for 4 h. The mixture was filtered through a small pad of Celite, which was washed with CH₂Cl₂ (5x2 mL). After evaporation of the solvent, the compound was precipitated from MeOH (1 mL)/ H₂O (2 mL), filtered and washed with H₂O (2x4 mL). Vacuum drying (50 °C, overnight) yielded the desired compound as a white powder (77 mg, 74%). ¹H NMR (400 MHz, CD₂Cl₂, 5 mg/mL) δ 7.90 (d, *J* = 8.2 Hz, 4H), 7.83 (s, 4H), 7.46 (ddd, *J* = 8.1, 6.0, 2.0 Hz, 4H), 7.30-7.25 (m, 8H), 7.05 (s, 4H), 6.97 (s, 4H), 2.82 (septuplet, *J* = 7.0 Hz, 4H), 2.68-2.61 (m, 8H), 1.21-1.13 (m, 60H), 0.93 (d, *J* = 6.8 Hz, 12H); ³¹P NMR (162 MHz, CD₂Cl₂) δ 17.0 (t, *J* = 11 Hz, 2P).

The compound is soluble in CH_2Cl_2 , Et_2O , hexane, MeCN, MeOH. ¹H and ³¹P NMR data was in agreement with the literature⁹. Diluted solutions (5 mg/mL) in CD_2Cl_2 showed a triplet that became a multiplet/broad singlet in more concentrated solutions. The ³¹P NMR spectrum in CD_3CN consisted of a broad singlet in the 238-338 K interval.

Au(I) Complex 7

⁹ G. L. Hamilton, E. J. Kang, M. Mba and F. D. Toste, *Science*, **2007**, 317, 496-499.

A mixture of $[AuCl(PPh_3)]$ (24 mg, 48 µmol) and silver complex 5 (39 mg, 40 µmol monomer) was stirred in CH₂Cl₂ (1.6 mL) for 2 h. The resulting mixture was filtered through a pad of silica which was then washed with CH₂Cl₂ (3x6.5 mL) and MeCN/CH₂Cl₂ = 4 : 1 (2x6.5 mL). The MeCN containing washings were evaporated and vacuum dried to to yield a white powder (48 mg, 90%). X-ray quality crystals were grown by layering a solution of the complex in CH₂Cl₂ with MeOH or by layering a solution of CHCl₃ with EtOH.

¹H{³¹P} NMR (400 MHz, CD₂Cl₂) δ 8.08 (s, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.68-7.66 (m, 12H), 7.52 (t, J = 7.5 Hz, 3H), 7.37 (t, J = 7.7 Hz, 6H), 7.30 (ddd, J = 8.1, 5.9, 2.1 Hz, 2H), 7.24-7.20 (m, 18H), 7.14-7.10 (m, 10H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 153.54 (d, J = 9.7 Hz, C), 141.67 (CH), 137.30 (CH), 135.12 (C), 134.58 (C), 134.46 (d, J = 13.5 Hz, CH), 132.36 (d, J = 2.7 Hz, CH), 130.63 (d, J = 1.0 Hz, C), 129.65 (CH), 129.43 (d, J = 12.1 Hz, CH), 128.74 (CH), 128.43 (d, J = 66.1 Hz, C), 127.94 (CH), 127.23 (CH), 127.11 (d, J = 3.1 Hz, C), 127.01 (CH), 125.07 (CH), 122.45 (d, J = 2.2 Hz, C); ³¹P NMR (162 MHz, CD₂Cl₂) δ 29.8 (d, J = 3.6 Hz, 1P), 8.2 (d, J = 3.6 Hz, 1P); MALDI MS *m/z*: 1782.3 (calcd for [M + Au(PPh₃)]⁺: 1782.3), 1417.1, 1409.1, 1322.3 (calcd for [M]⁺: 1322.2774, found: 1322.2784.

Anal. calcd. for: $C_{148}H_{116}Au_2O_{11}P_4Si_4$ (2M + 3H₂O): C, 65.82; H, 4.33. Found: C, 65.78; H, 4.30.

Au(I) Complex 8

A mixture of [AuCl(PPh₃)] (21 mg, 42 μ mol) and silver complex **6** (30 mg, 35 μ mol monomer) was stirred in CH₂Cl₂ (1.4 mL) for 2 h. The resulting mixture was applied over a pad of silica and separated by flash chromatography (CH₂Cl₂ to MeCN). After

vacuum drying (65 °C, 4 h), the desired complex was obtained as a white powder (42 mg, 98%).

¹H{³¹P} NMR (400 MHz, CD₂Cl₂) δ 7.84 (d, J = 8.2 Hz, 2H), 7.79 (s, 2H), 7.52-7.47 (m, 3H), 7.39-7.35 (m, 8H), 7.24-7.12 (m, 12H), 7.03 (d, J = 1.6 Hz, 2H), 2.96 (br m, 2H), 2.88 (septuplet, J = 7.0 Hz, 2H), 2.67 (septuplet, J = 6.8 Hz, 2H), 1.27-1.24 (m, 18H), 1.17 (d, J = 6.8 Hz, 6H), 1.01 (d, J = 6.8 Hz, 6H), 0.88 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 148.61 (C), 148.24 (br s, C), 148.04 (d, J = 9.2 Hz, C), 147.65 (br s, C), 134.35 (d, J = 13.6 Hz, CH), 133.13 (br s, C), 132.85 (C), 132.50 (CH), 132.35 (d, J = 2.7 Hz, CH), 130.98 (C), 129.49 (d, J = 12.1 Hz, CH), 128.43 (CH), 128.36 (d, J = 66.6 Hz, C), 127.42 (CH), 126.18 (CH), 125.34 (CH), 122.78 (d, J = 2.0 Hz, C), 121.66 (CH), 120.61 (CH), 34.61 (CH), 31.68 (br s, CH), 31.29 (CH), 26.61 (CH₃), 24.97 (CH₃), 24.28 (CH₃), 24.13 (CH₃), 24.04 (br s, CH₃), 23.58 (br s, CH₃); ³¹P NMR (202 MHz, CD₂Cl₂, -40 °C) δ 29.8 (d, J = 2.6 Hz, 1P), 10.1 (d, J = 2.6 Hz, 1P); HRMS calcd for C₆₈H₇₁AuO₄P₂⁺ [M]⁺: 1210.4488, found: 1210.4419; MALDI MS *m/z*: 1669.5 (calcd for [M + Au(PPh₃)]⁺: 1669.5), 1417.2, 1409.1, 1227.2, 1210.4 (calcd for [M]⁺: 1210.4), 1168.3, 1067.1, 1034.2, 721.1, 710.2.

Anal. calcd. for: C₆₈H₇₁AuO₄P₂: C, 67.43; H, 5.91. Found: C, 67.56; H, 5.99.

Reaction of 1,6-enyne 10 with gold catalyst 7

1,6-Enyne **10** (24 mg, 0.10 mmol) was added to a solution of **7** (6.6 mg, 5 μ mol) and [Ag(NCMe)₂](SbF₆) (2.1 mg, 5 μ mol) in CD₂Cl₂ (0.5 mL). The progress of the reaction was monitored by ¹H NMR. Conversion after 20 min: 100%, ratio **11**:**12** = 89 : 11.

Control reaction performed in the absence of the gold complex.

1,6-Enyne **10** (24 mg, 0.10 mmol) was dissolved in CD_2Cl_2 (0.5 mL) and $[Ag(NCMe)_2](SbF_6)$ (2.1 mg, 5 µmol) was added. The progress of the reaction was monitored by ¹H NMR. Conversion after 20 min: 9%, ratio **11**:12 = 45 : 55. Isolated yield = 6%.

A trace of hydroxycyclization (20) product^6 (3%) was also observed in both experiments.

Control reaction performed with gold complex [Au(PPh₃)(MeCN)](SbF₆)

[Au(PPh₃)(MeCN)](SbF₆) (2.8 mg, 5.25 μ mol) was dissolved in CDCl₃ (0.5 mL). Then, enyne **10** (25 mg, 0.105 mmol) was added. ¹H NMR (5.5 h reaction time) showed a 1 : 2 : 1 mixture of **11** / **11'** / **12**. When (1 mol%) of [Au(PPh₃)(MeCN]SbF₆ was used, **11**, **11'**, and **12** (2:1:1 ratio) were obtained quantitatively in only 30 min. Identical results were obtained with [Au(NTf₂)(PPh₃)] (1 mol%).

Reaction of alkynyl gold(I) complex 18 with acids.

Complex **18** (10 mg, 14.4 μ mol) was dissolved in CDCl₃ (0.4 mL). Then, TfOH was added (1.3 μ L, 14.4 μ mol). ¹H NMR (30 min reaction time) showed a 4 : 4 : 1 mixture of **11** / **11'** / **12** (86%).

Complex **18** (10 mg, 14.4 μ mol) was dissolved in CDCl₃ (0.4 mL). Then, Tf₂NH was added (4.0 mg, 14.4 μ mol). ¹H NMR (90 min reaction time) showed a 3 : 3 : 1 mixture of **11** / **11'** / **12** (80%).

Reaction of 1,6-enyne 13 with gold catalyst 5.

Reaction of **13** with gold(I) complex **7** (5 mol%) and $[Ag(NCMe)_2]SbF_6^{10}$ (5 mol%) in CH₂Cl₂ at room temperature for 6 h gave tricyclic compound **14**⁴ (81%, < 1% ee).

 (R^*) -Dimethyl 3-methylene-4- $((R^*)$ -2-methyltetrahydrofuran-2-yl)cyclopentane-1,1-dicarboxylate (16) and (R^*) -Dimethyl-3- $((R^*)$ -5-hydroxy-2-methoxypentan-2yl)-4-methylenecyclopentane-1,1-dicarboxylate (17).

¹⁰ M. Raducan, C. Rodríguez-Escrich, X. C. Cambeiro, E. Escudero-Adán, M. A. Pericàs and A. M. Echavarren, *Chem. Commun.*, **2011**, *47*, 4893–4895.

A solution of enynol **15** (25 mg, 0.089 mmol) in CH_2Cl_2 (0.15 mL) was added to a solution of gold(I) complex **7** (5.9 mg, 4.43 µmol) in CH_2Cl_2 (0.15 mL). Then, MeOH (0.20 mL) was added and the mixture was stirred at room temperature for 24 h. The resulting mixture was filtered over a small pad of silica, the solvent was evaporated and the residue was chromatographed (hexane/EtOAc) to give known compound **16**⁵ (4.8 mg, 19%) and **17** (12.4 mg, 44%).

17: ¹H NMR (400 MHz, CDCl₃) δ 5.05 (s, 1H), 4.93 (s, 1H), 3.73 (s, 3H), 3.72 (s, 3H), 3.68-3.59 (m, 2H), 3.19 (s, 2H), 2.98 – 2.84 (m, 2H), 2.61 – 2.47 (m, 1H), 2.24 – 1.86 (m, 2H), 1.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.98 (C), 171.86 (C), 147.91 (C), 110.76 (CH₂), 78.48(C), 63.30 (CH₂), 58.54 (C), 52.74 (C), 48.87 (CH₃), 47.24 (CH₃), 43.68 (CH₂), 35.65 (CH₂), 31.29 (CH₃), 29.70 (CH₂), 26.65 (CH₂), 19.72 (CH₂), 17.54 (CH₃). HRMS-EI *m*/*z* calcd. for C₁₆H₂₆O₆Na: 337.1627; found 337. 1618 [M+Na]⁺.

(4,4-Bis(methoxycarbonyl)-7-methyl-6-octen-1-ynyl)(triphenylphosphine)gold (18).

To a suspension of [AuCl(PPh₃)] (100 mg, 0.202 mmol) in dry ethanol (4 mL) was added NaOEt [freshly prepared from Na (5 mg, 0.212 mmol) in ethanol (0.5 mL)] and enyne **10** (48 mg, 0.202 mmol). The solution was stirred at room temperature for 4.5 h. The solvent was partially evaporated, after which the white precipitate was filtered to give **18** (54 mg, 38% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.46 (m, 9H), 7.45 – 7.40 (m, 6H), 5.06-5.01 (m, 1H), 3.72 (s, 6H), 2.99 (d, *J* = 1.9 Hz, 2H), 2.91-2.87 (m, 2H), 1.67 (s, 3H), 1.68 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.23 (C), 135.93 (C), 134.36 (CH), 134.25 (CH), 131.43 (CH), 131.41 (CH), 130.21 (C), 129.77 (C), 129.10 (CH), 129.01 (CH), 117.84 (CH), 98.25 (C), 98.03 (C), 57.86 (C), 52.51 (CH3), 30.88 (CH₂), 26.06 (CH₃), 24.17 (CH₂), 18.02 (CH₃). ³¹P NMR (202 MHz, CDCl₃) δ 42.12. HRMS-EI *m/z* calcd. for C₃₁H₃₃O₄PAu: 697.1782; found 697.1774 [M+H]⁺.

Hydration of 1-octyne

The gold phosphate complex 7 or 8 (5 μ mol) was dissolved in CD₃OD (0.5 mL) then 1octyne (75 μ L, 0.50 mmol) and D₂O (36 μ L, 2.0 mmol) were added. The reaction was followed by ¹H and ³¹P NMR. After 14 h deuteration of the alkyne proton was observed. In the case of complex 7 additional CD_2Cl_2 (0.25 mL) was added in order to dissolve the gold complex. Conversions were determined by ¹H NMR at 14 h, 42 h and 67 h.

Synthesis of gold complex [Au(OPOF₂)(PPh₃)] 19.

$$\begin{array}{c} AgPF_{6} \\ Ph_{3}PAuCI & \longrightarrow & Ph_{3}PAuOPOF_{2} \\ \hline wet DCM & 19 \end{array}$$

PPh₃AuCl (0.100 g, 0.202 mmol) was dissolved in CH₂Cl₂ (10 mL). Then, solid AgPF₆ (51.1 mg, 0.202 mmol) was added. The mixture was stirred at room temperature for 2.5 hours The solution was filtered through a Celite pad and washed with CH₂Cl₂. The filtrate was concentrated to give **19** as a white solid (0.112 g, 99%). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.44 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 134.16, 134.03, 132.46, 132.43, 129.51, 129.38, 127.82, 127.15. ³¹P NMR (162 MHz, CDCl₃) δ 45.17 (s), 27.53 (s), -13.23 (t, *J* = 974.4 Hz). Anal. Calcd. for C₁₈H₁₅AuF₂O₂P₂: C, 38.59; H: 2.70. Found: C, 38.67; H, 2.88.

In Chung's original report the difluorophosphate signal appeared at δ -20.1 (t, $J({}^{31}P{}^{-19}F)$ = 972 Hz).¹¹

Synthesis of gold complex 9b.

Chloro[(1,1'-biphenyl-2-yl)di-*tert*-butylphosphine]gold(I) (50 mg, 0.094 mmol) was dissolved in wet MeCN (0.75 mL). Then, solid AgPF₆ (23.8 mg, 0.094 mmol) was added. The mixture was stirred at room temperature for 24 hours. The solution was filtered through a Celite pad and washed with MeCN. The filtrate was concentrated to give **9b** as a dark white solid (56 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.82 (m, 1H), 7.60 – 7.51 (m, 5H), 7.32 (ddd, *J* = 4.5, 3.6, 1.9 Hz, 1H), 7.16 (dd, *J* = 7.8, 1.5 Hz, 2H), 2.33 (s, 3H), 1.43 (s, 9H), 1.39 (s, 9H). ³C NMR (101 MHz, CDCl₃) δ 133.30, 133.22, 132.86, 131.28, 129.31, 128.97, 128.32, 128.24, 127.31, 127.24, 127.18, 38.14,

¹¹ S. M. Kim, J. H. Park and Y K. Chung, *Chem. Commun.*, **2011**, *47*, 6717-6719.

37.86, 30.84, 30.78. ³¹P NMR (162 MHz, CDCl₃) δ 57.23 (s), -144.23 (sept., *J* = 711.9 Hz).

Synthesis of gold complex 9c.

Chloro[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) (50 mg, 0.094 mmol) was dissolved in wet CH₂Cl₂ (4.7 mL). Then, solid AgPF₆ was added. The mixture was stirred at room temperature for 24 hours. The solution was filtered through a Celite pad and washed with CH₂Cl₂. The filtrate was concentrated to give **9c** as a white solid (53.5 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.83 (m, 1H), 7.58 – 7.43 (m, 5H), 7.36 – 7.31 (m, 1H), 7.15 (d, *J* = 7.2 Hz, 2H), 1.42 (s, 9H), 1.38 (s, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 133.19, 133.12, 132.81, 131.01, 129.17, 129.09, 128.93, 128.68, 128.63, 128.55, 38.06, 37.77, 30.85, 30.79. ³¹P NMR (202 MHz, CDCl₃) δ 56.62 (s), -13.49 (t, *J* = 971.5 Hz).

Reaction of 1,6-enyne 10 with 19.

Complex **19** (3 mg, 5.25 μ mol) was dissolved in CDCl₃ (0.5 mL). Then, enyne **10** (25 mg, 0.105 mmol) was added. Conversion after 20 min: 7%.

Reaction of 1,6-enyne 10 with 9b.

Gold complex **9b** (3.6 mg, 5.25 μ mmol) was dissolved in CDCl₃ (0.5 mL). Then, enyne **10** (25 mg, 0.105 mmol) was added. ¹H NMR (35 min reaction time) showed a 7 : 1 mixture of **11** / **20**. A trace of compound **12** (3%) was also observed.

Reaction of 1,6-enyne 10 with 9c.

Gold complex 9c (3.1 mg, 5.25 μ mmol) was dissolved in CDCl₃ (0.5 mL). Then, enyne 10 (25 mg, 0.105 mmol) was added. ¹H NMR (17 hours reaction time) showed a 1 : 1 mixture of 21 / 20. A trace of compound 11 (5%) was also observed.

Reaction of 1,6-enyne 10 with acids.

Enyne **10** (0.105 mmol, 25 mg) was dissolved in CDCl₃ (0.5 mL). Then, TfOH (1.05 μ mol, 9,3. 10⁻² μ mL) was added. ¹H NMR (24 hours reaction time) showed no reaction. Enyne **10** (0.105 mmol, 25 mg) was dissolved in CDCl₃ (0.5 mL). Then, Tf₂NH (1.05 μ mol, 3,0.10⁻² μ mL) was added. ¹H NMR (24 hours reaction time) showed no reaction. Enyne **10** (0.105 mmol, 25 mg) was dissolved in CDCl₃ (0.5 mL). Then, HBF₄ (1.05 μ mol, 6,6.10⁻² μ mL) was added. ¹H NMR (24 hours reaction time) showed no reaction.

Reaction of 1,6-enyne 13 with acids.

Enyne **13** (0.080 mmol, 25 mg) was dissolved in CDCl₃ (0.38 mL). Then, TfOH (1.05 μ mol, 3,5. 10⁻¹ μ mL) was added. ¹H NMR (24 hours reaction time) showed no reaction. Enyne **13** (0.080 mmol, 25 mg) was dissolved in CDCl₃ (0.38 mL). Then, Tf₂NH (1.05 μ mol, 1,1.10⁻¹ μ mL) was added. ¹H NMR (24 hours reaction time) showed no reaction. Enyne **13** (0.080 mmol, 25 mg) was dissolved in CDCl₃ (0.38 mL). Then, HBF₄ (1.05 μ mol, 2,5.10⁻¹ μ mL) was added. ¹H NMR (24 hours reaction time) showed no reaction.

Reaction of 1,6-enyne 10 with [Au(NTf₂) (PPh₃)]

Complex PPh₃AuNTf₂ (0.8 mg, 1.05 μ mol) was dissolved in CDCl₃ (0.5 mL) and 2,6-di-*tert*-butylpyridine was added (0.24 μ L, 1.05 μ mol). Then enyne 10 (25 mg, 0.105 mmol) was added. ¹H NMR (2 hours reaction time) showed a 4 : 1 : 2 mixture of **11** / **12** / **20**.

³¹P NMR

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

¹H NMR

³¹P NMR

Empirical formula	C59.60 H47.99 Ag Cl2.3	9 O4.84 P Si2
Formula weight	1121.30	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2	
Unit cell dimensions	a = 20.2597(6) Å	⟨= 90.00 °.
	b = 16.3556(5) Å	
	c = 17.3458(5) Å	$\odot = 90.00$ °.
Volume	5747.7(3) Å ³	
Z	4	
Density (calculated)	1.296 Mg/m ³	
Absorption coefficient	0.576 mm ⁻¹	
F(000)	2300	
Crystal size	$0.20 \ge 0.15 \ge 0.05 \text{ mm}^3$	
Theta range for data collection	1.17 to 36.51 °.	
Index ranges	-33 <=h<=31 ,-27 <=k<=	26 ,-28 <=l<=28
Reflections collected	26827	
Independent reflections	17149 [R(int) = 0.0592]	
Completeness to theta =36.51 $^{\circ}$	0.984 %	
Absorption correction	Empirical	
Max. and min. transmission	0.9717 and 0.8934	
Refinement method	Full-matrix least-squares	s on F^2
Data / restraints / parameters	26827 / 216 / 684	
Goodness-of-fit on F ²	1.023	
Final R indices [I>2sigma(I)]	R1 = 0.0692, $wR2 = 0.1$	898
R indices (all data)	R1 = 0.1174, $wR2 = 0.2$	312
Absolute Structure Flack parameter	x = -0.06(3)	
Largest diff. peak and hole	1.835 and -0.881 e.Å ⁻³	

Crystal data and structure refinement for Ag(I) dimeric complex **5**.

Bond lengths [Å] and angles [°] for **5**.

Bond lengths	
Ag1-O3#1	2.1780(18)
Ag1-O3	2.1780(18)
Ag1-Ag2	3.0727(3)
Ag2-O4	2.1901(18)
Ag2-O4#1	2.1901(18)
C1-C6	1.370(5)
C1-C2	1.412(5)
C1-Si1	1.920(4)
C2-C3	1.419(5)
C3-C4	1.370(6)
C4-C5	1.360(7)
C5-C6	1.470(6)
C7-C8'	1.375(10)
C7-C8	1.390(7)
C7-C12	1.424(6)
C7-C12'	1.481(17)
C7-Si1	1.861(4)
C8-C9	1.345(8)
C9-C10	1.361(9)
C10-C11	1.387(9)
C11-C12	1.397(8)
C8'-C9'	1.578(17)
C9'-C10'	1.37(2)
C10'-C11'	1.25(3)
C11'-C12'	1.35(3)
C13-C14	1.399(4)
C13-C18	1.402(4)
C13-Si1	1.877(3)
C14-C15	1.409(5)
C15-C16	1.386(5)
C16-C17	1.370(5)
C17-C18	1.395(4)
C19-C20	1.381(3)
C19-C28	1.422(3)
C19-Si1	1.883(3)

C20-C21	1.412(4)
C21-C26	1.414(3)
C21-C22	1.420(4)
C22-C23	1.366(5)
C23-C24	1.409(5)
C24-C25	1.388(4)
C25-C26	1.412(4)
C26-C27	1.434(3)
C27-C28	1.377(3)
C27-C29	1.479(3)
C28-O1	1.388(3)
C29-C38	1.387(3)
C29-C30	1.432(3)
C30-C31	1.401(4)
C30-C35	1.444(4)
C31-C32	1.372(4)
C32-C33	1.406(5)
C33-C34	1.354(5)
C34-C35	1.426(4)
C35-C36	1.419(5)
C36-C37	1.357(4)
C37-C38	1.420(3)
C37-Si2	1.907(3)
C38-O2	1.395(3)
C39-C40	1.3900
C39-C44	1.3900
C39-Si2	1.993(2)
C40-C41	1.3900
C41-C42	1.3900
C42-C43	1.3900
C43-C44	1.3900
C39'-C40'	1.3900
C39'-C44'	1.3900
C39'-Si2	1.749(2)
C40'-C41'	1.3900
C41'-C42'	1.3900
C42'-C43'	1.3900
C43'-C44'	1.3900

C45-C50	1.393(5)
C45-C46	1.398(5)
C45-Si2	1.868(3)
C46-C47	1.403(5)
C47-C48	1.349(6)
C48-C49	1.364(6)
C49-C50	1.401(5)
C51-C52	1.3900
C51-C56	1.3900
C51-Si2	1.933(3)
C52-C53	1.3900
C53-C54	1.3900
C54-C55	1.3900
C55-C56	1.3900
C51'-C52'	1.3900
C51'-C56'	1.3900
C51'-Si2	1.834(3)
C52'-C53'	1.3900
C53'-C54'	1.3900
C53'-C53'#2	2.010(8)
C54'-C55'	1.3900
C55'-C56'	1.3900
O1-P1	1.6146(16)
O2-P1	1.6052(17)
O3-P1	1.4845(18)
O4-P1	1.4811(18)
C1D-Cl1D	1.737(4)
C1D-Cl1D#2	1.737(4)
C1L-Cl1L	1.623(4)
C1L-Cl2L	1.827(4)
C1H-C2H	1.5457
С2Н-С3Н	1.5451
СЗН-С4Н	1.5415
C4H-C5H	1.5405
С5Н-С6Н	1.5385
C1H'-C2H'	1.5593
C2H'-C3H'	1.5581
C3H'-C4H'	1.5397

C4H'-C5H'	1.5372
C5H'-C6H'	1.5399
C1E-Cl1E	1.6260
C1E-Cl2E	1.8364
Angles	

O3-Ag1-O3#1	166.66(9)
O3-Ag1-Ag2#1	83.33(4)
O3-Ag1-Ag2	83.33(4)
O4-Ag2-O4#1	167.23(9)
O4-Ag2-Ag1	83.61(4)
O4-Ag2-Ag1#1	83.61(4)
C6-C1-C2	119.9(3)
C6-C1-Si1	123.3(3)
C2-C1-Si1	116.8(2)
C1-C2-C3	121.0(3)
C4-C3-C2	118.4(4)
C5-C4-C3	122.3(4)
C4-C5-C6	119.9(4)
C1-C6-C5	118.4(4)
C8'-C7-C8	12.6(5)
C8'-C7-C12	122.6(5)
C8-C7-C12	119.3(4)
C8'-C7-C12'	100.3(9)
C8-C7-C12'	90.9(9)
C12-C7-C12'	40.3(10)
C8'-C7-Si1	122.6(4)
C8-C7-Si1	127.0(3)
C12-C7-Si1	113.7(3)
C12'-C7-Si1	131.7(7)
C9-C8-C7	119.4(6)
C8-C9-C10	122.3(6)
C9-C10-C11	120.2(6)
C10-C11-C12	119.2(5)
C11-C12-C7	118.9(5)
C7-C8'-C9'	124.3(9)
C10'-C9'-C8'	113.0(14)
C11'-C10'-C9'	122.0(14)

C10'-C11'-C12'	114.0(15)
C11'-C12'-C7	129.7(16)
C14-C13-C18	117.1(3)
C14-C13-Si1	120.5(2)
C18-C13-Si1	122.3(2)
C13-C14-C15	122.3(3)
C16-C15-C14	118.5(3)
C17-C16-C15	120.3(3)
C16-C17-C18	121.2(3)
C17-C18-C13	120.6(3)
C20-C19-C28	116.4(2)
C20-C19-Si1	121.63(18)
C28-C19-Si1	122.01(17)
C19-C20-C21	122.6(2)
C20-C21-C26	119.0(2)
C20-C21-C22	121.7(2)
C26-C21-C22	119.3(3)
C23-C22-C21	120.9(3)
C22-C23-C24	120.3(3)
C25-C24-C23	119.8(3)
C24-C25-C26	120.9(3)
C25-C26-C21	118.8(2)
C25-C26-C27	121.6(2)
C21-C26-C27	119.5(2)
C28-C27-C26	117.9(2)
C28-C27-C29	120.7(2)
C26-C27-C29	121.4(2)
C27-C28-O1	118.98(18)
C27-C28-C19	123.7(2)
O1-C28-C19	117.22(19)
C38-C29-C30	118.2(2)
C38-C29-C27	120.6(2)
C30-C29-C27	121.1(2)
C31-C30-C29	123.2(2)
C31-C30-C35	118.9(2)
C29-C30-C35	117.9(2)
C32-C31-C30	121.5(3)
C31-C32-C33	120.0(3)

C34-C33-C32	120.5(3)
C33-C34-C35	121.6(3)
C36-C35-C34	122.5(3)
C36-C35-C30	120.0(2)
C34-C35-C30	117.5(3)
C37-C36-C35	121.7(2)
C36-C37-C38	117.9(3)
C36-C37-Si2	121.1(2)
C38-C37-Si2	120.9(2)
C29-C38-O2	118.9(2)
C29-C38-C37	123.5(2)
O2-C38-C37	117.4(2)
C40-C39-C44	120.0
C40-C39-Si2	122.71(11)
C44-C39-Si2	116.93(11)
C41-C40-C39	120.0
C40-C41-C42	120.0
C43-C42-C41	120.0
C42-C43-C44	120.0
C43-C44-C39	120.0
C40'-C39'-C44'	120.0
C40'-C39'-Si2	121.68(13)
C44'-C39'-Si2	118.31(13)
C39'-C40'-C41'	120.0
C42'-C41'-C40'	120.0
C43'-C42'-C41'	120.0
C44'-C43'-C42'	120.0
C43'-C44'-C39'	120.0
C50-C45-C46	118.0(3)
C50-C45-Si2	119.5(3)
C46-C45-Si2	122.5(3)
C45-C46-C47	120.4(4)
C48-C47-C46	119.9(4)
C47-C48-C49	121.4(3)
C48-C49-C50	119.7(3)
C45-C50-C49	120.6(4)
C52-C51-C56	120.0
C52-C51-Si2	125.13(17)

C56-C51-Si2	114.87(17)
C51-C52-C53	120.0
C54-C53-C52	120.0
C55-C54-C53	120.0
C54-C55-C56	120.0
C55-C56-C51	120.0
C52'-C51'-C56'	120.0
C52'-C51'-Si2	120.6(2)
C56'-C51'-Si2	118.7(2)
C51'-C52'-C53'	120.0
C54'-C53'-C52'	120.0
C54'-C53'-C53'#2	98.0(5)
C52'-C53'-C53'#2	120.0(5)
C55'-C54'-C53'	120.0
C56'-C55'-C54'	120.0
C55'-C56'-C51'	120.0
C28-O1-P1	120.68(14)
C38-O2-P1	120.51(15)
P1-O3-Ag1	126.57(10)
P1-O4-Ag2	125.76(11)
O4-P1-O3	120.66(10)
O4-P1-O2	111.22(10)
O3-P1-O2	104.28(10)
O4-P1-O1	103.88(9)
O3-P1-O1	112.01(9)
O2-P1-O1	103.69(9)
C7-Si1-C13	105.48(14)
C7-Si1-C19	113.20(14)
C13-Si1-C19	109.33(12)
C7-Si1-C1	112.66(18)
C13-Si1-C1	108.23(13)
C19-Si1-C1	107.79(13)
C39'-Si2-C51'	90.47(14)
C39'-Si2-C45	113.87(14)
C51'-Si2-C45	112.00(16)
C39'-Si2-C37	115.00(12)
C51'-Si2-C37	113.66(16)
C45-Si2-C37	110.57(13)

C39'-Si2-C51	105.21(13)
C51'-Si2-C51	14.8
C45-Si2-C51	106.11(15)
C37-Si2-C51	105.14(15)
C39'-Si2-C39	10.4
C51'-Si2-C39	100.57(13)
C45-Si2-C39	111.58(13)
C37-Si2-C39	108.03(11)
C51-Si2-C39	115.23(13)
Cl1D-C1D-Cl1D#2	115.6(4)
Cl1L-C1L-Cl2L	116.9(3)
C3H-C2H-C1H	150.0
С4Н-С3Н-С2Н	150.9
С5Н-С4Н-С3Н	115.7
С6Н-С5Н-С4Н	103.7
C3H'-C2H'-C1H'	141.3
C4H'-C3H'-C2H'	146.7
C5H'-C4H'-C3H'	118.3
C4H'-C5H'-C6H'	103.8
Cl1E-C1E-Cl2E	118.0

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, -y+1, z #2 -x+1, -y+1, z Torsion angles [°] for 5.

O3#1-Ag1-Ag2-O4	178.43(7)
O3-Ag1-Ag2-O4	-1.57(7)
O3#1-Ag1-Ag2-O4#1	-1.58(7)
O3-Ag1-Ag2-O4#1	178.42(7)
C6-C1-C2-C3	1.1(5)
Si1-C1-C2-C3	-179.6(3)
C1-C2-C3-C4	-2.6(6)
C2-C3-C4-C5	1.5(6)
C3-C4-C5-C6	1.1(6)
C2-C1-C6-C5	1.5(5)
Si1-C1-C6-C5	-177.8(2)
C4-C5-C6-C1	-2.6(5)
C8'-C7-C8-C9	100(3)
C12-C7-C8-C9	-9.0(8)
C12'-C7-C8-C9	-38.9(11)
Si1-C7-C8-C9	173.4(4)
C7-C8-C9-C10	10.4(10)
C8-C9-C10-C11	-4.6(11)
C9-C10-C11-C12	-2.3(11)
C10-C11-C12-C7	3.3(9)
C8'-C7-C12-C11	-11.9(9)
C8-C7-C12-C11	2.3(8)
C12'-C7-C12-C11	52.8(12)
Si1-C7-C12-C11	-179.9(5)
C8-C7-C8'-C9'	-41(2)
C12-C7-C8'-C9'	37.4(14)
C12'-C7-C8'-C9'	1.0(15)
Si1-C7-C8'-C9'	-155.7(10)
C7-C8'-C9'-C10'	-26.6(19)
C8'-C9'-C10'-C11'	21(3)
C9'-C10'-C11'-C12'	9(3)
C10'-C11'-C12'-C7	-47(4)
C8'-C7-C12'-C11'	38(3)
C8-C7-C12'-C11'	46(3)
C12-C7-C12'-C11'	-92(3)
Si1-C7-C12'-C11'	-169(2)

-1.3(5)
174.4(3)
0.1(6)
0.9(6)
-0.5(6)
-0.8(6)
1.7(5)
-174.0(3)
-0.6(3)
179.59(19)
6.1(4)
-173.6(3)
179.1(3)
-0.7(4)
0.0(5)
0.8(5)
-1.0(4)
0.4(4)
-175.3(3)
-179.3(2)
0.5(4)
-3.5(4)
176.3(2)
171.1(2)
-4.5(3)
-6.6(4)
177.7(2)
-172.24(19)
5.5(3)
10.7(3)
-171.5(2)
-8.2(3)
171.66(18)
174.71(19)
-5.5(3)
-55.5(3)
122.2(3)
122.9(3)

C26-C27-C29-C30	-59.4(3)
C38-C29-C30-C31	172.9(2)
C27-C29-C30-C31	-5.6(4)
C38-C29-C30-C35	-6.3(3)
C27-C29-C30-C35	175.3(2)
C29-C30-C31-C32	-178.9(3)
C35-C30-C31-C32	0.2(4)
C30-C31-C32-C33	-0.9(5)
C31-C32-C33-C34	0.5(5)
C32-C33-C34-C35	0.6(5)
C33-C34-C35-C36	179.6(3)
C33-C34-C35-C30	-1.3(5)
C31-C30-C35-C36	180.0(3)
C29-C30-C35-C36	-0.8(4)
C31-C30-C35-C34	0.8(4)
C29-C30-C35-C34	-180.0(3)
C34-C35-C36-C37	-175.9(3)
C30-C35-C36-C37	5.0(4)
C35-C36-C37-C38	-1.8(4)
C35-C36-C37-Si2	-178.2(2)
C30-C29-C38-O2	-174.7(2)
C27-C29-C38-O2	3.7(3)
C30-C29-C38-C37	10.0(4)
C27-C29-C38-C37	-171.6(2)
C36-C37-C38-C29	-5.9(4)
Si2-C37-C38-C29	170.50(19)
C36-C37-C38-O2	178.7(2)
Si2-C37-C38-O2	-4.9(3)
C44-C39-C40-C41	0.0
Si2-C39-C40-C41	-172.83(13)
C39-C40-C41-C42	0.0
C40-C41-C42-C43	0.0
C41-C42-C43-C44	0.0
C42-C43-C44-C39	0.0
C40-C39-C44-C43	0.0
Si2-C39-C44-C43	173.24(13)
C44'-C39'-C40'-C41'	0.0
Si2-C39'-C40'-C41'	178.71(15)

C39'-C40'-C41'-C42'	0.0
C40'-C41'-C42'-C43'	0.0
C41'-C42'-C43'-C44'	0.0
C42'-C43'-C44'-C39'	0.0
C40'-C39'-C44'-C43'	0.0
Si2-C39'-C44'-C43'	-178.75(15)
C50-C45-C46-C47	-1.6(5)
Si2-C45-C46-C47	-179.0(3)
C45-C46-C47-C48	0.8(6)
C46-C47-C48-C49	0.1(6)
C47-C48-C49-C50	-0.2(5)
C46-C45-C50-C49	1.4(5)
Si2-C45-C50-C49	178.9(2)
C48-C49-C50-C45	-0.5(5)
C56-C51-C52-C53	0.0
Si2-C51-C52-C53	179.3(3)
C51-C52-C53-C54	0.0
C52-C53-C54-C55	0.0
C53-C54-C55-C56	0.0
C54-C55-C56-C51	0.0
C52-C51-C56-C55	0.0
Si2-C51-C56-C55	-179.4(2)
C56'-C51'-C52'-C53'	0.0
Si2-C51'-C52'-C53'	-170.1(2)
C51'-C52'-C53'-C54'	0.0
C51'-C52'-C53'-C53'#2	121.4(3)
C52'-C53'-C54'-C55'	0.0
C53'#2-C53'-C54'-C55'	-131.71(19)
C53'-C54'-C55'-C56'	0.0
C54'-C55'-C56'-C51'	0.0
C52'-C51'-C56'-C55'	0.0
Si2-C51'-C56'-C55'	170.3(2)
C27-C28-O1-P1	69.0(2)
C19-C28-O1-P1	-113.76(19)
C29-C38-O2-P1	69.6(3)
C37-C38-O2-P1	-114.8(2)
O3#1-Ag1-O3-P1	1.44(12)
Ag2-Ag1-O3-P1	1.44(12)

O4#1-Ag2-O4-P1	2.37(12)
Ag1-Ag2-O4-P1	2.38(12)
Ag2-O4-P1-O3	-2.10(18)
Ag2-O4-P1-O2	120.42(12)
Ag2-O4-P1-O1	-128.64(11)
Ag1-O3-P1-O4	-0.20(18)
Ag1-O3-P1-O2	-126.00(12)
Ag1-O3-P1-O1	122.52(12)
C38-O2-P1-O4	66.84(19)
C38-O2-P1-O3	-161.60(17)
C38-O2-P1-O1	-44.22(18)
C28-O1-P1-O4	-161.65(15)
C28-O1-P1-O3	66.55(17)
C28-O1-P1-O2	-45.30(16)
C8'-C7-Si1-C13	130.1(6)
C8-C7-Si1-C13	115.7(4)
C12-C7-Si1-C13	-62.0(4)
C12'-C7-Si1-C13	-18.5(14)
C8'-C7-Si1-C19	10.6(6)
C8-C7-Si1-C19	-3.8(5)
C12-C7-Si1-C19	178.5(3)
C12'-C7-Si1-C19	-138.0(14)
C8'-C7-Si1-C1	-112.1(6)
C8-C7-Si1-C1	-126.5(4)
C12-C7-Si1-C1	55.8(4)
C12'-C7-Si1-C1	99.3(14)
C14-C13-Si1-C7	-57.5(3)
C18-C13-Si1-C7	118.0(3)
C14-C13-Si1-C19	64.5(3)
C18-C13-Si1-C19	-120.0(3)
C14-C13-Si1-C1	-178.3(3)
C18-C13-Si1-C1	-2.8(3)
C20-C19-Si1-C7	129.7(2)
C28-C19-Si1-C7	-50.1(2)
C20-C19-Si1-C13	12.4(2)
C28-C19-Si1-C13	-167.39(19)
C20-C19-Si1-C1	-105.0(2)
C28-C19-Si1-C1	75.2(2)

C6-C1-Si1-C7	-9.5(3)
C2-C1-Si1-C7	171.2(2)
C6-C1-Si1-C13	106.7(3)
C2-C1-Si1-C13	-72.6(3)
C6-C1-Si1-C19	-135.2(3)
C2-C1-Si1-C19	45.6(3)
C40'-C39'-Si2-C51'	125.88(18)
C44'-C39'-Si2-C51'	-55.39(18)
C40'-C39'-Si2-C45	-119.71(16)
C44'-C39'-Si2-C45	59.02(17)
C40'-C39'-Si2-C37	9.36(18)
C44'-C39'-Si2-C37	-171.91(15)
C40'-C39'-Si2-C51	124.53(17)
C44'-C39'-Si2-C51	-56.74(18)
C40'-C39'-Si2-C39	-40.27(5)
C44'-C39'-Si2-C39	138.46(14)
C52'-C51'-Si2-C39'	117.6(2)
C56'-C51'-Si2-C39'	-52.6(2)
C52'-C51'-Si2-C45	1.5(3)
C56'-C51'-Si2-C45	-168.7(2)
C52'-C51'-Si2-C37	-124.7(2)
C56'-C51'-Si2-C37	65.1(2)
C52'-C51'-Si2-C51	-67.47(12)
C56'-C51'-Si2-C51	122.29(13)
C52'-C51'-Si2-C39	120.2(2)
C56'-C51'-Si2-C39	-50.1(2)
C50-C45-Si2-C39'	177.4(2)
C46-C45-Si2-C39'	-5.2(3)
C50-C45-Si2-C51'	-81.7(3)
C46-C45-Si2-C51'	95.7(3)
C50-C45-Si2-C37	46.2(3)
C46-C45-Si2-C37	-136.5(3)
C50-C45-Si2-C51	-67.3(3)
C46-C45-Si2-C51	110.0(3)
C50-C45-Si2-C39	166.4(2)
C46-C45-Si2-C39	-16.2(3)
C36-C37-Si2-C39'	118.3(2)
C38-C37-Si2-C39'	-58.0(2)

C36-C37-Si2-C51'	16.0(3)
C38-C37-Si2-C51'	-160.3(2)
C36-C37-Si2-C45	-111.0(2)
C38-C37-Si2-C45	72.7(2)
C36-C37-Si2-C51	3.1(3)
C38-C37-Si2-C51	-173.2(2)
C36-C37-Si2-C39	126.7(2)
C38-C37-Si2-C39	-49.6(2)
C52-C51-Si2-C39'	154.2(2)
C56-C51-Si2-C39'	-26.5(2)
C52-C51-Si2-C51'	148.92(10)
C56-C51-Si2-C51'	-31.75(17)
C52-C51-Si2-C45	33.2(3)
C56-C51-Si2-C45	-147.5(2)
C52-C51-Si2-C37	-84.0(2)
C56-C51-Si2-C37	95.4(2)
C52-C51-Si2-C39	157.2(2)
C56-C51-Si2-C39	-23.5(2)
C40-C39-Si2-C39'	124.03(8)
C44-C39-Si2-C39'	-49.01(15)
C40-C39-Si2-C51'	109.93(18)
C44-C39-Si2-C51'	-63.11(19)
C40-C39-Si2-C45	-131.15(15)
C44-C39-Si2-C45	55.82(16)
C40-C39-Si2-C37	-9.41(16)
C44-C39-Si2-C37	177.55(14)
C40-C39-Si2-C51	107.78(18)
C44-C39-Si2-C51	-65.26(19)
С1Н-С2Н-С3Н-С4Н	45.1
C2H-C3H-C4H-C5H	34.6
С3Н-С4Н-С5Н-С6Н	-118.9
C1H'-C2H'-C3H'-C4H'	96.4
C2H'-C3H'-C4H'-C5H'	-146.5
C3H'-C4H'-C5H'-C6H'	148.0

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, -y+1, z #2 -x+1, -y+1, z

Crystal data and structure refinement for $7\!\cdot\! \text{CHCl}_3$

Empirical formula	C75.50 H58.50 Au Cl1.50 O4.50 P2 Si2	
Formula weight	1405.98	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 11.5423(4) Å	⟨= 90.00 °.
	b = 14.3340(6) Å	$\ensuremath{\mathbb{R}}=90.00$ °.
	c = 40.0455(13) Å	$\odot = 90.00$ °.
Volume	6625.4(4) Å ³	
Z	4	
Density (calculated)	1.410 Mg/m ³	
Absorption coefficient	2.415 mm ⁻¹	
F(000)	2840	
Crystal size	$0.10 \ge 0.05 \ge 0.01 \text{ mm}^3$	
Theta range for data collection	2.48 to 26.45 °.	
Index ranges	-14 <=h<=14 ,-12 <=k<=	17 ,-50 <=l<=49
Reflections collected	13548	
Independent reflections	10065 [R(int) = 0.1441]	
Completeness to theta =26.45 $^{\circ}$	0.994 %	
Absorption correction	Empirical	
Max. and min. transmission	0.9762 and 0.7942	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	13548 / 176 / 839	
Goodness-of-fit on F ²	1.022	
Final R indices [I>2sigma(I)]	R1 = 0.0620, $wR2 = 0.12$	398
R indices (all data)	R1 = 0.0968, $wR2 = 0.12$	598
Largest diff. peak and hole	1.908 and -1.288 e.Å ⁻³	

Bond lengths	
Au1-O4	2.057(7)
Au1-P2	2.200(3)
C1-O1	1.388(10)
C1-C10	1.391(12)
C1-C2	1.415(11)
O1-P1	1.607(7)
P1-O3	1.463(7)
P1-O4	1.503(7)
P1-O2	1.617(6)
Si1-C21	1.864(9)
Si1-C27	1.867(10)
Si1-C2	1.878(8)
Si1-C33	1.885(10)
C2-C3	1.355(13)
O2-C20	1.402(11)
P2-C63	1.801(11)
P2-C57	1.810(10)
P2-C69	1.823(10)
Si2-C51	1.83(3)
Si2-C45	1.89(3)
Si2-C19	1.91(3)
Si2-C39	1.95(2)
Si2'-C45'	1.85(3)
Si2'-C39'	1.86(3)
Si2'-C19	1.91(3)
Si2'-C51'	1.94(3)
C3-C4	1.433(13)
C4-C5	1.409(13)
C4-C9	1.415(12)
C5-C6	1.368(13)
C6-C7	1.407(13)
C7-C8	1.358(13)
C8-C9	1.445(12)
C9-C10	1.408(13)
C10-C11	1.499(12)

Bond lengths [Å] and angles [°] for $7 \cdot CHCl_3$.

C11-C20	1.392(12)
C11-C12	1.407(13)
C12-C13	1.384(13)
C12-C17	1.422(11)
C13-C14	1.361(13)
C14-C15	1.418(13)
C15-C16	1.348(14)
C16-C17	1.408(13)
C17-C18	1.415(13)
C18-C19	1.381(13)
C19-C20	1.406(12)
C21-C26	1.389(14)
C21-C22	1.418(10)
C22-C23	1.359(13)
C23-C24	1.399(15)
C24-C25	1.385(14)
C25-C26	1.388(14)
C27-C32	1.389(13)
C27-C28	1.431(12)
C28-C29	1.381(14)
C29-C30	1.400(15)
C30-C31	1.375(13)
C31-C32	1.389(13)
C33-C34	1.379(13)
C33-C38	1.39(15)
C34-C35	1.398(13)
C35-C36	1.407(16)
C36-C37	1.383(15)
C37-C38	1.380(14)
C39-C40	1.39
C39-C44	1.39
C40-C41	1.39
C41-C42	1.39
C42-C43	1.39
C43-C44	1.39
C39'-C40'	1.39
C39'-C44'	1.39
C40'-C41'	1.39

C41'-C42'	1.39
C42'-C43'	1.39
C43'-C44'	1.39
C45'-C46'	1.39
C45'-C50'	1.39
C46'-C47'	1.39
C47'-C48'	1.39
C48'-C49'	1.39
C49'-C50'	1.39
C45-C46	1.39
C45-C50	1.39
C46-C47	1.39
C47-C48	1.39
C48-C49	1.39
C49-C50	1.39
C57-C62	1.375(17)
C57-C58	1.426(15)
C58-C59	1.369(15)
C59-C60	1.410(2)
C60-C61	1.383(19)
C61-C62	1.382(16)
C63-C64	1.367(16)
C63-C68	1.379(13)
C64-C65	1.390(17)
C65-C66	1.398(16)
C66-C67	1.352(16)
C67-C68	1.400(14)
C69-C70	1.336(13)
C69-C74	1.381(15)
C70-C71	1.386(15)
C71-C72	1.411(17)
C72-C73	1.314(19)
C73-C74	1.341(17)
C51-C52	1.39
C51-C56	1.39
C52-C53	1.39
C53-C54	1.39
C54-C55	1.39

C55-C56	1.39
C51'-C52'	1.39
C51'-C56'	1.39
C52'-C53'	1.39
C53'-C54'	1.39
C54'-C55'	1.39
C55'-C56'	1.39
C1S-Cl1S	1.68(3)
C1S-Cl2S	1.73(2)
C1S-C13S	1.85(3)
O1W-C1W	1.427(10)
C1W-C2W	1.538(10)

Angles------04-Au1-P2 172 69(18)

O4-Au1-P2	172.69(18)
O1-C1-C10	117.4(6)
O1-C1-C2	118.3(7)
C10-C1-C2	124.0(8)
C1-O1-P1	121.3(6)
O3-P1-O4	118.4(4)
O3-P1-O1	113.4(4)
O4-P1-O1	103.6(4)
O3-P1-O2	107.1(4)
O4-P1-O2	109.7(3)
O1-P1-O2	103.9(3)
C21-Si1-C27	111.0(4)
C21-Si1-C2	107.0(4)
C27-Si1-C2	108.1(4)
C21-Si1-C33	106.3(4)
C27-Si1-C33	111.6(4)
C2-Si1-C33	112.8(4)
C3-C2-C1	115.7(7)
C3-C2-Si1	120.3(6)
C1-C2-Si1	123.9(7)
C20-O2-P1	119.1(6)
C63-P2-C57	107.5(5)
C63-P2-C69	103.7(4)
C57-P2-C69	106.0(4)

C63-P2-Au1	110.1(4)
C57-P2-Au1	111.4(4)
C69-P2-Au1	117.4(3)
C51-Si2-C45	116.5(14)
C51-Si2-C19	117.9(16)
C45-Si2-C19	108.1(14)
C51-Si2-C39	100.5(14)
C45-Si2-C39	107.5(15)
C19-Si2-C39	104.8(12)
C45'-Si2'-C39'	112.7(18)
C45'-Si2'-C19	106.5(15)
C39'-Si2'-C19	110.5(15)
C45'-Si2'-C51'	111.4(15)
C39'-Si2'-C51'	103.7(16)
C19-Si2'-C51'	112.2(17)
C2-C3-C4	124.5(8)
C5-C4-C9	120.9(8)
C5-C4-C3	122.3(8)
C9-C4-C3	116.8(8)
P1-O4-Au1	120.8(4)
C6-C5-C4	120.8(8)
C5-C6-C7	118.6(9)
C8-C7-C6	122.8(8)
C7-C8-C9	119.6(8)
C10-C9-C4	120.9(8)
C10-C9-C8	121.8(8)
C4-C9-C8	117.2(8)
C1-C10-C9	117.4(7)
C1-C10-C11	120.8(8)
C9-C10-C11	121.7(7)
C20-C11-C12	119.9(8)
C20-C11-C10	119.9(8)
C12-C11-C10	119.8(8)
C13-C12-C11	123.9(8)
C13-C12-C17	118.3(8)
C11-C12-C17	117.8(8)
C14-C13-C12	122.3(9)
C13-C14-C15	119.4(10)

119.7(9)
121.5(8)
121.9(8)
118.7(8)
119.4(8)
122.8(8)
116.4(8)
113.7(10)
129.8(10)
117.9(10)
125.2(10)
8.8(14)
119.8(8)
122.6(8)
117.5(8)
115.9(9)
121.6(6)
122.2(7)
121.0(9)
122.7(8)
116.8(10)
120.8(10)
122.6(8)
117.4(9)
121.8(6)
120.8(7)
120.2(9)
120.9(9)
119.2(9)
120.6(9)
121.7(8)
117.3(9)
121.3(8)
121.4(8)
122.1(10)
118.9(9)
119.5(10)
119.8(10)

C37-C38-C33	122.4(10)
C40-C39-C44	120.0
C40-C39-Si2	123.8(12)
C44-C39-Si2	116.1(12)
C41-C40-C39	120.0
C42-C41-C40	120.0
C41-C42-C43	120.0
C44-C43-C42	120.0
C43-C44-C39	120.0
C40'-C39'-C44'	120.0
C40'-C39'-Si2'	118.3(14)
C44'-C39'-Si2'	121.0(14)
C39'-C40'-C41'	120.0
C42'-C41'-C40'	120.0
C43'-C42'-C41'	120.0
C42'-C43'-C44'	120.0
C43'-C44'-C39'	120.0
C46'-C45'-C50'	120.0
C46'-C45'-Si2'	116.4(13)
C50'-C45'-Si2'	123.5(13)
C45'-C46'-C47'	120.0
C48'-C47'-C46'	120.0
C49'-C48'-C47'	120.0
C48'-C49'-C50'	120.0
C49'-C50'-C45'	120.0
C46-C45-C50	120.0
C46-C45-Si2	122.4(10)
C50-C45-Si2	117.6(10)
C47-C46-C45	120.0
C46-C47-C48	120.0
C49-C48-C47	120.0
C50-C49-C48	120.0
C49-C50-C45	120.0
C62-C57-C58	118.7(10)
C62-C57-P2	124.2(9)
C58-C57-P2	117.0(8)
C59-C58-C57	121.4(12)
C58-C59-C60	118.3(12)

120.5(10)
120.6(12)
120.4(12)
117.9(10)
122.4(9)
119.4(8)
122.3(12)
118.5(12)
119.7(11)
120.7(10)
120.6(9)
117.9(10)
124.0(8)
118.1(8)
123.0(10)
117.1(11)
118.4(10)
123.9(12)
119.7(12)
120.0
119.9(12)
117.4(12)
120.0
120.0
120.0
120.0
120.0
120.0
121.7(11)
118.2(11)
120.0
120.0
120.0
120.0
120.0
114.5(15)
109.1(13)
107.2(14)

O1W-C1W-C2W 97(2)

Torsion angles [°] for 7 ·CHCl₃.

C10-C1-O1-P1	69.8(10)
C2-C1-O1-P1	-115.0(8)
C1-O1-P1-O3	67.3(7)
C1-O1-P1-O4	-163.2(6)
C1-O1-P1-O2	-48.6(7)
01-C1-C2-C3	178.6(8)
C10-C1-C2-C3	-6.6(15)
O1-C1-C2-Si1	-5.6(13)
C10-C1-C2-Si1	169.3(8)
C21-Si1-C2-C3	30.3(9)
C27-Si1-C2-C3	-89.4(9)
C33-Si1-C2-C3	146.8(8)
C21-Si1-C2-C1	-145.4(8)
C27-Si1-C2-C1	95.0(8)
C33-Si1-C2-C1	-28.9(10)
O3-P1-O2-C20	-162.4(6)
O4-P1-O2-C20	68.0(7)
O1-P1-O2-C20	-42.2(7)
O4-Au1-P2-C63	43.0(15)
O4-Au1-P2-C57	-76.2(15)
O4-Au1-P2-C69	161.3(14)
C1-C2-C3-C4	0.0(15)
Si1-C2-C3-C4	-176.0(7)
C2-C3-C4-C5	-179.7(10)
C2-C3-C4-C9	2.2(14)
O3-P1-O4-Au1	154.8(4)
O1-P1-O4-Au1	28.4(4)
O2-P1-O4-Au1	-82.0(5)
P2-Au1-O4-P1	-53.6(16)
C9-C4-C5-C6	0.2(15)
C3-C4-C5-C6	-177.9(9)
C4-C5-C6-C7	-1.9(15)
C5-C6-C7-C8	2.1(16)
C6-C7-C8-C9	-0.6(16)

C5-C4-C9-C10	-176.3(9)
C3-C4-C9-C10	1.9(13)
C5-C4-C9-C8	1.2(14)
C3-C4-C9-C8	179.4(9)
C7-C8-C9-C10	176.4(9)
C7-C8-C9-C4	-1.0(15)
O1-C1-C10-C9	-174.6(8)
C2-C1-C10-C9	10.5(15)
O1-C1-C10-C11	7.6(14)
C2-C1-C10-C11	-167.3(9)
C4-C9-C10-C1	-7.8(14)
C8-C9-C10-C1	174.8(9)
C4-C9-C10-C11	169.9(9)
C8-C9-C10-C11	-7.5(15)
C1-C10-C11-C20	-55.6(13)
C9-C10-C11-C20	126.8(10)
C1-C10-C11-C12	117.2(10)
C9-C10-C11-C12	-60.5(12)
C20-C11-C12-C13	170.2(8)
C10-C11-C12-C13	-2.6(13)
C20-C11-C12-C17	-11.3(12)
C10-C11-C12-C17	175.9(8)
C11-C12-C13-C14	177.6(9)
C17-C12-C13-C14	-0.9(13)
C12-C13-C14-C15	-0.4(14)
C13-C14-C15-C16	2.1(14)
C14-C15-C16-C17	-2.6(14)
C15-C16-C17-C18	178.8(9)
C15-C16-C17-C12	1.3(13)
C13-C12-C17-C16	0.5(12)
C11-C12-C17-C16	-178.1(8)
C13-C12-C17-C18	-177.1(8)
C11-C12-C17-C18	4.3(12)
C16-C17-C18-C19	-175.4(9)
C12-C17-C18-C19	2.1(13)
C17-C18-C19-C20	-1.4(13)
C17-C18-C19-Si2'	179.7(12)
C17-C18-C19-Si2	171.1(11)

C45'-Si2'-C19-C18	-107.1(13)
C39'-Si2'-C19-C18	16(2)
C51'-Si2'-C19-C18	130.8(12)
C45'-Si2'-C19-C20	74.2(19)
C39'-Si2'-C19-C20	-163.1(12)
C51'-Si2'-C19-C20	-47.9(19)
C45'-Si2'-C19-Si2	13(10)
C39'-Si2'-C19-Si2	135(12)
C51'-Si2'-C19-Si2	-109(11)
C51-Si2-C19-C18	142.4(11)
C45-Si2-C19-C18	-82.7(12)
C39-Si2-C19-C18	31.7(18)
C51-Si2-C19-C20	-45.8(18)
C45-Si2-C19-C20	89.1(15)
C39-Si2-C19-C20	-156.5(11)
C51-Si2-C19-Si2'	79(11)
C45-Si2-C19-Si2'	-147(12)
C39-Si2-C19-Si2'	-32(10)
C12-C11-C20-O2	-171.6(7)
C10-C11-C20-O2	1.1(12)
C12-C11-C20-C19	12.5(13)
C10-C11-C20-C19	-174.7(8)
P1-O2-C20-C11	70.3(9)
P1-O2-C20-C19	-113.7(8)
C18-C19-C20-C11	-5.9(13)
Si2'-C19-C20-C11	172.7(13)
Si2-C19-C20-C11	-177.8(12)
C18-C19-C20-O2	178.2(7)
Si2'-C19-C20-O2	-3.2(17)
Si2-C19-C20-O2	6.3(15)
C27-Si1-C21-C26	160.7(8)
C2-Si1-C21-C26	43.0(9)
C33-Si1-C21-C26	-77.8(8)
C27-Si1-C21-C22	-25.4(9)
C2-Si1-C21-C22	-143.2(8)
C33-Si1-C21-C22	96.1(8)
C26-C21-C22-C23	3.2(14)
Si1-C21-C22-C23	-171.0(8)

C22-C23-C24-C25 $0.6(17)$ C23-C24-C25-C26 $1.2(18)$ C24-C25-C26-C21 $-0.8(18)$ C22-C21-C26-C25 $-1.4(15)$ Si1-C21-C26-C25 $-1.3(9)$ C21-Si1-C27-C32 $-1.3(9)$ C33-Si1-C27-C32 $123.2(8)$ C2-Si1-C27-C28 $178.8(7)$ C33-Si1-C27-C28 $178.8(7)$ C33-Si1-C27-C28 $-56.6(8)$ C32-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $-178.0(8)$ C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C37-C32-C31 $-3.4(14)$ Si1-C37-C32-C31 $-3.4(14)$ Si1-C37-C32-C31 $-3.4(14)$ Si1-C37-C32-C31 $-76.8(8)$ C21-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C38 $-3.6(7)$ C38-C37-C38 $-3.6(7)$ C38-C37-C38 $-3.6(7)$ C33-C34-C35 $-0.7(11)$ Si1-C33-C34 $-29.4(7)$ C33-C34-C35 $-0.7(13)$ C35-C36-C37 $-0.7(13)$ C35-C36-C37 $-0.7(13)$ C35-C36-C37 $-0.7(13)$ C35-C36-C37 $-0.7(13)$ C35-C36-C37 $-1.5(12)$ C34-C35-C38-C33 $-1.5(12)$ C3	C21-C22-C23-C24	-2.9(16)
C23-C24-C25-C26 $1.2(18)$ C24-C25-C26-C21 $-0.8(18)$ C22-C21-C26-C25 $-1.4(15)$ Si1-C21-C26-C25 $172.9(9)$ C21-Si1-C27-C32 $-1.3(9)$ C33-Si1-C27-C32 $123.2(8)$ C2-Si1-C27-C28 $61.7(8)$ C2-Si1-C27-C28 $178.8(7)$ C33-Si1-C27-C28 $178.8(7)$ C33-Si1-C27-C28 $-56.6(8)$ C32-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $-178.0(8)$ C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C37-C32-C31 $-3.4(14)$ Si1-C37-C32-C31 $-3.4(14)$ Si1-C37-C32-C31 $-3.4(14)$ Si1-C37-C32-C31 $-3.4(14)$ Si1-C37-C32-C31 $-76.8(8)$ C21-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C38 $-3.6(7)$ C38-C37-C38 $-3.6(7)$ C38-C37-C38 $-3.6(7)$ C33-C34-C35 $-0.7(11)$ Si1-C33-C38 $-1.79.8(6)$ C33-C34-C35 $-0.7(13)$ C35-C36-C37 $-0.7(13)$ C35-C36-C37 $-0.7(13)$ C35-C36-C37 $-1.5(12)$ C34-C35-C36 $-1.5(12)$ C34-C35-C36 $-1.5(12)$	C22-C23-C24-C25	0.6(17)
C24-C25-C26-C21 $-0.8(18)$ $C22-C21-C26-C25$ $-1.4(15)$ $Si1-C21-C26-C25$ $172.9(9)$ $C21-Si1-C27-C32$ $-1.3(9)$ $C33-Si1-C27-C32$ $123.2(8)$ $C21-Si1-C27-C28$ $61.7(8)$ $C2-Si1-C27-C28$ $178.8(7)$ $C33-Si1-C27-C28$ $178.8(7)$ $C33-Si1-C27-C28$ $-56.6(8)$ $C32-C27-C28-C29$ $2.2(13)$ $Si1-C27-C28-C29$ $-2.1(15)$ $C28-C29-C30-C31$ $-0.9(16)$ $C29-C30-C31-C32$ $-0.3(15)$ $C30-C31-C32-C27$ $2.5(15)$ $C32-C27-C32-C31$ $-3.4(14)$ $Si1-C27-C32-C31$ $-3.4(14)$ $Si1-C27-C32-C31$ $-3.4(14)$ $Si1-C27-C32-C31$ $-3.4(14)$ $Si1-C27-C32-C31$ $-3.4(14)$ $Si1-C33-C34$ $-29.4(7)$ $C2-Si1-C33-C34$ $-29.4(7)$ $C2-Si1-C33-C38$ $30.3(7)$ $C2-Si1-C33-C38$ $-0.7(11)$ $Si1-C33-C38$ $-0.7(11)$ $Si1-C33-C38$ $-0.7(11)$ $Si1-C33-C38$ $-0.7(11)$ $Si1-C33-C38$ $-0.7(13)$ $C35-C36-C37-C38$ $-1.5(12)$ $C34-C35-C36-C37$ $-0.7(13)$ $C35-C36-C37-C38$ $-1.5(12)$ $C34-C35-C36-C37$ $-1.5(12)$ $C34-C35-C36-C37$ $-1.5(12)$ $C34-C35-C36-C37$ $-1.5(12)$ $C34-C35-C36-C37$ $-1.5(12)$ $C34-C35-C36-C37$ $-1.5(12)$ $C34-C35-C36-C37$ $-1.5(12)$ $C34-C35-C39-C40$ $-182.6(12)$ $C19-Si2-C39-C40$ $-132.6(12)$ C	C23-C24-C25-C26	1.2(18)
C22-C21-C26-C25 $-1.4(15)$ Si1-C21-C26-C25172.9(9)C21-Si1-C27-C32 $-1.3(9)$ C33-Si1-C27-C32123.2(8)C21-Si1-C27-C2861.7(8)C2-Si1-C27-C28178.8(7)C33-Si1-C27-C28 $-56.6(8)$ C32-C27-C28-C292.2(13)Si1-C27-C28-C29 $-178.0(8)$ C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C29-C301 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C38 $-0.7(11)$ Si1-C33-C38 $-0.7(11)$ Si1-C33-C38 $-0.7(11)$ Si1-C33-C38 $-0.7(11)$ Si1-C33-C38 $-1.5(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $-1.5(12)$ C34-C35-C36-C37 $-1.5(12)$ C34-C35-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 $-132.6(12)$	C24-C25-C26-C21	-0.8(18)
Si1-C21-C26-C25 $172.9(9)$ C21-Si1-C27-C32 $-118.4(8)$ C2-Si1-C27-C32 $123.2(8)$ C21-Si1-C27-C32 $123.2(8)$ C21-Si1-C27-C28 $61.7(8)$ C2-Si1-C27-C28 $178.8(7)$ C33-Si1-C27-C28 $-56.6(8)$ C32-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $-178.0(8)$ C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $176.8(8)$ C21-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C38 $-151.4(6)$ C2-Si1-C33-C38 $-0.7(11)$ Si1-C33-C38 $-0.7(11)$ Si1-C33-C38 $-0.7(11)$ Si1-C33-C38 $-1.5(12)$ C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C35-C36-C37 $-0.7(13)$ Si1-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-1.5(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C35-C36-C37 $-1.5(12)$ C34-C35-C36-C37 $-1.5(12)$ C34-C35-C36-C37 $-1.5(12)$ C34-C35-C36-C37 $-1.5(12)$ C34-C35-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 -7	C22-C21-C26-C25	-1.4(15)
C21-Si1-C27-C32 $-118.4(8)$ C2-Si1-C27-C32 $-1.3(9)$ C33-Si1-C27-C32 $123.2(8)$ C21-Si1-C27-C28 $61.7(8)$ C2-Si1-C27-C28 $178.8(7)$ C33-Si1-C27-C28 $-56.6(8)$ C32-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $-178.0(8)$ C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C38-C37-C38 $-151.4(6)$ C2-Si1-C33-C38 $-151.4(6)$ C33-C34-C35 $-0.7(11)$ Si1-C33-C34 $-29.4(7)$ C35-C36-C37 $-0.7(13)$ C35-C36-C37 $-0.7(13)$ C35-C36-C37 $-0.7(13)$ C35-C36-C37 $-1.5(12)$ C34-C35-C36 $-1.5(12)$ C34-C35-C36-C37 $-1.5(12)$ C34-C35-C39-C40 $-18(2)$ <t< td=""><td>Si1-C21-C26-C25</td><td>172.9(9)</td></t<>	Si1-C21-C26-C25	172.9(9)
C2-Si1-C27-C32 $-1.3(9)$ C33-Si1-C27-C32123.2(8)C21-Si1-C27-C2861.7(8)C2-Si1-C27-C28178.8(7)C33-Si1-C27-C28-56.6(8)C32-C27-C28-C292.2(13)Si1-C27-C28-C292.2(13)Si1-C27-C28-C29-178.0(8)C27-C28-C29-C30-0.1(15)C28-C29-C30-C31-0.9(16)C29-C30-C31-C32-0.3(15)C30-C31-C32-C272.5(15)C28-C27-C32-C31-3.4(14)Si1-C27-C32-C31-3.4(14)Si1-C27-C32-C31176.8(8)C21-Si1-C33-C34-29.4(7)C2-Si1-C33-C34-29.4(7)C2-Si1-C33-C3492.5(7)C21-Si1-C33-C3492.5(7)C21-Si1-C33-C3492.5(7)C21-Si1-C33-C34-29.4(7)C2-Si1-C33-C3830.3(7)C27-Si1-C33-C38-0.7(11)Si1-C33-C38-0.7(11)Si1-C33-C34-29.4(7)C38-C37-C38-0.7(11)Si1-C33-C34-29.4(7)C33-C34-C35-0.7(11)Si1-C33-C38-1.51.4(6)C33-C34-C35-0.7(11)Si1-C33-C38-1.51.4(6)C33-C34-C35-C360.4(12)C34-C35-C36-C37-0.7(13)C35-C36-C37-C381.2(13)C36-C37-C381.2(13)C36-C37-C38-C37-1.50.6(6)C51-Si2-C39-C40-18(2)C19-Si2-C39-C40-132.6(12)C19-Si2-C39-C40-132.6(12)C51-Si2-C39-C44-71.8(16)	C21-Si1-C27-C32	-118.4(8)
C33-Si1-C27-C32123.2(8)C21-Si1-C27-C28 $61.7(8)$ C2-Si1-C27-C28 $178.8(7)$ C33-Si1-C27-C28 $-56.6(8)$ C32-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $-178.0(8)$ C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $176.8(8)$ C21-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $-151.4(6)$ C2-Si1-C33-C38 $-151.4(6)$ C33-C34-C35 $-0.7(11)$ Si1-C33-C38 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C35-C36-C37 $-179.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C44 $-71.8(16)$	C2-Si1-C27-C32	-1.3(9)
C21-Si1-C27-C28 $61.7(8)$ C2-Si1-C27-C28 $178.8(7)$ C33-Si1-C27-C28 $-56.6(8)$ C32-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $176.8(8)$ C21-Si1-C33-C34 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $-151.4(6)$ C2-Si1-C33-C38 $-151.4(6)$ C3-C31-C32-C37 $-0.7(11)$ Si1-C33-C36 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-1.5(12)$ C34-C35-C36-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C35-C36-C37 $-1.5(12)$ C34-C35-C36-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C35-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C19-Si2-C39-C40 $-132.6(12)$ C19-Si2-C39-C40 $-71.8(16)$	C33-Si1-C27-C32	123.2(8)
C2-Si1-C27-C28 $178.8(7)$ C33-Si1-C27-C28 $-56.6(8)$ C32-C27-C28-C29 $2.2(13)$ Si1-C27-C28-C29 $-178.0(8)$ C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C27-Si2-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $-151.4(6)$ C2-Si1-C33-C38 $-151.4(6)$ C2-Si1-C33-C38 $-151.4(6)$ C2-Si1-C33-C38 $-151.4(6)$ C2-Si1-C33-C38 $-151.4(6)$ C2-Si1-C33-C38 $-151.4(6)$ C3-C34-C35 $-179.8(6)$ C33-C34-C35 $-179.8(6)$ C33-C34-C35-C36 $-1.2(13)$ C36-C37-C38 $-1.2(13)$ C36-C37-C38-C37 $-1.2(11)$ Si1-C33-C38-C37 $-1.2(11)$ Si1-C33-C38-C37 $-1.79.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 $-71.8(16)$	C21-Si1-C27-C28	61.7(8)
C33-Si1-C27-C28 $-56.6(8)$ C32-C27-C28-C292.2(13)Si1-C27-C28-C29 $-178.0(8)$ C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C272.5(15)C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $176.8(8)$ C21-Si1-C33-C34 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $92.5(7)$ C21-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $-86.7(7)$ C38-C37-C38 $-151.4(6)$ C2-Si1-C33-C38 $-0.7(11)$ Si1-C33-C34-C35 $-179.8(6)$ C33-C34-C35 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.79.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 $-71.8(16)$	C2-Si1-C27-C28	178.8(7)
C32-C27-C28-C292.2(13)Si1-C27-C28-C29-C30 $-178.0(8)$ C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C272.5(15)C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $176.8(8)$ C21-Si1-C33-C34 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $-0.7(11)$ Si1-C33-C38 $-0.7(11)$ Si1-C33-C38 $-0.7(11)$ Si1-C33-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C35-C36-C37 $-1.79.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C44 $-71.8(16)$	C33-Si1-C27-C28	-56.6(8)
Si1-C27-C28-C29 $-178.0(8)$ C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $176.8(8)$ C21-Si1-C33-C34 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $92.5(7)$ C21-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $-0.7(11)$ Si1-C33-C38 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(11)$ Si1-C33-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C35-C36-C37-C38 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C19-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 $-71.8(16)$	C32-C27-C28-C29	2.2(13)
C27-C28-C29-C30 $-0.1(15)$ C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $176.8(8)$ C21-Si1-C33-C34 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $92.5(7)$ C21-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $-86.7(7)$ C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(11)$ Si1-C33-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C19-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 $-71.8(16)$	Si1-C27-C28-C29	-178.0(8)
C28-C29-C30-C31 $-0.9(16)$ C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31 $176.8(8)$ C21-Si1-C33-C34 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $92.5(7)$ C21-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $-86.7(7)$ C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C38 $-151.4(6)$ C33-C34-C35 $-0.7(11)$ Si1-C33-C38 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C35-C36-C37-C38 $-1.5(12)$ C34-C33-C38-C37 $-1.5(12)$ C34-C33-C38-C37 $-1.2(11)$ Si1-C33-C38-C37 $-179.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 $-71.8(16)$	C27-C28-C29-C30	-0.1(15)
C29-C30-C31-C32 $-0.3(15)$ C30-C31-C32-C27 $2.5(15)$ C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31176.8(8)C21-Si1-C33-C34 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $92.5(7)$ C21-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $151.4(6)$ C2-Si1-C33-C38 $-86.7(7)$ C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C35-C36-C37-C38 $-1.5(12)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-1.79.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C44 $-71.8(16)$	C28-C29-C30-C31	-0.9(16)
C30-C31-C32-C272.5(15)C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31176.8(8)C21-Si1-C33-C34 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $92.5(7)$ C21-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $151.4(6)$ C2-Si1-C33-C38 $-86.7(7)$ C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(13)$ C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-179.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 $-71.8(16)$	C29-C30-C31-C32	-0.3(15)
C28-C27-C32-C31 $-3.4(14)$ Si1-C27-C32-C31176.8(8)C21-Si1-C33-C34 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C3892.5(7)C21-Si1-C33-C3830.3(7)C27-Si1-C33-C38151.4(6)C2-Si1-C33-C38 $-86.7(7)$ C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(13)$ C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-179.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C40 $-71.8(16)$	C30-C31-C32-C27	2.5(15)
Si1-C27-C32-C31176.8(8)C21-Si1-C33-C34-150.6(6)C27-Si1-C33-C34-29.4(7)C2-Si1-C33-C3492.5(7)C21-Si1-C33-C3830.3(7)C27-Si1-C33-C38151.4(6)C2-Si1-C33-C38-86.7(7)C38-C33-C34-C35-0.7(11)Si1-C33-C34-C35-0.7(11)Si1-C33-C34-C35-0.7(11)Si1-C33-C34-C35-0.7(13)C34-C35-C36-C37-0.7(13)C35-C36-C37-C381.2(13)C36-C37-C38-C33-1.5(12)C34-C33-C38-C371.2(11)Si1-C33-C38-C37-179.6(6)C51-Si2-C39-C40-18(2)C19-Si2-C39-C40-132.6(12)C51-Si2-C39-C44-71.8(16)	C28-C27-C32-C31	-3.4(14)
C21-Si1-C33-C34 $-150.6(6)$ C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C38 $92.5(7)$ C21-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $151.4(6)$ C2-Si1-C33-C38 $-86.7(7)$ C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-179.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C44 $-71.8(16)$	Si1-C27-C32-C31	176.8(8)
C27-Si1-C33-C34 $-29.4(7)$ C2-Si1-C33-C34 $92.5(7)$ C21-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $151.4(6)$ C2-Si1-C33-C38 $-86.7(7)$ C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-179.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C44 $-71.8(16)$	C21-Si1-C33-C34	-150.6(6)
C2-Si1-C33-C34 $92.5(7)$ C21-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $151.4(6)$ C2-Si1-C33-C38 $-86.7(7)$ C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-179.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C44 $-71.8(16)$	C27-Si1-C33-C34	-29.4(7)
C21-Si1-C33-C38 $30.3(7)$ C27-Si1-C33-C38 $151.4(6)$ C2-Si1-C33-C38 $-86.7(7)$ C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-179.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C44 $-71.8(16)$	C2-Si1-C33-C34	92.5(7)
C27-Si1-C33-C38151.4(6)C2-Si1-C33-C38-86.7(7)C38-C33-C34-C35-0.7(11)Si1-C33-C34-C35-179.8(6)C33-C34-C35-C360.4(12)C34-C35-C36-C37-0.7(13)C35-C36-C37-C381.2(13)C36-C37-C38-C33-1.5(12)C34-C33-C38-C371.2(11)Si1-C33-C38-C37-179.6(6)C51-Si2-C39-C40-18(2)C19-Si2-C39-C40-132.6(12)C51-Si2-C39-C44-71.8(16)	C21-Si1-C33-C38	30.3(7)
C2-Si1-C33-C38 $-86.7(7)$ C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-179.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C44 $-71.8(16)$	C27-Si1-C33-C38	151.4(6)
C38-C33-C34-C35 $-0.7(11)$ Si1-C33-C34-C35 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-179.6(6)$ C51-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C44 $-71.8(16)$	C2-Si1-C33-C38	-86.7(7)
Si1-C33-C34-C35 $-179.8(6)$ C33-C34-C35-C36 $0.4(12)$ C34-C35-C36-C37 $-0.7(13)$ C35-C36-C37-C38 $1.2(13)$ C36-C37-C38-C33 $-1.5(12)$ C34-C33-C38-C37 $1.2(11)$ Si1-C33-C38-C37 $-179.6(6)$ C51-Si2-C39-C40 $104.6(14)$ C45-Si2-C39-C40 $-18(2)$ C19-Si2-C39-C40 $-132.6(12)$ C51-Si2-C39-C44 $-71.8(16)$	C38-C33-C34-C35	-0.7(11)
C33-C34-C35-C36 0.4(12) C34-C35-C36-C37 -0.7(13) C35-C36-C37-C38 1.2(13) C36-C37-C38-C33 -1.5(12) C34-C33-C38-C37 1.2(11) Si1-C33-C38-C37 -179.6(6) C51-Si2-C39-C40 104.6(14) C45-Si2-C39-C40 -18(2) C19-Si2-C39-C40 -132.6(12) C51-Si2-C39-C44 -71.8(16)	Si1-C33-C34-C35	-179.8(6)
C34-C35-C36-C37 -0.7(13) C35-C36-C37-C38 1.2(13) C36-C37-C38-C33 -1.5(12) C34-C33-C38-C37 1.2(11) Si1-C33-C38-C37 -179.6(6) C51-Si2-C39-C40 104.6(14) C45-Si2-C39-C40 -18(2) C19-Si2-C39-C40 -132.6(12) C51-Si2-C39-C44 -71.8(16)	C33-C34-C35-C36	0.4(12)
C35-C36-C37-C38 1.2(13) C36-C37-C38-C33 -1.5(12) C34-C33-C38-C37 1.2(11) Si1-C33-C38-C37 -179.6(6) C51-Si2-C39-C40 104.6(14) C45-Si2-C39-C40 -18(2) C19-Si2-C39-C40 -132.6(12) C51-Si2-C39-C44 -71.8(16)	C34-C35-C36-C37	-0.7(13)
C36-C37-C38-C33-1.5(12)C34-C33-C38-C371.2(11)Si1-C33-C38-C37-179.6(6)C51-Si2-C39-C40104.6(14)C45-Si2-C39-C40-18(2)C19-Si2-C39-C40-132.6(12)C51-Si2-C39-C44-71.8(16)	C35-C36-C37-C38	1.2(13)
C34-C33-C38-C37 1.2(11) Si1-C33-C38-C37 -179.6(6) C51-Si2-C39-C40 104.6(14) C45-Si2-C39-C40 -18(2) C19-Si2-C39-C40 -132.6(12) C51-Si2-C39-C44 -71.8(16)	C36-C37-C38-C33	-1.5(12)
Si1-C33-C38-C37-179.6(6)C51-Si2-C39-C40104.6(14)C45-Si2-C39-C40-18(2)C19-Si2-C39-C40-132.6(12)C51-Si2-C39-C44-71.8(16)	C34-C33-C38-C37	1.2(11)
C51-Si2-C39-C40104.6(14)C45-Si2-C39-C40-18(2)C19-Si2-C39-C40-132.6(12)C51-Si2-C39-C44-71.8(16)	Si1-C33-C38-C37	-179.6(6)
C45-Si2-C39-C40-18(2)C19-Si2-C39-C40-132.6(12)C51-Si2-C39-C44-71.8(16)	C51-Si2-C39-C40	104.6(14)
C19-Si2-C39-C40 -132.6(12 C51-Si2-C39-C44 -71.8(16)	C45-Si2-C39-C40	-18(2)
C51-Si2-C39-C44 -71.8(16)	C19-Si2-C39-C40	-132.6(12)
	C51-Si2-C39-C44	-71.8(16)

C45-Si2-C39-C44	165.9(12)
C19-Si2-C39-C44	51.0(18)
C44-C39-C40-C41	0.0
Si2-C39-C40-C41	-176.3(17)
C39-C40-C41-C42	0.0
C40-C41-C42-C43	0.0
C41-C42-C43-C44	0.0
C42-C43-C44-C39	0.0
C40-C39-C44-C43	0.0
Si2-C39-C44-C43	176.6(16)
C45'-Si2'-C39'-C40'	-11(2)
C19-Si2'-C39'-C40'	-130.4(14)
C51'-Si2'-C39'-C40'	109.2(16)
C45'-Si2'-C39'-C44'	178.1(14)
C19-Si2'-C39'-C44'	59(2)
C51'-Si2'-C39'-C44'	-61(2)
C44'-C39'-C40'-C41'	0.0
Si2'-C39'-C40'-C41'	-170.5(19)
C39'-C40'-C41'-C42'	0.0
C40'-C41'-C42'-C43'	0.0
C41'-C42'-C43'-C44'	0.0
C42'-C43'-C44'-C39'	0.0
C40'-C39'-C44'-C43'	0.0
Si2'-C39'-C44'-C43'	170(2)
C39'-Si2'-C45'-C46'	-59(2)
C19-Si2'-C45'-C46'	62.6(17)
C51'-Si2'-C45'-C46'	-174.8(13)
C39'-Si2'-C45'-C50'	124.5(16)
C19-Si2'-C45'-C50'	-114.2(14)
C51'-Si2'-C45'-C50'	8(2)
C50'-C45'-C46'-C47'	0.0
Si2'-C45'-C46'-C47'	-176.9(16)
C45'-C46'-C47'-C48'	0.0
C46'-C47'-C48'-C49'	0.0
C47'-C48'-C49'-C50'	0.0
C48'-C49'-C50'-C45'	0.0
C46'-C45'-C50'-C49'	0.0
Si2'-C45'-C50'-C49'	176.7(17)

C51-Si2-C45-C46	-156.4(11)
C19-Si2-C45-C46	68.0(14)
C39-Si2-C45-C46	-44.7(19)
C51-Si2-C45-C50	24.3(19)
C19-Si2-C45-C50	-111.3(12)
C39-Si2-C45-C50	136.1(12)
C50-C45-C46-C47	0.0
Si2-C45-C46-C47	-179.2(14)
C45-C46-C47-C48	0.0
C46-C47-C48-C49	0.0
C47-C48-C49-C50	0.0
C48-C49-C50-C45	0.0
C46-C45-C50-C49	0.0
Si2-C45-C50-C49	179.3(13)
C63-P2-C57-C62	21.1(11)
C69-P2-C57-C62	-89.4(10)
Au1-P2-C57-C62	141.8(9)
C63-P2-C57-C58	-159.6(7)
C69-P2-C57-C58	90.0(8)
Au1-P2-C57-C58	-38.9(8)
C62-C57-C58-C59	-3.0(15)
P2-C57-C58-C59	177.6(9)
C57-C58-C59-C60	3.5(16)
C58-C59-C60-C61	-3.9(18)
C59-C60-C61-C62	3.9(19)
C58-C57-C62-C61	2.8(16)
P2-C57-C62-C61	-177.9(9)
C60-C61-C62-C57	-3.3(19)
C57-P2-C63-C64	-74.1(11)
C69-P2-C63-C64	38.0(11)
Au1-P2-C63-C64	164.4(9)
C57-P2-C63-C68	100.6(8)
C69-P2-C63-C68	-147.4(8)
Au1-P2-C63-C68	-21.0(8)
C68-C63-C64-C65	5.5(19)
P2-C63-C64-C65	-179.7(10)
C63-C64-C65-C66	-4(2)
C64-C65-C66-C67	1.2(18)

0.8(16)
-3.5(15)
-178.4(7)
0.4(15)
-116.9(9)
-3.9(10)
121.4(8)
61.3(10)
174.4(10)
-60.4(10)
1.6(17)
179.8(9)
-3.2(18)
4(2)
-4(2)
2(3)
-1(2)
-179.3(12)
-149.3(12)
-18.1(16)
95.0(14)
49.3(16)
-179.5(9)
-66.4(14)
0.0
-160.9(12)
0.0
0.0
0.0
0.0
0.0
161.4(11)
-54(2)
-175.9(13)
64.8(18)
123.2(14)
2(2)
-117.5(13)

C56'-C51'-C52'-C53'	0.0
Si2'-C51'-C52'-C53'	177.6(18)
C51'-C52'-C53'-C54'	0.0
C52'-C53'-C54'-C55'	0.0
C53'-C54'-C55'-C56'	0.0
C54'-C55'-C56'-C51'	0.0
C52'-C51'-C56'-C55'	0.0
Si2'-C51'-C56'-C55'	-177.7(17)

Crystal data and structure refinement for $7{\cdot}\text{MeOH/H}_2\text{O}$

Empirical formula	C76 H66 Au O7.50 P2 Si2	
Formula weight	1414.37	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 11.7382(12) Å	⟨= 90.00 °.
	b = 14.4403(14) Å	
	c = 40.493(4) Å	$\odot = 90.00$ °.
Volume	6863.7(12) Å ³	
Z	4	
Density (calculated)	1.369 Mg/m ³	
Absorption coefficient	2.279 mm ⁻¹	
F(000)	2876	
Crystal size	0.20 x 0.03 x 0.01 mm ³	
Theta range for data collection	1.01 to 26.86 °.	
Index ranges	-13 <=h<=14 ,-17 <=k<=	10 ,-50 <=l<=51
Reflections collected	39386	
Independent reflections	12587 [R(int) = 0.0658]	
Completeness to theta =26.86 $^{\circ}$	0.967 %	
Absorption correction	Empirical	
Max. and min. transmission	0.9776 and 0.6586	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	12587 / 215 / 904	
Goodness-of-fit on F ²	1.142	
Final R indices [I>2sigma(I)]	R1 = 0.0588, $wR2 = 0.14$	424
R indices (all data)	R1 = 0.0644, $wR2 = 0.14$	464
Absolute Structure Flack parameter	x =0.028(7)	
Largest diff. peak and hole	1.666 and -3.523 e.Å ⁻³	

Bond lengths	
Au1-O4	2.101(3)
Au1-P1	2.2201(14)
C1-C6	1.380(9)
C1-C2	1.423(7)
C1-P1	1.830(5)
C2-C3	1.426(6)
C3-C4	1.378(8)
C4-C5	1.393(8)
C5-C6	1.393(8)
C7-C12	1.396(8)
C7-C8	1.438(7)
C7-P1	1.825(5)
C8-C9	1.396(7)
C9-C10	1.359(9)
C10-C11	1.456(9)
C11-C12	1.396(8)
C13-C14	1.364(7)
C13-C18	1.406(6)
C13-P1	1.858(5)
C14-C15	1.435(7)
C15-C16	1.408(9)
C16-C17	1.386(8)
C17-C18	1.383(7)
C19-C28	1.377(5)
C19-O1	1.412(5)
C19-C20	1.426(5)
C20-C21	1.387(5)
C20-Si1	1.935(4)
C21-C22	1.434(6)
C22-C27	1.427(6)
C22-C23	1.457(5)
C23-C24	1.381(6)
C24-C25	1.424(6)
C25-C26	1.383(6)
C26-C27	1.439(5)

Bond lengths [Å] and angles [°] for $7 \cdot MeOH/H_2O$.

C27-C28	1.454(5)
C28-C29	1.515(5)
C29-C38	1.411(5)
C29-C30	1.456(6)
C30-C35	1.419(5)
C30-C31	1.433(6)
C31-C32	1.358(6)
C32-C33	1.416(6)
C33-C34	1.385(6)
C34-C35	1.425(6)
C35-C36	1.433(6)
C36-C37	1.382(6)
C37-C38	1.418(5)
C37-Si2	1.932(4)
C38-O2	1.428(5)
C39-C44	1.395(7)
C39-C40	1.437(6)
C39-Si1	1.910(4)
C40-C41	1.441(6)
C41-C42	1.408(8)
C42-C43	1.423(7)
C43-C44	1.397(7)
C45-C50	1.415(5)
C45-C46	1.425(7)
C45-Si1	1.904(4)
C46-C47	1.406(7)
C47-C48	1.400(7)
C48-C49	1.399(8)
C49-C50	1.383(6)
C51-C56	1.390(7)
C51-C52	1.417(5)
C51-Si1	1.896(5)
C52-C53	1.397(7)
C53-C54	1.401(7)
C54-C55	1.391(6)
C55-C56	1.416(7)
C57-C58	1.405(6)
C57-C62	1.416(8)

1.896(5)
1.415(8)
1.400(10)
1.386(8)
1.402(7)
1.406(6)
1.418(6)
1.915(4)
1.362(7)
1.401(8)
1.381(9)
1.405(7)
1.3900
1.3900
1.9015(18)
1.3900
1.3900
1.3900
1.3900
1.3900
1.3900
1.910(2)
1.3900
1.3900
1.3900
1.3900
1.3900
1.3900
1.8978(19)
1.3900
1.3900
1.3900
1.3900
1.629(3)
1.617(3)
1.493(3)
1.505(3)
1.431(4)

O1M-C1M	1.425(4)
O1N-C1N	1.437(4)
C1P-O1P	1.414(4)
Angles	
O4-Au1-P1	172.10(8)
C6-C1-C2	118.5(5)
C6-C1-P1	124.0(4)
C2-C1-P1	117.5(4)
C1-C2-C3	119.1(5)
C4-C3-C2	120.3(5)
C3-C4-C5	120.5(5)
C4-C5-C6	119.3(6)
C1-C6-C5	122.3(6)
C12-C7-C8	119.8(4)
C12-C7-P1	122.1(4)
C8-C7-P1	118.1(4)
C9-C8-C7	118.3(5)
C10-C9-C8	122.5(5)
C9-C10-C11	120.0(5)
C12-C11-C10	118.0(6)
C7-C12-C11	121.4(5)
C14-C13-C18	119.9(5)
C14-C13-P1	117.1(4)
C18-C13-P1	122.9(4)
C13-C14-C15	120.7(5)
C16-C15-C14	117.8(5)
C17-C16-C15	121.0(5)
C18-C17-C16	119.7(5)
C17-C18-C13	120.7(5)
C28-C19-O1	118.7(3)
C28-C19-C20	123.0(3)
O1-C19-C20	117.9(3)
C21-C20-C19	117.8(3)
C21-C20-Si1	118.6(3)
C19-C20-Si1	123.6(3)
C20-C21-C22	121.3(3)
C27-C22-C21	120.1(3)

21.0(4) 20.5(4) 20.0(4) 20.9(4) 20.7(4) 18.8(3)
20.5(4) 20.0(4) 20.9(4) 20.7(4) 18.8(3)
20.0(4) 20.9(4) 20.7(4) 18.8(3)
20.9(4) 20.7(4) 18.8(3)
20.7(4) 18.8(3)
18.8(3)
10.0(2)
18.0(3)
23.2(3)
19.0(3)
19.7(3)
21.2(3)
17.9(3)
22.1(4)
20.0(3)
18.5(4)
18.4(4)
23.1(3)
20.5(4)
21.6(4)
19.3(4)
20.4(4)
19.6(4)
19.7(4)
20.7(3)
23.4(3)
16.0(4)
16.2(3)
27.6(3)
24.3(4)
16.6(3)
19.1(3)
18.0(4)
22.3(3)
19.6(4)
21.0(5)
18.5(4)
20.1(4)

C44-C43-C42	120.4(5)
C39-C44-C43	121.9(4)
C50-C45-C46	116.4(4)
C50-C45-Si1	122.9(3)
C46-C45-Si1	120.4(3)
C47-C46-C45	121.8(4)
C48-C47-C46	119.8(5)
C49-C48-C47	119.0(5)
C50-C49-C48	121.2(4)
C49-C50-C45	121.8(4)
C56-C51-C52	116.9(4)
C56-C51-Si1	121.7(3)
C52-C51-Si1	121.4(4)
C53-C52-C51	122.1(4)
C52-C53-C54	119.3(4)
C55-C54-C53	120.2(5)
C54-C55-C56	119.3(5)
C51-C56-C55	122.2(4)
C58-C57-C62	117.2(5)
C58-C57-Si2	122.7(4)
C62-C57-Si2	120.1(3)
C57-C58-C59	120.4(6)
C60-C59-C58	122.0(5)
C61-C60-C59	117.4(5)
C60-C61-C62	121.7(6)
C61-C62-C57	121.3(5)
C64-C63-C68	116.9(4)
C64-C63-Si2	125.5(3)
C68-C63-Si2	117.5(3)
C65-C64-C63	122.3(4)
C64-C65-C66	121.0(5)
C67-C66-C65	118.3(5)
C66-C67-C68	121.3(5)
C67-C68-C63	120.1(4)
C70-C69-C74	120.0
C70-C69-Si2	116.60(16)
C74-C69-Si2	122.00(16)
C69-C70-C71	120.0

120.0
120.0
120.0
120.0
120.0
112.24(16)
127.75(16)
120.0
120.0
120.0
120.0
120.0
120.0
115.83(16)
122.84(16)
120.0
120.0
120.0
120.0
120.0
120.6(3)
120.5(3)
120.63(17)
107.2(2)
104.9(2)
104.6(2)
111.44(17)
110.65(18)
117.30(16)
118.12(17)
106.17(18)
109.67(15)
113.45(16)
104.84(18)
103.68(15)
110.51(18)
112.51(18)
106.7(2)

C51-Si1-C20	108.04(19)
C45-Si1-C20	106.74(17)
C39-Si1-C20	112.20(16)
C57-Si2-C69"	119.95(19)
C57-Si2-C69	111.25(19)
C69"-Si2-C69	8.7
C57-Si2-C69'	103.01(19)
C69"-Si2-C69'	17.2
C69-Si2-C69'	8.6
C57-Si2-C63	109.66(19)
C69"-Si2-C63	98.43(19)
C69-Si2-C63	102.76(19)
C69'-Si2-C63	108.72(18)
C57-Si2-C37	108.0(2)
C69"-Si2-C37	113.76(17)
C69-Si2-C37	118.92(17)
C69'-Si2-C37	121.39(17)
C63-Si2-C37	105.81(18)

Torsion angles [°] for $7 \cdot MeOH/H_2O$.

C6-C1-C2-C3	0.8(8)
P1-C1-C2-C3	-178.6(4)
C1-C2-C3-C4	0.7(7)
C2-C3-C4-C5	-1.6(8)
C3-C4-C5-C6	0.9(9)
C2-C1-C6-C5	-1.4(9)
P1-C1-C6-C5	177.9(5)
C4-C5-C6-C1	0.6(10)
C12-C7-C8-C9	0.5(7)
P1-C7-C8-C9	179.7(4)
C7-C8-C9-C10	-0.3(7)
C8-C9-C10-C11	-1.6(8)
C9-C10-C11-C12	3.3(9)
C8-C7-C12-C11	1.4(8)
P1-C7-C12-C11	-177.8(5)
C10-C11-C12-C7	-3.2(9)
C18-C13-C14-C15	-1.0(8)
P1-C13-C14-C15	-178.8(5)
C13-C14-C15-C16	-0.2(9)
C14-C15-C16-C17	0.7(10)
C15-C16-C17-C18	0.1(10)
C16-C17-C18-C13	-1.3(8)
C14-C13-C18-C17	1.8(8)
P1-C13-C18-C17	179.4(4)
C28-C19-C20-C21	-8.6(7)
O1-C19-C20-C21	178.6(4)
C28-C19-C20-Si1	168.6(4)
O1-C19-C20-Si1	-4.2(6)
C19-C20-C21-C22	1.6(7)
Si1-C20-C21-C22	-175.7(4)
C20-C21-C22-C27	2.5(7)
C20-C21-C22-C23	-177.5(5)
C27-C22-C23-C24	1.8(7)
C21-C22-C23-C24	-178.2(5)
C22-C23-C24-C25	-3.1(8)
C23-C24-C25-C26	1.5(8)

1.5(8)
-178.9(4)
1.1(7)
-0.1(7)
179.9(4)
-2.7(7)
178.6(5)
-176.2(4)
11.0(7)
5.7(7)
-167.1(4)
-6.4(7)
172.3(4)
171.7(4)
-9.6(7)
-56.7(6)
125.3(5)
121.6(5)
-56.5(6)
-5.6(6)
176.1(4)
172.1(4)
-6.2(6)
-2.0(6)
-179.8(4)
-1.0(7)
2.7(7)
-1.3(6)
3.4(6)
-178.8(4)
-175.6(4)
2.2(6)
-1.7(6)
177.3(4)
1.6(6)
-177.4(4)
-1.7(6)
173.7(3)

5.8(6)
-175.9(4)
-173.5(3)
4.7(6)
-2.2(6)
-177.0(3)
177.2(4)
2.4(6)
2.3(5)
-179.0(3)
-1.7(5)
1.2(6)
-1.2(6)
-2.4(5)
179.0(3)
1.9(6)
-1.4(7)
172.3(4)
1.3(8)
0.2(8)
-1.7(8)
1.7(7)
-0.1(6)
-173.6(3)
2.0(6)
-174.9(3)
-2.3(6)
1.1(6)
0.3(7)
-0.5(6)
176.4(3)
-0.6(7)
0.5(7)
178.7(4)
1.7(8)
-2.2(9)
0.5(9)
1.7(9)

C58-C57-C62-C61	-2.2(7)
Si2-C57-C62-C61	179.6(4)
C68-C63-C64-C65	0.7(8)
Si2-C63-C64-C65	-174.7(5)
C63-C64-C65-C66	-1.7(9)
C64-C65-C66-C67	3.1(9)
C65-C66-C67-C68	-3.6(9)
C66-C67-C68-C63	2.7(9)
C64-C63-C68-C67	-1.1(8)
Si2-C63-C68-C67	174.6(4)
C74-C69-C70-C71	0.0
Si2-C69-C70-C71	166.76(17)
C69-C70-C71-C72	0.0
C70-C71-C72-C73	0.0
C71-C72-C73-C74	0.0
C72-C73-C74-C69	0.0
C70-C69-C74-C73	0.0
Si2-C69-C74-C73	-166.03(18)
C74'-C69'-C70'-C71'	0.0
Si2-C69'-C70'-C71'	178.94(16)
C69'-C70'-C71'-C72'	0.0
C70'-C71'-C72'-C73'	0.0
C71'-C72'-C73'-C74'	0.0
C72'-C73'-C74'-C69'	0.0
C70'-C69'-C74'-C73'	0.0
Si2-C69'-C74'-C73'	-178.76(19)
C74"-C69"-C70"-C71"	0.0
Si2-C69"-C70"-C71"	167.18(17)
C69"-C70"-C71"-C72"	0.0
C70"-C71"-C72"-C73"	0.0
C71"-C72"-C73"-C74"	0.0
C72"-C73"-C74"-C69"	0.0
C70"-C69"-C74"-C73"	0.0
Si2-C69"-C74"-C73"	-166.25(18)
C28-C19-O1-P2	69.8(5)
C20-C19-O1-P2	-117.1(4)
C29-C38-O2-P2	69.6(4)
C37-C38-O2-P2	-109.8(4)

PI-AuI-O4-P2	-56.1(7)
C12-C7-P1-C1	24.8(5)
C8-C7-P1-C1	-154.4(4)
C12-C7-P1-C13	-86.1(4)
C8-C7-P1-C13	94.8(4)
C12-C7-P1-Au1	146.0(4)
C8-C7-P1-Au1	-33.2(4)
C6-C1-P1-C7	-80.4(5)
C2-C1-P1-C7	98.9(4)
C6-C1-P1-C13	30.7(6)
C2-C1-P1-C13	-150.0(4)
C6-C1-P1-Au1	157.9(5)
C2-C1-P1-Au1	-22.8(4)
C14-C13-P1-C7	172.6(4)
C18-C13-P1-C7	-5.1(5)
C14-C13-P1-C1	59.9(5)
C18-C13-P1-C1	-117.8(4)
C14-C13-P1-Au1	-63.1(4)
C18-C13-P1-Au1	119.2(4)
O4-Au1-P1-C7	-74.0(6)
O4-Au1-P1-C1	45.2(6)
O4-Au1-P1-C13	165.1(6)
Au1-O4-P2-O3	157.41(17)
Au1-O4-P2-O2	-80.8(2)
Au1-O4-P2-O1	29.9(2)
C38-O2-P2-O3	-164.6(3)
C38-O2-P2-O4	66.7(3)
C38-O2-P2-O1	-44.8(3)
C19-O1-P2-O3	68.3(3)
C19-O1-P2-O4	-161.5(3)
C19-O1-P2-O2	-46.5(3)
01) 01 12 02	
C56-C51-Si1-C45	-116.0(3)
C56-C51-Si1-C45 C52-C51-Si1-C45	-116.0(3) 60.9(3)
C56-C51-Si1-C45 C52-C51-Si1-C45 C56-C51-Si1-C39	-116.0(3) 60.9(3) 124.9(3)
C56-C51-Si1-C45 C52-C51-Si1-C45 C56-C51-Si1-C39 C52-C51-Si1-C39	-116.0(3) 60.9(3) 124.9(3) -58.3(3)
C56-C51-Si1-C45 C52-C51-Si1-C45 C56-C51-Si1-C39 C52-C51-Si1-C39 C56-C51-Si1-C20	-116.0(3) 60.9(3) 124.9(3) -58.3(3) 0.5(4)
C56-C51-Si1-C45 C52-C51-Si1-C45 C56-C51-Si1-C39 C52-C51-Si1-C39 C56-C51-Si1-C20 C52-C51-Si1-C20	-116.0(3) 60.9(3) 124.9(3) -58.3(3) 0.5(4) 177.3(3)

C46-C45-Si1-C51	160.7(3)
C50-C45-Si1-C39	96.5(4)
C46-C45-Si1-C39	-76.7(4)
C50-C45-Si1-C20	-143.3(4)
C46-C45-Si1-C20	43.5(4)
C44-C39-Si1-C51	150.2(3)
C40-C39-Si1-C51	-28.3(3)
C44-C39-Si1-C45	28.9(3)
C40-C39-Si1-C45	-149.7(3)
C44-C39-Si1-C20	-87.7(3)
C40-C39-Si1-C20	93.8(3)
C21-C20-Si1-C51	-88.5(4)
C19-C20-Si1-C51	94.4(4)
C21-C20-Si1-C45	30.4(4)
C19-C20-Si1-C45	-146.7(4)
C21-C20-Si1-C39	146.9(4)
C19-C20-Si1-C39	-30.2(5)
C58-C57-Si2-C69"	25.4(5)
C62-C57-Si2-C69"	-156.4(4)
C58-C57-Si2-C69	25.1(5)
C62-C57-Si2-C69	-156.8(4)
C58-C57-Si2-C69'	22.5(4)
C62-C57-Si2-C69'	-159.4(4)
C58-C57-Si2-C63	138.1(4)
C62-C57-Si2-C63	-43.8(5)
C58-C57-Si2-C37	-107.1(4)
C62-C57-Si2-C37	71.1(4)
C70"-C69"-Si2-C57	38.0(3)
C74"-C69"-Si2-C57	-155.3(2)
C70"-C69"-Si2-C69	39.95(8)
C74"-C69"-Si2-C69	-153.27(9)
C70"-C69"-Si2-C69'	47.74(9)
C74"-C69"-Si2-C69'	-145.48(8)
C70"-C69"-Si2-C63	-80.6(2)
C74"-C69"-Si2-C63	86.2(2)
C70"-C69"-Si2-C37	167.9(2)
C74"-C69"-Si2-C37	-25.3(2)
C70-C69-Si2-C57	43.0(2)

C74-C69-Si2-C57	-150.5(2)
C70-C69-Si2-C69"	-135.12(7)
C74-C69-Si2-C69"	31.36(11)
C70-C69-Si2-C69'	60.36(8)
C74-C69-Si2-C69'	-133.16(9)
C70-C69-Si2-C63	-74.2(2)
C74-C69-Si2-C63	92.2(2)
C70-C69-Si2-C37	169.4(2)
C74-C69-Si2-C37	-24.1(2)
C70'-C69'-Si2-C57	70.5(2)
C74'-C69'-Si2-C57	-110.7(2)
C70'-C69'-Si2-C69"	-100.83(6)
C74'-C69'-Si2-C69"	78.01(12)
C70'-C69'-Si2-C69	-92.96(7)
C74'-C69'-Si2-C69	85.88(12)
C70'-C69'-Si2-C63	-45.8(2)
C74'-C69'-Si2-C63	133.0(2)
C70'-C69'-Si2-C37	-168.7(2)
C74'-C69'-Si2-C37	10.1(3)
C64-C63-Si2-C57	-17.2(5)
C68-C63-Si2-C57	167.5(4)
C64-C63-Si2-C69"	108.9(5)
C68-C63-Si2-C69"	-66.5(4)
C64-C63-Si2-C69	101.2(5)
C68-C63-Si2-C69	-74.1(4)
C64-C63-Si2-C69'	94.8(5)
C68-C63-Si2-C69'	-80.6(4)
C64-C63-Si2-C37	-133.4(5)
C68-C63-Si2-C37	51.3(4)
C36-C37-Si2-C57	-85.7(4)
C38-C37-Si2-C57	89.1(4)
C36-C37-Si2-C69"	138.6(3)
C38-C37-Si2-C69"	-46.6(4)
C36-C37-Si2-C69	146.4(3)
C38-C37-Si2-C69	-38.8(4)
C36-C37-Si2-C69'	156.0(3)
C38-C37-Si2-C69'	-29.2(5)
C36-C37-Si2-C63	31.7(4)

C38-C37-Si2-C63

-153.5(4)
