A Concise Route to the Macrocyclic Core of the Rakicidins

Thomas B. Poulsen*
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark e-mail: thpou@chem.au.dk

Supporting Information

Contents

General Procedures and Materials page S2
Synthetic Protocols and Characterization Data page S3
Spectra page S10
NOE experiments with rakicidin macrocycle 5 page S20

General Procedures and Materials. All reactions were carried out under anhydrous conditions under an atmosphere of argon, unless specifically stated. Dry dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, dry tetrahydrofuran (THF), dry acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ were obtained by passing pre-dried solvents through activated alumina. Dry 1,2-dichloroethane (DCE) and dry chloroform $\left(\mathrm{CHCl}_{3}\right)$ were obtained by drying of HPLC-grade formulations over activated 4A molecular sieves. Yields refer to compounds that homogenous by TLC and ${ }^{1} \mathrm{H}$ NMR. If not specifically stated reagents were used as received from commercial suppliers. For flash chromatography (FC), silica gel was purchased from Iatron Laboratories Inc. (Iatrobeads 6RS-8060) or from Sigma (Silica gel 60, 230-400 mesh). Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation, KMnO_{4} or CAM dip. Melting points were recorded on a Büchi B-540 apparatus and are uncorrected. Infrared (IR) spectra were acquired on a Perkin Elmer Spectrum Two ${ }^{\text {TM }}$ UATR spectrometer. UV-vis spectra were acquired on a Varian Cary ${ }^{\circledR} 100$ Bio spectrometer. Nuclear magnetic resonance (NMR) spectra were acquired on a Varian AS 400 spectrometer, running at 400 and 100 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR, 77.16 ppm for ${ }^{13} \mathrm{C}$ NMR; DMSO- d_{6} : 2.50 ppm for ${ }^{1} \mathrm{H}$ NMR, 39.52 ppm for ${ }^{13} \mathrm{C}$ NMR; $\mathrm{CD}_{3} \mathrm{CN}: 1.94 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR, 1.32 ppm for ${ }^{13} \mathrm{C}$ NMR). Multiplicities are indicated using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ dublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, $\mathrm{a}=$ apparent. ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a broad band decoupled mode. Mass spectra were recorded on a micromass LCT spectrometer using electrospray (ES^{\dagger}) ionization techniques. Monte Carlo conformational searches were carried out using the Maestro/Macromodel (vers. 9.1.107) software package. The force field employed was MMFF94S, the number of iterations in each conformational search was 10000, and the solvent employed in the calculation was water.

Synthetic Protocols and Characterization Data

Methyl 2-(2-((tert-butoxycarbonyl)(methyl)amino)acetamido)acetate (8):

A dried round bottom flask equipped with a magnetic stirring bar was charged with N-Boc sarcosine $(1.89 \mathrm{~g}, 10$ mmol, 1.0 equiv) and glycine methyl ester hydrochloride $(1.26 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv). The flask was evacuated and backfilled with argon. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Then HOBt-hydrate ($1.84 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv) was added followed by EDCI ($2.30 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv). Finally N-ethyldiisopropylamine ($4.4 \mathrm{~mL}, 25 \mathrm{mmol}, 2.5$ equiv) was added, and the mixture was allowed to warm to room temperature and the stirring was continued under argon for 14 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The combined organics were washed with 1 N aq. $\mathrm{HCl}(75 \mathrm{~mL})$ and the organic phase was separated. To the heavy precipitate remaining was added $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$ and the mixture was shaken vigorously. The organic phase was combined with the first organic extract. The combined organics were washed sequentially with 1 N aq. $\mathrm{HCl}(40 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$, and brine $(40 \mathrm{~mL})$. Following drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the mixture was concentrated in vacuo. The product was obtained after $\mathrm{FC}\left(\mathrm{SiO}_{2}, 9 \times 4 \mathrm{~cm}\right)$ eluting with $\mathrm{EtOAc} /$ pentane $3: 1$ to $100: 0$ as a viscous colourless oil $(2.49 \mathrm{~g}, 8.31 \mathrm{mmol}, 83 \%) . \mathrm{R}_{\mathrm{f}}=0.26$, EtOAc/pentane 3:1, KMnO_{4} dip.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.0,169.6,80.8,52.8,52.2$, 40.9, 35.7, 28.2. HRMS calc.: $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{5}$ 283.1270; found: 283.1271.

Methyl 2-(2-(2-bromo-N-methylacetamido)acetamido)acetate (9):

Boc-Sar-Gly-OMe (8) ($0.599 \mathrm{~g}, 2.00 \mathrm{mmol}, 1.0$ equiv) was placed in a round bottom flask equipped with a magnetic stirring bar. The material was azeotroped with dry benzene and placed under high vacuum for ca. 30 min . The flask was backfilled with argon and then a solution of $4 \mathrm{M} \mathrm{HCl}(\mathrm{g})$ in 1,4-dioxane $(10 \mathrm{~mL})$ was added by syringe. The mixture was stirred at room temperature under argon for 3 h at which time TLC (EtOAc) indicated full consumption of the starting material. The mixture was concentrated in vacuo and co-evaporated with $\mathrm{Et}_{2} \mathrm{O}$ two times and placed under high vacuum. The hydrochloride salt was then re-dissolved in dry $\mathrm{CHCl}_{3}(12 \mathrm{~mL})$ under argon, triethylamine $\left(836 \mu \mathrm{~L}, 6.00 \mathrm{mmol}, 3.0\right.$ equiv) was added, and the mixture was cooled to $-78^{\circ} \mathrm{C}$. A solution of bromo acetylbromide ($270 \mu \mathrm{~L} .3 .00 \mathrm{mmol}$, 1.5 equiv.) in $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ was added dropwise over ca. 5 min . The reaction was maintained at $-78^{\circ} \mathrm{C}$ for 0.5 h and was then allowed to warm to
$0{ }^{\circ} \mathrm{C}$ over a period of 3 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, and washed with 1 N aq. $\mathrm{HCl}(30 \mathrm{~mL})$. The aqueous phase was back-extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The combined organics were washed with brine (40 mL), and the aqueous phase was back-extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The bromoacetamide derivative 9 was obtained after $\mathrm{FC}\left(\mathrm{SiO}_{2}, 8 \times 3 \mathrm{~cm}\right)$ eluting with EtOAc as a viscous yellow oil ($455 \mathrm{mg}, 1.62 \mathrm{mmol}, 81 \%$ (2 steps)). $\mathrm{R}_{\mathrm{f}}=0.42, \mathrm{MeOH} / \mathrm{EtOAc} 1: 9, \mathrm{KMnO}_{4}$ dip.
The compound was found to exist as a $2 / 1$ mixture of rotamers in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature. Data below is for the major rotamer.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right) \delta 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right) \delta 171.2,169.5,168.2,52.7,52.0,41.5$, 37.7, 28.4. HRMS calc.: $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{NaO}_{4} 302.9956$; found: 302.9947.

Methyl 2-(2-(2-(diethoxyphosphoryl)-N-methylacetamido)acetamido)acetate (10):

Bromoacetamide 9 ($107 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.0$ equiv) was added to a roundbottom flask equipped with a magnetic stirring bar. The material was azeotroped with dry benzene, placed under high vacuum, and backfilled with argon. Dry dichloroethane (0.45 mL) was added, followed by $\mathrm{P}(\mathrm{OEt})_{3}(130 \mu \mathrm{~L}, 0.76 \mathrm{mmol}, 2.0$ equiv). A reflux condenser was fitted and the reaction was heated to reflux (bath temperature $90^{\circ} \mathrm{C}$) under argon for 13 h at which time TLC ($\mathrm{MeOH} / \mathrm{EtOAC} 1 / 9$) showed full conversion of the starting material. The mixture was concentrated in vacuo and placed under high vacuum. The residue was purified by $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, 11 x 1 cm) eluting with $\mathrm{MeOH} / \mathrm{EtOAc} 0 / 100$ to $10 / 90$ to afford the phosphonate ester $\mathbf{1 0}$ as a viscous colourless oil ($127 \mathrm{mg}, 0.38 \mathrm{mmol}, 100 \%$). $\mathrm{R}_{\mathrm{f}}=0.18$, $\mathrm{MeOH} / E t O A c 1: 9, \mathrm{KMnO}_{4}$ dip. The compound was found to exist as a $6 / 1$ mixture of rotamers in CDCl_{3} at room temperature. Data below is for the major rotamer.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.23-4.13(\mathrm{~m}, 4 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{~d}, \mathrm{~J}=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, J=22 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.0,168.9,166.0\left(\mathrm{~d}, J_{C P}=6 \mathrm{~Hz}\right), 63.2(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}), 52.1,51.7,40.9$, 37.9, $33.6(\mathrm{~d}, \mathrm{~J}=128 \mathrm{~Hz}), 16.3\left(\mathrm{~d}, J_{C P}=6 \mathrm{~Hz}\right)$. HRMS calc.: $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{P} 361.1141$; found: 361.1145 .

Methyl 3-((tert-butyldiphenylsilyl)oxy)-2-methylpropanoate (12):

Methyl 3-hydroxy-2-methyl propionate $(0.773 \mathrm{~g}, 6.54 \mathrm{mmol}, 1.0$ equiv) was added to a dry roundbottom flask equipped with a magnetic stirring bar. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ was added followed by imidazole ($1.367 \mathrm{~g}, 13.1 \mathrm{mmol}, 2.0$ equiv) and $\operatorname{TBDPSCl}(1.888 \mathrm{~g}$, $6.87 \mathrm{mmol}, 1.79 \mathrm{~mL}$) in that order. The reaction was stirred at room temperature under argon for 12 h at which time TLC (EtOAc/pentane 15/85) shows full conversion of the starting material. Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was added to the reaction and the organic phase was separated. The aqueous phase was extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$, and the combined organics were dried over MgSO_{4} and concentrated in vacuo. The silyl ether product 12 was obtained after $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, $15 \times 4 \mathrm{~cm}$) eluting with an EtOAc/pentane gradient (0/100 to 10/90) as a colourless oil (2.30 g , $6.45 \mathrm{mmol}, 99 \%) . \mathrm{R}_{\mathrm{f}}=0.72, \mathrm{EtOAc} /$ pentane $15 / 85, \mathrm{KMnO}_{4} \mathrm{dip}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.82(\mathrm{dd}, J=7.2,10 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{dd}, \mathrm{J}=6.0,10 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHZ}\right) \delta 175.4,135.6,133.5,129.6,127.6,65.9,51.5,42.4,26.7,19.2$, 13.5. HRMS calc.: $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NaO}_{3} \mathrm{Si} 379.1705$; found: 379.1703 .

3-((tert-butyldiphenylsilyl)oxy)-N-(1,3-dihydroxypropan-2-yl)-2-methylpropanamide (13):

The TBDPS-ether (12) ($2.30 \mathrm{~g}, 6.45 \mathrm{mmol}, 1.0$ equiv) was added to a roundbottom flask equipped with a magnetic stirring bar. The material was dissolved in EtOH (11 mL) and then 1 N aq. $\mathrm{NaOH}(7.0 \mathrm{~mL}, 7.0 \mathrm{mmol}, 1.08$ equiv) was added. The reaction mixture was stirred vigorously at room temperature for 14 h at which time TLC (EtOAc/pentane 15/85) shows full conversion of the starting material. The reaction was concentrated in vacuo and re-dissolved in 10% aq. $\mathrm{HCl}(30 \mathrm{~mL})$. The aqueous solution was extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$ and the combined organics were dried over MgSO_{4}. Following concentration the crude carboxylic acid product was obtained. This material was then azeotroped with dry benzene and placed under high vacuum. The dry acid was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 $\mathrm{mL})$ under argon and serinol ($0.626 \mathrm{~g}, 6.87 \mathrm{mmol}, 1.05$ equiv) was added. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and then HOBt-hydrate ($1.20 \mathrm{~g}, 7.85 \mathrm{mmol}, 1.2$ equiv) was added followed by EDCI ($1.50 \mathrm{~g}, 7.85 \mathrm{mmol}, 1.2$ equiv). Finally, N-ethyldiisopropylamine ($1.35 \mathrm{~mL}, 7.85 \mathrm{mmol}$, 1.2 equiv) was added, and the mixture was allowed to warm to room temperature and the stirring was continued under argon for 14 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organics were washed with 1 N aq. $\mathrm{HCl}(35 \mathrm{~mL})$ and the organic phase was separated. To the heavy precipitate remaining was added $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and the mixture
was shaken vigorously. The organic phase was combined with the first organic extract. The combined organics were washed sequentially with 1 N aq. $\mathrm{HCl}(20 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(20$ $\mathrm{mL})$, and brine (20 mL). Following drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the mixture was concentrated in vacuo. The amido diol product 13 was obtained after $\mathrm{FC}\left(\mathrm{SiO}_{2}, 11 \mathrm{x} 4 \mathrm{~cm}\right)$ eluting with $\mathrm{EtOAc} /$ pentane $3 / 1$ to $100 / 0$ and then with $\mathrm{MeOH} / E t O A c 2 / 98$ as a white solid ($1.74 \mathrm{~g}, 4.19 \mathrm{mmol}, 64 \%$ (2 steps)). $\mathrm{R}_{\mathrm{f}}=0.23, \mathrm{EtOAc} /$ pentane $3: 1, \mathrm{KMnO} 4$ dip. m.p. $103^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ $(\mathrm{m}, 1 \mathrm{H}), 3.84-3.68(\mathrm{~m}, 6 \mathrm{H}), 3.02(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.0,135.5$ (2 signals), 133.1, 133.0, 129.9, 127.8, 66.2, 63.1, 52.7, 43.4, 26.8, 19.2, 13.7. HRMS calc.: $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NNaO}_{4} \mathrm{Si} 438.2077$; found: 438.2070 .

3-((tert-butyldiphenylsilyl)oxy)-2-methyl-N-(3-oxoprop-1-en-2-yl)propanamide (14):

TBDPSO O A dry round bottom flask equipped with a magnetic stirring bar under argon was charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$. Oxalyl chloride ($170 \mu \mathrm{~L}, 2.00 \mathrm{mmol}, 2.0$ equiv) was added and the solution was cooled to $-78{ }^{\circ} \mathrm{C} .1400 \mu \mathrm{~L}$ of a $1 / 1$ solution of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dry DMSO was added dropwise. Following the addition, the mixture was stirred 10 min at $-78^{\circ} \mathrm{C}$. Then amido diol $13(415 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) dissolved in $1800 \mu \mathrm{~L}$ of $2 / 1 \mathrm{DMSO} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min and then $\mathrm{NEt}_{3}(700 \mu \mathrm{~L})$ was added. Reaction was maintained at $-78^{\circ} \mathrm{C}$ for another 5 min and then allowed to gradually (ca. 60 min) warm to $-15^{\circ} \mathrm{C}$ and then quenched by addition of water $(3.0 \mathrm{~mL})$. The reaction was diluted with water $(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the organic phase separated. The aqueous phase was extracted with $\mathrm{CHCl}_{3}(2 \times 20 \mathrm{~mL})$. The combined organics were washed with 10% aq. citric acid $(20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$. Following drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the mixture was concentrated in vacuo to afford a viscous yellow oil. The enal product 14 was obtained after $\mathrm{FC}\left(\mathrm{SiO}_{2}, 8 \times 3 \mathrm{~cm}\right)$ eluting with $\mathrm{EtOAc} /$ pentane $1 / 1$ as a viscous slightly yellow oil ($340 \mathrm{mg}, 0.86 \mathrm{mmol}, 86 \%) . \mathrm{R}_{\mathrm{f}}=0.75, \mathrm{EtOAc} /$ pentane $3 / 1$, UV and KMnO 4 dip . The material remained stable when stored under argon at $-20^{\circ} \mathrm{C}$ for at least 4 weeks.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 6 \mathrm{H})$, $7.22(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=10.4,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.58(\mathrm{~m} 1 \mathrm{H}), 1.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.04(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHZ}\right) \delta 188.9,174.0,139.9,135.6,135.5,133.0,132.8$, 129.8 (2 signals), $127.8,127.7,118.2,66.1,44.4,26.7,19.1,13.2$ HRMS calc.: $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NNaO}_{3} \mathrm{Si}$ 418.1814; found: 418.1815 .
(E)-methyl 2,2,6,13-tetramethyl-9-methylene-7,12,15-trioxo-3,3-diphenyl-4-oxa-8,13,16-triaza-3-silaoctadec-10-en-18-oate (15):

In a round bottom flask equipped with a magnetic stirring bar was added $\mathrm{LiCl}(8.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv). The salt was heated under vacuum at $140{ }^{\circ} \mathrm{C}$ overnight. After cooling, the flask was backfilled with argon. A solution ($0.30 \mathrm{M}, 0.50 \mathrm{~mL}, 0.15 \mathrm{mmol}, 1.5$ equiv) of phosphonate ester $\mathbf{1 0}$ in dry $\mathrm{CH}_{3} \mathrm{CN}$ was added to the flask by syringe and the resulting mixture was stirred for 5 minutes at room temperature. Then DBU ($30 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 2.0$ equiv) was added and the mixture was stirred for an additional 10 minutes. Finally a solution ($0.20 \mathrm{M}, 0.50 \mathrm{~mL}, 0.10 \mathrm{mmol}, 1.0$ equiv) of aldehyde $\mathbf{1 4}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise by syringe and the stirring continued for 4 hours at room temperature. At this time TLC ($\mathrm{MeOH} / E t O A c 10 / 90$) indicated full conversion of the aldehyde with concomitant formation of an intense UV spot. The mixture was co-evaporated with 10 mL of THF to remove most of the $\mathrm{CH}_{3} \mathrm{CN}$ and concentrated to a volume of ca. 1.0 mL . This solution was loaded directly on a column packed with iatrobeads ($1 \times 8 \mathrm{~cm}$) equilibrated with EtOAc. The column was eluted with EtOAc to afford diene 15 as a viscous colourless oil along with traces of solvent ($34.7 \mathrm{mg}, 0.060 \mathrm{mmol}, 60 \%$). $\mathrm{R}_{\mathrm{f}}=0.50$, MeOH/EtOAc $10 / 90$, UV and KMnO_{4} dip. The compound was immediately advanced to the next step.

The compound was found to exist as a $2 / 1$ mixture of rotamers in DMSO- $_{6}$ at room temperature. Data below is for the major rotamer.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}^{6}, 400 \mathrm{MHz}$) $\delta 9.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.36(\mathrm{br} \mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 4 \mathrm{H})$, 7.48-7.38 (m, 6H), $6.95(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H})$, $4.09(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}) 1.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100$ MHz) $\delta 173.7,170.2,168.7,165.5,139.5,139.0,138.0,135.0,132.9,129.8,127.8,117.6,66.2$, 51.7, 50.1, 42.8, 40.4, 36.1, 26.5, 18.8, 13.8 HRMS calc.: $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{NaO}_{6}$ 602.2662; found: 602.2664 .
(E)-methyl
2-(2-(4-(3-hydroxy-2-methylpropanamido)-N-methylpenta-2,4dienamido)acetamido)acetate (16):

Silyl ether 15 ($32 \mathrm{mg}, 0.055 \mathrm{mmol}, 1,0$ equiv) was coevaporated with dry THF (2 x 3 mL). The mixture was concentrated to a volume of ca. 1.0 mL and then placed under argon. A dry magnet was added. Then $\mathrm{NEt}_{3}(153 \mu \mathrm{~L}, 1.10$ $\mathrm{mmol}, 20$ equiv) was added followed by $3 \mathrm{HFNEt}_{3}(126 \mu \mathrm{~L}$, $0.77 \mathrm{mmol}, 14$ equiv). The mixture was stirred under argon at room temperature for 90 minutes at which time TLC ($\mathrm{MeOH} / \mathrm{EtOAc} 10 / 90$) indicated complete conversion of the starting material. The mixture was loaded directly on a column packed with iatrobeads ($1 \times 6 \mathrm{~cm}$) equilibrated with $\mathrm{MeOH} / \mathrm{EtOAc}$ (5/95). The column was eluted with $\mathrm{MeOH} / E t O A c 5 / 95$ to $10 / 90$, which afforded alcohol 16 as a white powder ($13 \mathrm{mg}, 0.038 \mathrm{mmol}, 69 \%$). $\mathrm{R}_{\mathrm{f}}=0.35$, $\mathrm{MeOH} / \mathrm{EtOAc} 15: 85$, UV and KMnO_{4} dip.
The compound was found to exist as a $2 / 1$ mixture of rotamers in DMSO- $_{6}$ at room temperature. Data below is for the major rotamer.
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right) \delta 9.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.35$ (br t, $\left.J=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.93$ (d, $J=15 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{br} \mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H})$, $3.85(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.0$ $\mathrm{Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (DMSO_{6}, 100 MHz) $\delta 174.1,170.2,168.7,165.5,139.5,139.0,138.2$, 117.7, 63.7, 51.7, 50.2, 42.9, 40.4, 36.2, 14.1. HRMS calc.: $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{6} 364.1485$; found: 364.1484 .

(\boldsymbol{E})-7,14-dimethyl-11-methylene-1-oxa-4,7,12-triazacyclopentadec-9-ene-2,5,8,13-tetraone

 (5):

Alcohol 16 ($13.0 \mathrm{mg}, 0.038 \mathrm{mmol}, 1,0$ equiv) was placed briefly on the high vacuum line and then dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}$ under argon. A dry magnet was added. Then DBU (15 $\mu \mathrm{L} .0 .10 \mathrm{mmol}, 2.6$ equiv) was added and the mixture stirred at room temperature. After ca. 20 minutes a heavy precipitate develops. The mixture was stirred for additional of 70 minutes at which time TLC ($\mathrm{MeOH} / E t O A c$ 15/85) indicates full conversion of the alcohol spot into a slightly more polar spot. 10 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added and the mixture filtered. The resulting white powder was washed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and pentane $(5 \mathrm{~mL})$. After drying under high vacuum, macrocycle $\mathbf{5}$ was obtained as a white powder ($9.9 \mathrm{mg}, 0.032$ $\mathrm{mmol}, 84 \%) . \mathrm{R}_{\mathrm{f}}=0.27, \mathrm{MeOH} / \mathrm{EtOAc} 15: 85$, UV and KMnO_{4} dip. m.p. $240{ }^{\circ} \mathrm{C}$ (decomp).

IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3361,3278,1720,1669,1646,1609,1591,1553,1508,1400,1308,1256$, 1008, 973, 862. UV $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 255\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 7600\right) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 400$ $\mathrm{MHz}) \delta 9.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.62(\mathrm{br} \mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.96(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 100 \mathrm{MHz}\right) \delta 172.2,169.3,168.4,166.2,139.2,138.1,120.5,117.9,66.9,52.3$, 41.1, 38.6, 35.6, 14.0. HRMS calc.: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{5} 332.1222$; found: 332.1235 .

For NOE experiments, see spectra attached below.

Spectra

NOE-experiments with rakicidin macrocycle (5)

