ELECTRONIC SUPPLEMENTARY INFORMATION

Α	Ι	II
O(1)-C(11)-(C2)-C(1)	24.2(4)	13.0(6)
O(3)-C(12)-(C3)-C(2)	67.2(3)	82.2(5)
O(5)-C(13)-(C5)-C(4)	-29.7(4)	-21.2(6)
O(7)-C(14)-(C7)-C(6)	-178.8(2)	-176.4(4)
В	Ι	II
O(9)-C(25)-(C15)-C(16)	-9.1(4)	-18.4(6)
O(11)-C(26)-(C17)-C(16)	179.0(3)	176.2(4)
O(13)-C(27)-(C19)-C(20)	-168.4(3)	-176.0(4)
O(15)-C(28)-(C21)-C(20)	-175.5(3)	178.6(4)

Table S1 Comparative torsion angles of the A and B anions in forms I and II.

Figure S1: (a) The tetrahedral hydrogen bonding interactions in ATCA, which can be reproduced by replacing the central ATCA molecule with HMTA (b).

Figure S2: The different crystal morphologies of the two forms of the molecular salt, together with their respective unit cell dimensions and face indexes.

Figure S3: The different crystal packing architectures of form **I** (a) and form **II** (b). All H atoms are omitted for clarity.

Figure S4: The crystal packing architectures of form **I** shown down the *c*-axis in the same viewing direction as shown in Fig. S3a. The **A** and **C** pair of anion and cation is shown in green, and the **B** and **D** pair in yellow. All H atoms are omitted for clarity.

Figure S5: The crystal packing architectures of form **II** shown down the *a*-axis in a separate viewing direction as shown in Fig. S3b. The **A** and **C** pair of anion and cation is shown in green, and the **B** and **D** pair in yellow. All H atoms are omitted for clarity.

Crystal Structure Solution and Refinement:

Intensity data were collected on a Bruker APEX II CCD area detector diffractometer with graphite monochromated MoK α_1 radiation (50 kV, 30 mA) at 293 K. The collection method involved u-scans of width 0.5. Data reduction was carried out using the program *SAINT*+,¹ version 6.02, and empirical absorption corrections done using *SADABS*.² The crystal structure was solved by direct methods using *SHELXS-97*.³ Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F^2 using *SHELXL-97*.³ Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms. Diagrams and publication material were generated using *WinGX*,⁴ *ORTEP*,⁵ *PLATON*⁶ and *DIAMOND*.⁷

- Bruker, SAINT+, Version 6.02 (Includes XPREP and SADABS), Bruker AXS Inc., Madison, Wisconsin, USA, 2004.
- 2 G. M. Sheldrick, Sadabs, Universität Göttingen, Germany, 2004.
- G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 4 L. J. Farrugia, WinGX, J. Appl. Crystallogr., 1999, 32, 837–838.
- 5 L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
- 6 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7–13.
- 7 K. Brandenburg, Diamond, Version 2.1e, Crystal Impact GbR, Bonn, Germany, 1996–2001.

Figure S4: The asymmetric units of salt of **Form I**, showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. The H atoms on the C atoms are omitted for clarity.

Figure S5: The asymmetric units of salt of **Form II**, showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. The H atoms on the C atoms are omitted for clarity.