ELECTRONIC SUPPLEMENTARY INFORMATION

$\underline{\text { Table S1 Comparative torsion angles of the } \mathbf{A} \text { and } \mathbf{B} \text { anions in forms I and II. }}$

\mathbf{A}	\mathbf{I}	II
$\mathrm{O}(1)-\mathrm{C}(11)-(\mathrm{C} 2)-\mathrm{C}(1)$	$24.2(4)$	$13.0(6)$
$\mathrm{O}(3)-\mathrm{C}(12)-(\mathrm{C} 3)-\mathrm{C}(2)$	$67.2(3)$	$82.2(5)$
$\mathrm{O}(5)-\mathrm{C}(13)-(\mathrm{C} 5)-\mathrm{C}(4)$	$-29.7(4)$	$-21.2(6)$
$\mathrm{O}(7)-\mathrm{C}(14)-(\mathrm{C} 7)-\mathrm{C}(6)$	$-178.8(2)$	$-176.4(4)$
\mathbf{B}	\mathbf{I}	II
$\mathrm{O}(9)-\mathrm{C}(25)-(\mathrm{C} 15)-\mathrm{C}(16)$	$-9.1(4)$	$-18.4(6)$
$\mathrm{O}(11)-\mathrm{C}(26)-(\mathrm{C} 17)-\mathrm{C}(16)$	$179.0(3)$	$176.2(4)$
$\mathrm{O}(13)-\mathrm{C}(27)-(\mathrm{C} 19)-\mathrm{C}(20)$	$-168.4(3)$	$-176.0(4)$
$\mathrm{O}(15)-\mathrm{C}(28)-(\mathrm{C} 21)-\mathrm{C}(20)$	$-175.5(3)$	$178.6(4)$

(a)

(b)

Figure S1: (a) The tetrahedral hydrogen bonding interactions in ATCA, which can be reproduced by replacing the central ATCA molecule with HMTA (b).

Figure S2: The different crystal morphologies of the two forms of the molecular salt, together with their respective unit cell dimensions and face indexes.

Figure S3: The different crystal packing architectures of form I (a) and form II (b). All H atoms are omitted for clarity.

Figure S4: The crystal packing architectures of form I shown down the c-axis in the same viewing direction as shown in Fig. S3a. The \mathbf{A} and \mathbf{C} pair of anion and cation is shown in green, and the \mathbf{B} and D pair in yellow. All H atoms are omitted for clarity.

Figure S5: The crystal packing architectures of form II shown down the a-axis in a separate viewing direction as shown in Fig. S3b. The \mathbf{A} and \mathbf{C} pair of anion and cation is shown in green, and the \mathbf{B} and D pair in yellow. All H atoms are omitted for clarity.

Crystal Structure Solution and Refinement:

Intensity data were collected on a Bruker APEX II CCD area detector diffractometer with graphite monochromated $\mathrm{MoK} \alpha_{1}$ radiation ($50 \mathrm{kV}, 30 \mathrm{~mA}$) at 293 K . The collection method involved u-scans of width 0.5 . Data reduction was carried out using the program SAINT,$+{ }^{1}$ version 6.02 , and empirical absorption corrections done using $S A D A B S .{ }^{2}$ The crystal structure was solved by direct methods using SHELXS-97. ${ }^{3}$ Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F^{2} using SHELXL-97. ${ }^{3}$ Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms. Diagrams and publication material were generated using WinGX, ${ }^{4}$ ORTEP, ${ }^{5}$ PLATON ${ }^{6}$ and DIAMOND. ${ }^{7}$

Bruker, SAINT+, Version 6.02 (Includes XPREP and SADABS), Bruker AXS Inc., Madison, Wisconsin, USA, 2004.
G. M. Sheldrick, Sadabs, Universität Göttingen, Germany, 2004.
G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.
L. J. Farrugia, WinGX, J. Appl. Crystallogr., 1999, 32, 837-838.
L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.
K. Brandenburg, Diamond, Version 2.1e, Crystal Impact GbR, Bonn, Germany, 1996-2001.

Figure S4: The asymmetric units of salt of Form I, showing the atomic numbering scheme.
Displacement ellipsoids are shown at the 50% probability level. The H atoms on the C atoms are omitted for clarity.

Figure S5: The asymmetric units of salt of Form II, showing the atomic numbering scheme.
Displacement ellipsoids are shown at the 50% probability level. The H atoms on the C atoms are omitted for clarity.

