Electronic Supporting Information

C-H and C-O Oxidative Addition in Reactions of Aryl Carboxylates with a PNP Pincer-Ligated Rh(I) Fragment

Yanjun Zhu^a, Dan E. Smith^a, David E. Herbert^a, Sylvain Gatard^b, and Oleg V. Ozerov^a*

^a Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843-3255, USA.

^b Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA

*Email: ozerov@chem.tamu.edu; Phone: +1-979-845-5870

Table of Contents

I. General considerations	S3
II. Synthesis of precursors to (PNP)Rh (6).	S4
III. Reactions with PhO ₂ CPh.	S7
IV. Reactions with MeO ₂ CPh.	S9
V. Reactions with PhO ₂ CCF ₃ .	S10
VI. Reactions with PhO ₂ CCH ₃ .	S13
VII. Reactions with PhO ₂ CBu ^t .	S14
VIII. Reactions with PhO ₂ CNEt ₂ .	S17
IX. Graphical NMR spectra.	S20
X. Details of X-ray diffractometry studies.	S34
XI. Supporting Information References.	S38

I. General Considerations.

Unless specified otherwise, all manipulations were performed under an argon atmosphere using standard Schlenk line or glovebox techniques. Ethyl ether, C_6D_6 , and pentane were dried over Na/K/Ph₂CO/18-crown-6, distilled or vacuum transferred and stored over molecular sieves in an Ar-filled glovebox. Fluorobenzene was dried with and then distilled from CaH₂. (PNP)Rh(Me)(Cl),¹ (PNP)Rh(Ph)(Cl),² PhO₂CBu¹,³ PhO₂CNEt₂⁴ were prepared according to the published procedures. All other chemicals were used as received from commercial vendors (PhLi, 1.8 M/Bu₂O; BnMgCl, 1.0 M/Et₂O; MeMgCl, 3.0 M/THF). NMR spectra were recorded on a Varian iNova 300, Varian iNova 400, and Mercury 300 spectrometer. Chemical shifts are reported in δ (ppm). For ¹H and ¹³C NMR spectra, the residual solvent peak was used as an internal reference. ³¹P NMR spectra were referenced externally using 85% H₃PO₄ at δ 0 ppm. ¹⁹F NMR spectra were referenced externally using CF₃COOH at δ -78.5 ppm. Elemental analyses were performed by CALI, Inc. (Parsippany, NJ).

II. Synthesis of precursors to (PNP)Rh (6).

(PNP)Rh(Me)(Ph) (3). 1 (15 mg, 0.026 mmol) was treated with PhLi (15 μ L, 0.026 mmol) in C₆D₆ in a J. Young NMR tube. After 10 min, ³¹P{¹H} NMR spectroscopic analysis revealed complete disappearance of the starting material and only the doublet for **3** was detected (35.9 ppm, J = 118 Hz). Complex **3** is unstable and thus was only characterized in situ in solution. Selected NMR spectroscopic data collected at the early stage of the reaction (10 min after the addition of PhLi) fits our previously reported data for complex **3**.²

(PNP)Rh(Me)(CH₂Ph) (4). 1 (15 mg, 0.026 mmol) was treated with PhCH₂MgCl (26 µL, 0.026 mmol) in C₆D₆ in a J. Young NMR tube. After 10 min, ³¹P{¹H} NMR spectroscopic analysis revealed complete disappearance of the starting material and only the doublet for **4** was detected (32.2 ppm, J = 120 Hz). ¹H NMR spectroscopic analysis revealed >98% conversion of (PNP)Rh(Me)(Cl) to (PNP)Rh(Me)(CH₂Ph) by using TMS as an internal integration standard. Complex **4** was not stable enough for isolation in pure solid form, and thus was only characterized in situ in solution. NMR data collected at the early stage of the reaction (10 min after the addition of BnMgCl). ³¹P{¹H}NMR (C₆D₆): δ 32.2 (d, J = 120 Hz). ¹H NMR (C₆D₆): δ 7.84 (d, J = 8 Hz, 2H, (PNP)Aryl-H), 7.50 (d, J = 8 Hz, 2H, Bn-H), 7.09 (d, J = 8 Hz, 2H, Bn-H), 7.01 (t, J = 6 Hz, 1H, Bn-H), 6.92 (br, 2H, (PNP)Aryl-H), 6.86 (d, J = 8 Hz, 2H, (PNP)Aryl-H), 3.56 (td, J = 6, 3 Hz, 2H, Bn-H), 2.36 (m, 2H, CHMe₂), 2.22 (s, 6H, Ar-CH₃), 2.16 (m, 2H, CHMe₂), 1.57 (td, J = 6, 2 Hz, 3H, Rh-CH₃), 1.26 (app. q(dvt), J = 7 Hz, 6H, CHMe₂), 0.72 (app. q(dvt), J = 7 Hz, 6H, CHMe₂).

(PNP)Rh(Ph)(CH₂Ph) (5). 2 (82 mg, 0.13 mmol) was treated with BnMgCl (140 μ L, 0.14 mmol) in PhF. After 10 min, the reaction mixture was passed through Celite and silica. The

volatiles were removed under vacuum. The residue was dissolved in pentane and placed in a -35 °C freezer. The green precipitate was collected the next day and dried in vacuum. Yield: 64 mg (72%). ³¹P NMR {¹H} (C₆D₆): δ 34.2 (d, *J* = 121 Hz). ¹H NMR (C₆D₆): δ 8.01 (d, *J* = 8 Hz, 2H), 7.64 (d, *J* = 7 Hz, 2H), 7.47 (d, *J* = 8 Hz, 2H), 7.14 (m, 2H, overlapping with C₆D₆), 7.03 (d, *J* = 7 Hz, 1H), 6.96 (d, *J* = 6 Hz, 2H), 6.94 (br, 2H), 6.91 (d, *J* = 5 Hz, 2H), 6.87 (t, *J* = 7 H, 1H), 4.16 (q, *J* = 4 Hz, Rh-CH₂), 2.21 (m, 8H, Ar-CH₃+CHMe₂), 1.75 (m, 2H, CHMe₂), 0.90 (m, 12H, CHMe₂), 0.82 (app. q(dvt), *J* = 7 Hz, 6H, CHMe₂), 0.71 (app. q(dvt), *J* = 7 Hz, 6H, CHMe₂). ¹³C {¹H} NMR (C₆D₆): δ 160.7 (vt, *J* = 9 Hz, *C*-N), 151.5, 151.4, 150.8 (dt, *J* = 34, 10 Hz, Rh-C), 136.7, 133.3, 131.9, 129.7, 128.5, 126.5, 125.1, 124.3 (vt, *J* = 3 Hz), 122.1, 121.9 (vt, *J* = 18 Hz), 117.1 (t, *J* = 5 Hz), 25.0 (vt, *J* = 11 Hz), 24.5 (vt, *J* = 10 Hz), 21.2 (dt, *J* = 29, 5 Hz, Rh-CH₂), 2.06, 19.4, 19.1, 18.8, 18.5.

(PNP)Rh(C₆H₅F) (7). To a stirred solution of C₆H₅F (3 mL) of **2** (25 mg, 0.039 mmol) was added MeMgCl (13 μ L, 0.039 mmol). After 5 minutes the solution was filtered through Celite, the volatile components removed *in vacuo* and C₆H₅F (1 mL) added. After standing for 24 h a color change was noted for the solution from dark green to brown and removal of the volatile components gave an orange-brown solid (16.9 mg, 69 %). Brown block-like crystals suitable for an X-ray diffraction study were grown by slow evaporation of a solution prepared by the method above but using PhCH₂MgCl (39 μ L, 0.039 mmol) as the transmetallation reagent. ¹H NMR (C₆H₅F, 239 K) δ : -25.71, -29.31, -40.68 (all br), referenced to trace poly(dimethylsiloxane) grease as 0 ppm. ¹⁹F NMR (C₆H₅F, 255 K) δ : -54.03 (br), -85.29 (br, overlapping) -85.50 (br, overlapping), -90.85 (br), -95.50 (br). ³¹P{¹H} NMR (C₆H₅F, 293 K) δ : 52.4 (d, *J* = 113 Hz). Elem. An.. Found (Calculated) for C₃₂H₄₅NFP₂Rh: C 61.08 (61.24); H 7.16 (7.23). **Thermolysis of 7.** 7 (10 mg, 0.016 mmol) was dissolved in 0.6 mL PhF in a J. Young NMR tube and was heated at 95 °C for 18 h. ³¹P NMR spectroscopic analysis indicated no observable changes.

III. Reactions with PhO₂CPh.

(PNP)Rh(H)(C₆H₄COOC₆H₅) (8). 1 (41 mg, 0.070 mmol) was dissolved in 1 mL of PhF followed by the addition of PhCH₂MgCl (78 µL, 0.078 mmol). The mixture was passed through Celite and silica gel after stirring at ambient temperature for 10 min. The volatiles were removed under vacuum. The residue was redissolved in about 0.6 mL of PhF and heated at 60 °C for 3 h. The green solution gradually turned brown. ${}^{31}P{}^{1}H$ NMR spectroscopic analysis indicated full conversion to 7. PhO₂CPh (13 mg, 0.065 mmol) was added to the solution and the reaction mixture was left at room temperature for overnight. The brown color of the solution changed to green-yellow. The volatiles were removed under vacuum and the residue was recrystallized from PhF/pentane at -35 °C to produce a yellow solid. Yield: 21 mg (43%). ${}^{31}P{}^{1}H{NMR}$ (C₆D₆): δ 52.6 (d, J = 110 Hz). ¹H NMR (C₆D₆): δ 8.12 (d, J = 8 Hz, 1H), 7.94 (d, J = 7 Hz, 1H), 7.70 (d, J= 8 Hz, 2H), 7.09 (d, J = 7 Hz, 2H), 7.05 (t, J = 2 Hz, 1H), 6.80-6.93 (m, 5H), 6.73 (m, 3H), 2.16 (s, 6H), 2.07 (m, 4H), 1.09 (app. q(dvt), J = 8 Hz, 6H), 0.94 (m, 12H), 0.85 (app. q(dvt), J = 8Hz, 6H), -19.9 (dt, J = 35 Hz, J = 14 Hz, 1H). ¹³C{¹H}NMR (C₆D₆): δ 181.0 (dt, J = 28, 10 Hz, Rh-*C*), 173.7 (C=O), 161.1 (vt, *J* = 9 Hz, C-N), 151.4 (C-O), 144.6, 133.6, 131.8, 131.1, 130.2, 129.5, 126.0, 122.8 (vt, J = 4 Hz), 122.3 (vt, J = 20 Hz), 121.5, 120.6, 115.9 (vt, J = 5 Hz), 115.6, 25.3 (vt, J = 12 Hz), 24.1 (vt, J = 11 Hz), 20.6, 18.3, 17.8 (two signals overlapping), 17.7. Elem. An.. Found (Calculated) for C₃₉H₅₀NO₂P₂Rh: C 64.11 (64.20); H 6.84 (6.91).

Thermolysis of complex 8. Complex 8 (10 mg, 0.014 mmol) was dissolved in 0.6 mL C_6D_6 in a J. Young NMR tube and was heated at 100 °C for 18 h. Both ³¹P and ¹H NMR spectroscopic analyses indicated no observable changes.

NMR tube synthesis of 8 from 5. 5 (10 mg, 0.014 mmol) and $C_6H_5OC(O)C_6H_5$ (3.0 mg, 0.015 mmol) were dissolved in 0.60 mL of C_6D_6 in a J. Young NMR tube. The reaction mixture

was placed in a 60 °C oil bath for 100 min. ¹H NMR spectroscopic analysis indicated >98% conversion to **8** by using $(Me_3Si)_2O$ as an internal integration standard.

IV. Reactions with MeO₂CPh.

(PNP)Rh(H)(C₆H₄COOCH₃) (9). 1 (30 mg, 0.052 mmol) was dissolved in about 0.6 mL of PhF followed by the addition of PhLi (31 µL, 0.057 mmol). The reaction mixture was stirred for about 10 min and passed through Celite and silica. The volatiles were removed under vacuum. The residue was redissolved in about 0.6 mL of PhF and heated at 60 °C for 3 h. The green solution gradually turned brown. ³¹P{¹H} NMR spectroscopic analysis indicated full conversion to 7. MeO₂CPh (9.0 µL, 0.068 mmol) was added to the solution and the reaction mixture was left at room temperature overnight. The brown color of the solution changed to green-yellow. The volatiles were removed under vacuum. The residue was redissolved in solution by NMR spectroscopy. ³¹P{¹H} NMR (C₆D₆): δ 52.1 (d, *J* = 110 Hz). ¹H NMR (C₆D₆): δ 7.91 (d, *J* = 7 Hz, 1H), 7.83 (m, 3H), 7.04 (t, *J* = 6 Hz, 1H), 6.91 (br, 2H), 6.85 (m, 3H), 3.32 (s, 3H), 2.22 (s, 6H), 2.09 (m, 2H), 2.00 (m, 2H), 1.08 (app. q(dvt), *J* = 8 Hz, 6H), 0.94 (app. q(dvt), *J* = 8 Hz, 6H), 0.88 (m, 12H), -19.5 (dt, *J* = 35 Hz, *J* = 14 Hz, 1H). Thermolysis of complex **9** at 100 °C for 18 h did not lead to any observable changes by NMR spectroscopy.

NMR tube synthesis of 9 from 5. 5 (10 mg, 0.014 mmol) and MeO₂CPh (4.0 μ L, 0.030 mmol) were dissolved in 0.60 mL of C₆D₆ in a J. Young NMR tube. The reaction mixture was placed in a 60 °C oil bath for 100 min. ¹H NMR spectroscopic analysis indicated >98% conversion to 9 by using (Me₃Si)₂O as internal standard.

V. Reactions with PhO₂CCF₃.

(PNP)Rh(OPh)(C(O)CF₃) (10). 1 (119 mg, 0.205 mmol) was dissolved in 3 mL of PhF followed by the addition of BnMgCl (225 µL, 0.225 mmol). The mixture was passed through Celite and silica after stirring at ambient temperature for 10 min. The volatiles were removed under vacuum. The residue was redissolved in about 3 mL of PhF and heated at 60 °C oil bath for 3 h. ${}^{31}P{}^{1}H$ NMR spectroscopic analysis indicated full conversion to 7. After that, PhO_2CCF_3 (305 µL, 2.05 mmol) was added to the solution and the reaction mixture was left at ambient temperature for 4 h. The volatiles were removed under vacuum and the residue was recrystallized from PhF/pentane at -35 °C to give a green solid. Yield: 81 mg (55%). ³¹P{¹H} NMR (C₆D₆): δ 50.4 (d, J = 110 Hz). ¹H NMR (C₆D₆): δ 7.46 (d, J = 8 Hz, 2H), 7.16-7.20 (m, 2H), 6.81 (s, 1H), 6.77 (d, J = 5 Hz, 2H), 6.67-6.74 (m, 4 Hz), 2.28 (m, 4H), 2.09 (s, 6H), 1.28 (app. q(dvt), J = 8 Hz, 6H), 0.94 (app. q(dvt), J = 8 Hz, 6H), 0.84 (m, 12H). ¹³C{¹⁹F, ¹H} NMR (C_6D_6) : δ 191.9 (dt, $J_{C-Rh} = 44$ Hz, $J_{C-P} = 9$ Hz, C=O), 172.9, 159.9 (t, J = 9 Hz, N-C), 132.7, 132.0, 131.2, 129.2, 126.1, 120.3, 118.1, 115.1, 105.6, 25.6 (br), 23.8 (br), 20.5, 18.0, 17.4, 16.8. ¹⁹F NMR (C₆D₆): δ -66.9. IR (solid): 1701 cm⁻¹. Elem. An. Found (Calculated) for C₃₄H₄₅NO₂F₃P₂Rh: C 56.72 (56.59); H 6.46 (6.29); N 1.90 (1.94).

NMR tube synthesis of 10. 5 (10 mg, 0.014 mmol) was dissolved in 0.6 mL of PhF in a J. Young NMR tube. A capillary with a PPh₃ solution as standard was inserted in the same NMR tube. The reaction mixture was placed in a 60 °C oil bath for 3 h. ${}^{31}P{}^{1}H{}$ NMR indicated complete conversion to 7. After that, PhO₂CCF₃ (21 µL, 0.14 mmol) was added to the solution and the reaction mixture was left at ambient temperature for 4 h. ${}^{31}P{}^{1}H{}$ NMR spectroscopic analysis indicated 85% conversion to product 10 and 15% of an unidentified product (singlet at δ 30.6 ppm).

NMR tube synthesis of (PNP)Rh(I)(C(O)CF₃). 10 (11 mg, 0.015 mmol) was treated with Me₃SiI (7.0 μL, 0.045 mmol) in a J. Young NMR tube in 0.60 mL of C₆D₆. After 1 h at room temperature, ³¹P{¹H} NMR spectroscopic analysis indicated >97% conversion to (PNP)Rh(I)(C(O)CF₃). No NMR detectable changes were observed after overnight. ¹H NMR (C₆D₆): δ 7.57 (d, J = 8 Hz, 2H), 6.80 (br, 2H), 6.76 (d, J = 8 Hz, 2H), 2.69 (m, 2H), 2.39 (m, 2H), 2.09 (s, 6H), 1.37 (app. q(dvt), J = 8 Hz, 6H), 1.17 (app. q(dvt), J = 8 Hz, 6H), 1.06 (app. q(dvt), J = 8 Hz, 6H), 0.99 (app. q(dvt), J = 8 Hz, 6H). ¹³C{¹H} NMR (C₆D₆): δ 192.5~191.5 (m, C=O), 160.0 9 (vt, J = 9 Hz, N-C), 132.7, 132.1, 126.8, 119.6 (vt, J = 19 Hz), 118.6, 103.3 (q, J = 301 Hz), 25.9 (vt, J = 12 Hz), 25.3 (vt, J = 12 Hz), 20.5, 19.0, 181., 17.8, 17.7. ³¹P{¹H} NMR (C₆D₆): δ 51 (d(br), J = 100 Hz). ¹⁹F NMR (C₆D₆): δ -68.9. IR (C₆D₆): 1693 cm⁻¹.

In another J. Young NMR tube, **10** (11 mg, 0.015 mmol) was treated with Me₃SiI (7.0 μ L, 0.045 mmol) in 0.60 mL of CDCl₃. After 1h at room temperature, ³¹P{¹H} NMR analysis indicated >97% conversion to (PNP)Rh(I)(C(O)CF₃). ¹H NMR (CDCl₃): 7.45 (d, J = 8 Hz, 2H), 6.98 (br, 2H), 6.92(d, J = 9 Hz, 2H), 2.98 (m, 2H), 2.74 (m, 2H), 2.26 (s, 6H), 1.44 (app. q(dvt), J = 8 Hz, 6H), 1.29 (app. q(dvt), J = 8 Hz, 6H), 1.16 (app. q(dvt), J = 8 Hz, 12H). Me₃SiOPh was also observed by NMR matching the data from a literature source.⁵

Thermolysis of complex 10. In a J. Young NMR tube, 10 (10 mg, 0.014 mmol) was dissolved in about 0.6 mL of C₆D₆ and placed in a 60 °C oil bath for 15 h. Based on ³¹P NMR spectroscopic analysis, (PNP)Rh(CO) (~20%) was observed together with another new broad doublet at δ 57.0 ppm (J = 88 Hz) (~70%) and a broad signal δ 53 ppm . Interestingly, free PhO₂CCF₃ (-75.5 ppm) was detected by ¹⁹F NMR. A quartet δ 3.5 ppm (J = 11 Hz) together with another small signal at ca. -4 ppm were also observed by ¹⁹F NMR. Although the Rh complexes are unidentified in this reaction, the formation of (PNP)Rh(CO) as well as the apparent quartet in the ¹⁹F NMR spectrum (Rh-CF₃) suggest that CO deinserted from the acyl complex. The IR spectrum of this mixture revealed two CO stretching bands (2062 and 1942 cm⁻¹). We have not been able to isolate analytically pure compounds from this reaction mixture. We tentatively assign the signal δ 57.0 ppm observed by ³¹P NMR to complex (PNP)Rh(CF₃)(CO)(OPh) (IR: 2062 cm⁻¹).

VI. Reactions with PhO₂CCH₃.

Reaction with PhO₂CCH₃. 1 (15 mg, 0.026 mmol) was dissolved in about 0.6 mL of PhF, followed by the addition of PhLi (15 μ L, 0.027 mmol). The reaction mixture was stirred for about 10 min and passed through Celite and silica. The volatiles were removed under vacuum. The residue was redissolved in about 0.6 mL of PhF and heated at 60 °C for 3 h. The green solution turned to brown gradually. ³¹P{¹H} NMR indicated full conversion to 7. PhO₂CCH₃ (5.0 μ L, 0.039 mmol) was added to the solution and the reaction mixture was allowed to stand at room temperature. After 2 h, ³¹P{¹H} NMR spectroscopic analysis revealed two doublets δ 49.9 ppm (*J* = 108 Hz) (57%) and 47.1 ppm (*J* = 131 Hz) (43%). Unfortunately, we were not able to isolate pure compounds out of this reaction mixture. Due to the similarity in the ³¹P{¹H} NMR (δ 49.9 ppm (*J* = 108 Hz)) and the Rh-*H* ¹H NMR signals (δ -19.6 ppm (*J* = 108 Hz)) to the compounds **8** and **9**, we tentatively assigned the ³¹P signal δ 49.9 ppm (*J* = 108 Hz) to the

NMR tube reaction of 5 with PhO₂CCH₃. 5 (15 mg, 0.021 mmol) and PhO₂CCH₃ (3.0 μ L, 0.025 mmol) were dissolved in 0.60 mL of C₆D₆ in a J. Young NMR tube. The reaction mixture was heated at 60 °C for 100 min. ³¹P{¹H} NMR spectroscopic analysis revealed the formation of (PNP)Rh(CO) (30%), the possible C-H activation product **11** (30%) and two other unidentified species (40%). Continued thermolysis of this reaction mixture at 95°C for 2 days resulted in (PNP)Rh(CO) as the only observable compound by ³¹P NMR. However, ¹H NMR spectroscopic analysis revealed that (PNP)Rh(CO) can only account for ~50% percent of the total organometallic Rh by using (Me₃Si)₂O as internal standard. Free ethane was also observed by ¹H NMR.

VII. Reactions with PhO₂CBu^t.

(PNP)Rh(H)(C₆H₄O(O)CCMe₃) (12). 1 (138 mg, 0.238 mmol) was dissolved in 1 mL of toluene followed by the addition of PhLi (138 μ L, 0.248 mmol). The mixture was passed through Celite and silica after stirring at ambient temperature for 10 min. The volatiles were removed under vacuum. The residue was redissolved in about 3 mL of toluene. PhO₂CBu¹ (47 μ L, 0.26 mmol) was added to the solution and the reaction mixture was heated at 60 °C for 100 min. The volatiles were removed under vacuum and the residue was recrystallized from toluene/pentane at -35 °C. Yield: 73 mg (45%). ³¹P{¹H} NMR (C₆D₆): δ 50.4 (d, *J* = 110 Hz). ¹H NMR (C₆D₆): 7.76 (d, *J* = 8 Hz, (PNP)Aryl-*H*), 7.67 (d, *J* = 6 Hz, 1H), 6.90 (br, 2H, (PNP)Aryl-*H*), 6.79-6.86 (m, 5H), 2.21 (s, 6H, Ar-CH₃), 2.15 (m, 4H, CHMe₂), 1.10 (app. q(dvt), 6H, *J* = 7 Hz, CHMe₂), 1.01 (m, 15H, CHMe₂ + CMe₃), 0.91 (m, 12H, CHMe₂), -19.41(dt, *J* = 31 Hz, 14 Hz, 1H). ¹³C{¹H} NMR (C₆D₆): δ 177.3, 160.7 (vt, *J* = 10 Hz), 122.5 (vt, *J* = 3 Hz), 122.2, 116.1, 115.7 (t, *J* = 5 Hz), 39.9, 26.7, 25.2 (vt, *J* = 14 Hz), 24.6 (vt, *J* = 9 Hz), 20.7, 18.3, 18.2, 17.9. Elem. An.. Found (Calculated) for C₃₇H₅₄NO₂P₂Rh: C 62.49 (62.62); H 7.61 (7.61).

NMR tube synthesis of 12. **5** (10 mg, 0.014 mmol) and PhO_2CBu^t (3.5 µL, 0.015 mmol) were dissolved in 0.60 mL of C_6D_6 in a J. Young NMR tube. The reaction mixture was placed in a 60 °C oil bath for 100 min. ¹H NMR spectroscopic analysis indicated >98% conversion to complex **12** by using (Me₃Si)₂O as internal standard.

(PNP)Rh(C₆H₅)(OC(O)CMe₃) (14). 12 (40 mg, 0.056 mmol) and PhO₂CBu^t (30 μ L, 0.16 mmol) were dissolved in about 0.6 mL C₆D₆ in a sealed NMR tube and the NMR tube was heated in a 90 °C oil bath. The yellow-greenish solution changed to red gradually. After 53 h, ³¹P NMR spectroscopic analysis revealed complete consumption of 12 and the appearance of a new

dominant doublet of **14**. The reaction mixture was passed through Celite. The volatiles were removed under vacuum and the residue was recrystalized from toluene/pentane at -35°. Yield: 19 mg (48%). ³¹P {¹H} NMR (C₆D₆): δ 40.0 (d, J = 107 Hz). ¹H (C₆D₆): δ 8.08 (d, J = 8 Hz, 1H), 7.92 (d, J = 9 Hz, 2H), 6.68-6.99 (m, 8H), 2.47 (m, 2H), 2.24 (m, 2H), 2.12 (s, 6H), 1.35 (s, 9H), 1.22 (app. q(dvt), J = 8 Hz, 6H), 1.15 (app. q(dvt), J = 8 Hz, 6H), 1.07 (app. q(dvt), J = 8 Hz, 6H), 0.40 (app. q(dvt), J = 8 Hz, 6H). ¹³C {¹H} NMR (C₆D₆): δ 189.2 (C=O), 161.3 (t, J = 10 Hz, C-N), 138.7 (dt, J = 29 Hz, 9 Hz, ipso-C), 136.0, 132.5, 131.5, 127.3, 125.4 (vt, J = 3 Hz), 123.0, 119.0, 118.8 (vt, J = 6 Hz), 118.7, 118.5, 39.3, 30.0, 24.1 (vt, J = 11 Hz), 23.5 (vt, J = 12 Hz), 20.5, 19.2, 17.6, 17.5, 17.3. Elem. An.. Found (Calculated) for C₃₇H₅₄NO₂P₂Rh: C 62.61 (62.62); H 7.77 (7.67).

NMR tube thermolysis of 12 in the absence of PhO_2CBu^t . 12 (10 mg, 0.014 mmol) was dissolved in about 0.6 mL C₆D₆ in a sealed NMR tube and heated in a 90 °C oil bath for two days. ³¹P{¹H} NMR spectroscopic analysis revealed that there are several other unidentified species in the reaction mixture in addition to 14 (50%).

NMR tube thermolysis of 12 in the presence of excess PhO₂CBu^t. The NMR sample of complex 12 generated from the reaction of 5 with PhO₂CBu^t, as described above, was treated with 3 equiv of PhO₂CBu^t. The reaction mixture was heated at 90 °C for 2 d. ³¹P NMR spectroscopic analysis indicated disappearance of the C-H activation product 12 and the formation of one doublet corresponding the C-O activation product 14. However, the ¹H NMR spectroscopic analysis indicated only ca. 82% formation of the desired product. Some small amounts of impurities remain unidentified.

NMR tube thermolysis of 12 in the presence of excess PhO₂CNEt₂. 12 (10 mg, 0.014 mmol) and PhO₂CNEt₂ (10 μ L, 0.060mmol) were dissolved in about 0.6 mL C₆D₆ in a sealed

NMR tube and heated in a 90 °C oil bath. After 5 d, ¹H NMR spectroscopic analysis indicated the formation of compounds **14** and **15** in a ca. 1:2 ratio.

VIII. Reactions with PhO₂CNEt₂.

 $(PNP)Rh(H)(C_6H_4O(O)CNEt_2)$ (13). 1 (57 mg, 0.098 mmol) was dissolved in 1 mL of toluene followed by the addition of PhLi (57 µL, 0.10 mmol). The mixture was passed through Celite and silica after stirring at ambient temperature for 10 min. The volatiles were removed under vacuum. The residue was redissolved in about 3 mL of toluene. PhO₂CNEt₂ (22 µL, 0.12 mmol) was added to the solution and the reaction mixture was heated at 60 °C for 100 min. The volatiles were removed under vacuum and the residue was recrystallized from pentane/hexamethyldisiloxane at -35°. Yield: 30 mg (42%), ${}^{31}P{}^{1}H$ NMR (C₆D₆): δ 49.7 (d. J = 111 Hz). ¹H (C₆D₆): 7.80 (d, J = 8 Hz, 2H, (PNP)Aryl-H), 7.77 (br, 1H), 6.95 (br, 2H, (PNP)Arvl-*H*), 6.92 (d, *J* = 8 Hz, 1H), 6.89 (d, *J* = 3 Hz, 1H), 6.86 (d, *J* = 8 Hz, 2H, (PNP)Arvl-*H*), 6.77 (d, J = 7 Hz, 1H, (PNP)Aryl-*H*), 2.93 (q, J = 7 Hz, 2H, CH₂CH₃), 2.79(q, J = 7 Hz, 2H, CH₂CH₃), 2.34 (m, 2H, CHMe₂), 2.23 (s, 6H, Ar-CH₃), 2.18 (m, 2H, CHMe₂), 1.15 (app. q(dvt), J = 8 Hz, 6H, CHMe₂), 1.03 (m, 18H, CHMe₂), 0.84 (t, J = 6 Hz, 3H, CH₂CH₃), 0.57 (t, J = 6 Hz, 3H, CH₂CH₃), -19.53 (dt, J = 31 Hz, 14 Hz, 1H, Rh-H). ¹³C{¹H} NMR (C₆D₆): δ 160.9 (vt, J = 8Hz, C-N), 155.7, 155.1, 148.5, 141.7 (dt, J = 30 Hz, 10 Hz), 131.5, 131.4, 123.6 (vt, J = 20 Hz), 123.4, 122.2 (vt, J = 3 Hz), 122.0, 115.9, 115.6 (vt, J = 6 Hz), 41.9, 25.1 (vt, J = 10 Hz), 24.9 (vt, J = 10 Hz), 25.1 (vt, J = 10 Hz), 24.9 (vt, J = 10 Hz), 24 J = 10 Hz), 20.7, 18.2, 17.9, 14.0, 13.2. Elem. An.. Found (Calculated) for C₃₇H₅₅N₂O₂P₂Rh: C 61.25 (61.32); H 7.58 (7.65); N 3.81 (3.87).

NMR tube synthesis of 13. **5** (10 mg, 0.014 mmol) and PhO₂CNEt₂ (4.0 μ L, 0.015 mmol) were dissolved in 0.60 mL of C₆D₆ in a J. Young NMR tube. The reaction mixture was placed in a 60 °C oil bath for 100 min. ¹H NMR spectroscopic analysis indicated >98% conversion to complex **13** by using (Me₃Si)₂O as an internal integration standard.

(PNP)Rh(C₆H₅)(OC(O)NEt₂) (15). 13 (48 mg, 0.066 mmol) and PhO₂CNEt₂ (37 µL, 0.20 mmol) were dissolved in about 0.6 mL C₆D₆ in a sealed NMR tube and the NMR tube was heated in a 90 °C oil bath. The yellow-greenish solution changed to red gradually. After 9 d, the ³¹P NMR spectroscopic analysis showed complete consumption of **13** and the appearance of a new dominant doublet of 15. The reaction mixture was passed through Celite. The volatiles were removed under vacuum and the residue was recrystalized from pentane/hexamethyldisiloxane at -35°. Yield: 22 mg (46%). ${}^{31}P{}^{1}H{}$ NMR (C₆D₆): δ 39.9 (d, J = 108 Hz). ${}^{1}H$ NMR (C₆D₆): δ 8.10 (d, J = 9 Hz, 1H), 7.88 (d, J = 8 Hz, 2H, (PNP)Aryl-H), 7.01 (d, J = 7 Hz, 2H), 6.87 (m, 3H), 6.82 (d, J = 8 Hz, 1H), 6.78 (br, 1H), 6.75 (br, 1H), 3.32 (q, J = 7 Hz, 2H, CH₂CH₃), 3.24 (q, J = 77 Hz, 2H, CH₂CH₃), 2.52 (m, 2H, CHMe₂), 2.20 (m, 2H, CHMe₂), 2.14 (s, 6H, Ar-CH₃), 1.34 (app. q(dvt), J = 8 Hz, 6H, CHMe₂), 1.01-1.21 (m, 18H), 0.55 (app. q(dvt), J = 8 Hz, 6H, CHMe₂). ¹³C{¹H} NMR (C₆D₆): δ 165.1 (C=O), 161.1 (vt, J = 9 Hz, C-N), 140.2 (dt, J = 34 Hz, 9 Hz), 136.5, 133.7, 132.3, 131.3, 127.1, 125.4, 125.0 (vt, J = 3 Hz), 122.8, 120.2 (vt, J = 20 Hz), 118.7 (t, J = 5 Hz), 40.4, 40.3, 24.6 (vt, J = 10 Hz), 24.0 (vt, J = 11 Hz), 20.5, 19.2, 18.2, 17.9, 17.6, 14.8, 14.6. Elem. An.. Found (Calculated) for C₃₇H₅₅N₂O₂P₂Rh: C 61.35 (61.32); H 7.78 (7.65); N 3.79 (3.87).

NMR tube thermolysis of 13 in the absence of PhO_2CNEt_2 . 13 (10 mg, 0.015 mmol) was dissolved in about 0.6 mL C₆D₆ in a sealed NMR tube and heated in a 90 °C oil bath for 7 days. ³¹P{¹H} NMR spectroscopic analysis revealed that there were several unidentified species in the reaction mixture in addition to 15 (50%). It is worth noting that the by-products observed by this reaction are similar to the by-products observed in the thermolysis of 12 in the absence of phenyl pivalate. **NMR tube thermolysis of 13 in the presence of excess PhO₂CNEt₂.** The NMR sample of complex **13** generated from reaction of **5** with PhO₂CNEt₂as described above was treated with excess (10 eq) of PhO₂CNEt₂. The reaction mixture was heated at 90 °C for 9 d. ³¹P NMR spectroscopic analysis indicated disappearance of the C-H activation product **13** and the formation of one doublet corresponding the C-O activation product **15**. However, the ¹H NMR spectroscopic analysis indicated only ca. 90% formation of the desired product. Some small amounts of impurities remian unidentified.

NMR tube thermolysis of 13 in the presence of excess PhO_2CBu^t . 13 (10 mg, 0.015 mmol) together with PhO_2CBu^t (11µL, 0.060 mmol) were dissolved in about 0.6 mL C_6D_6 in a sealed NMR tube and heated in a 90 °C oil bath. After 5 d, ¹H NMR spectroscopic analysis indicated >98% conversion to compounds 14 and 15 in a ca. 5:2 ratio.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

IX. Graphical NMR spectra.

Figure S1 ¹H NMR spectrum of 4 generated in situ in C_6D_6 at 23 °C.

Figure S2 ¹H NMR spectrum of **5** in C_6D_6 at 23 °C.

ppm).

Figure S4 Variable temperature ¹H NMR spectra of **7** in PhF (Referenced to trace poly(dimethylsiloxane) as 0 ppm and only hydride region was shown).

Figure S5 $^{31}P{^{1}H}$ NMR spectrum of 7 in PhF at 23 °C.

Figure S7 ¹H NMR observation of 9 in C_6D_6 (internal standard (Me₃Si)₂O) at 23 °C.

Figure S8 ¹H NMR spectrum of **10** in C_6D_6 at 23 °C.

Figure S9 ¹³C{¹⁹F, ¹H} NMR spectrum of 10 in C₆D₆ at 23 °C (on top showing the *C*=O signal without ¹⁹F decoupling).

Figure S10 ¹H NMR observation of (PNP)Rh(I)(C(O)CF₃) in C₆D₆ at 23 °C.

Figure S11 ¹H NMR spectrum of **12** in C_6D_6 at 23 °C.

Figure S12 ¹H NMR spectrum of **13** in C_6D_6 at 23 °C.

Figure S13 ¹H NMR spectrum of 14 in C_6D_6 at 23 °C.

Figure S14 ¹H NMR spectrum of **15** in C_6D_6 at 23 °C.

X. Details of X-ray diffractometry studies.

X-Ray data collection, solution, and refinement for 7. A brown, multi-faceted crystal of suitable size (0.3 x 0.1 x 0.1 mm) and quality was selected from a representative sample of crystals of the same habit using an optical microscope, mounted onto a nylon loop and placed in a cold stream of nitrogen (110 K). Low-temperature X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, $K_{\alpha} = 0.71073$ Å). All diffractometer manipulations, including data collection, integration and scaling were carried out using the Bruker APEXII software.⁶ An absorption correction was applied using SADABS.⁷ The space group was determined on the basis of systematic absences and intensity statistics and the structure was solved by direct methods and refined by full-matrix least squares on F^2 . The structure was solved in the monoclinic $P2_1/c$ space group using XS^8 (incorporated in SHELXTL). No obvious missed symmetry was reported by PLATON.⁹ All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in idealized positions and refined using riding model with the exception of the hydrogen bound to rhodium which was located from the difference map. The structure was refined (weighted least squares refinement on F^2) and the final least-squares refinement converged to $R_1 = 0.0537$ ($I > 2\sigma(I)$, 4907) and w $R_2 = 0.1322$ (F^2 , 32901 data, 357 parameters). The fluorine atom on the fluorobenzene residue was found to reside with equal occupancy on C(34) and C(35) and was refined as such.

Figure S15. An ORTEP drawing¹⁰ of 7 (50% thermal ellipsoids) showing selected atom labeling. Hydrogen atoms (except Rh-H) and disorder of the fluorophenyl group are omitted for clarity. Selected bond distances (Å) and angles (deg) for 7: Rh1-P1, 2.2695(17); Rh1-P2, 2.2847(19); Rh1-N1, 2.059(4); Rh1-C33, 2.024(4); P1-Rh1-P2, 160.58(4).

X-Ray data collection, solution, and refinement for 8. An orange block $(0.10 \times 0.09 \times 0.07)$ mm) was selected from a representative sample of crystals of the same habit using an optical microscope, mounted onto a nylon loop and placed in a cold stream of nitrogen (110 K). Lowtemperature X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, $K_{\alpha} = 0.71073$ Å). All diffractometer manipulations, including data collection, integration and scaling were carried out using the Bruker APEXII software.⁶ An absorption correction was applied using SADABS.⁷ The space group was determined on the basis of systematic absences and intensity statistics and the structure was solved in the monoclinic space group $P2_1/c$ by direct methods using XS⁸ (incorporated in SHELXTL). and refined by full-matrix least squares on F^2 . No obvious missed symmetry was reported by PLATON.⁹ All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in idealized positions and refined using riding model with the exception of the hydrogen bound to rhodium which was located from the difference map. The structure was refined (weighted least squares refinement on F^2) and the final least-squares refinement converged to $R_1 = 0.0596$ (I > $2\sigma(I)$, 8357 data) and w $R_2 = 0.1602 (F^2, 38554 \text{ data}, 420 \text{ parameters}).$

X-Ray data collection, solution, and refinement for 15. A brown, multi-faceted crystal of suitable size (0.25 x 0.05 x 0.03 mm) and quality was selected from a representative sample of crystals of the same habit using an optical microscope and mounted onto a nylon loop. Due to a fault with the cryostream, room-temperature X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, $K_{\alpha} = 0.71073$ Å). All diffractometer manipulations, including data collection, integration and scaling were carried out using the Bruker APEXII software.⁶ An absorption correction was applied using SADABS.⁷ The space group was determined on the basis of systematic absences and intensity statistics and the structure was

solved by direct methods and refined by full-matrix least squares on F^2 . The structure was solved in the monoclinic $P2_1/n$ space group using XS⁸ (incorporated in SHELXTL). No obvious missed symmetry was reported by PLATON.⁹ All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in idealized positions and refined using riding model. The structure was refined (weighted least squares refinement on F^2) and the final leastsquares refinement converged to $R_1 = 0.0397$ ($I > 2\sigma(I)$, 8517 data) and w $R_2 = 0.1045$ (F^2 , 40598 data, 410 parameters).

XI. Supporting Information References.

- ¹ O. V. Ozerov, C. Guo, V. A. Papkov, B. M. Foxman, J. Am. Chem. Soc., 2004, **126**, 4792.
- ² S. Gatard, R. Çelenligil-Çetin, C. Guo, B. M. Foxman, O. V. Ozerov, *J. Am. Soc. Chem.*, 2006, 128, 2808.
- ³ H. Drossman, H. Johnson, T. Mill, *Chemosphere*, 1988, 17, 1509.
- ⁴ W. M. Seganish, P. Deshong, J. Org. Chem., 2004, 69, 6790.
- ⁵ K. Niknam, D. Saberi, H. Molaee, M. Zolfigol, Can. J. Chem., 2010, 88, 164.
- ⁶ APEX2, Version 2 User Manual, M86-E01078, Bruker Analytical X-ray Systems, Madison, WI, June 2006
- ⁷ G. M. Sheldrick, "SADABS (version 2008/1): Program for Absorption Correction for Data from Area Detector Frames", University of Göttingen, 2008.
- ⁸ G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122
- ⁹ A. L. Spek, (2006) PLATON A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands. A. L. Spek, *Acta Cryst.*, 1990, A46, C34.
- ¹⁰ Created using *Persistence of Vision Ray Tracer (POV-Ray)* and *Ortep-3 for Windows* (Farugia, L. J. Appl. Crystallogr. 1997, **30**, 565)