Electronic Supplementary Information (ESI)

For

Discovery and structural insight of a highly selective protein

kinase inhibitor hit through click chemistry

Guoxian Gu,[#] Huihui Wang,[#] Pi Liu,[#] Chenzeng Fu, Zhonghua Li, Xuefeng Cao, Yunping Li, Qinghong Fang, Feng Xu, Jie Shen, * Peng George Wang*

State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China; College of Pharmacy and Tianjin Key Laboratory of Molecular Research, Tianjin 300071, P. R. China.

Table of Contents

Page

The synthesis procedure of 4a-4g	1
The synthesis procedure of 1a-1g	3
¹ H NMR, ¹³ C NMR and HRMS of compounds 3	5
¹ H NMR, ¹³ C NMR and HRMS of compounds 4a-4g	6
¹ H NMR, ¹³ C NMR and HRMS of compounds 1a-4g	13
A panel of one-124-kinase assay of 1c	
Compound 1c IC ₅₀	
Compounds 1e, 1d, 1g IC ₅₀	24
ATP competitive assay	24

The synthesis of 4a-4g

2-Chloro-3-(1*H*-indol-3-yl)-N-methylmaleimide (2):

To a solution of indole (5.5 mmol, 665 mg) in THF (20 mL) was added EtMgBr (1.0 M in THF, 5.5 mL). After heating to 60°C for 1h a solution of 2,3-dichloro-*N*- methylmaleimide (5.5 mmol, 1g) in THF(20 mL) was added. The mixture was heated at 65°C and the reaction was followed by TLC. After 1h the mixture was cooled to room temperature and poured into ice water, then extracted with EtOAc. The organic layer was washed with sat. aq NH₄Cl, brine and dried with Na₂SO₄. The solution was removed *in vacuo* and purified by flash chromatography to afford a yellow solid **2**, 752 mg, yield 52%. ¹H NMR (400 MHz, DMSO-d₆, δ : ppm) 12.12 (s, 1H), 8.05 (d, 1H, *J* = 2.8 Hz), 7.90 (d, 1H, *J* = 8.0Hz), 7.51 (d, 1H, *J* = 8.0 Hz), 7.23 (t, 1H, *J* = 7.2 Hz), 7.16 (t, 1H, *J* = 7.2 Hz), 3.02 (s, 3H).

3-(1*H*-indol-3-yl)-1-methyl-4-((trimethylsilyl)ethynyl)-1*H*-pyrrole-2,5-dione (3):

To a solution of the **2** (450 mg, 1.71 mmol) in Et₃N (40 mL) & THF (10 mL) was added Pd(PPh₃)₄ (110 mg, 0.09 mmol) and CuI (326 mg, 0.17 mmol), and the solution was degassed with argon. Trimethylsilylacetylene (0.5 mL, 3.5 mmol) was then added and the solution stirred overnight. The mixture was poured onto sat. aq NH₄Cl (70 mL) and extracted with ether (3 x 20 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. The solvent was removed in vacuo and the product purified by flash chromatography to yield a red solid **3**, 411 mg, yield 75%. ¹H NMR (400 MHz, DMSO-d₆, δ : ppm) 12.30 (s, 1H), 8.33 (s, 1H), 8.31 (s, 1H), 7.52 (d, 1H, *J* = 8.0 Hz), 7.26 (t, 1H, *J* = 7.6 Hz), 7.16 (t, 1H, *J* = 7.6 Hz), 2.97 (s, 3H), 0.24 (s, 9H). ¹³C NMR (75 MHz, DMSO-d₆, δ : ppm) 170.39, 168.63, 139.44, 136.77, 132.82, 125.01, 123.21, 122.97, 120.40, 112.49, 110.95, 109.50, 106.31, 98.06, 24.23, -0.47. HRMS (ESI, m/z): calcd for C₁₈H₁₈N₂O₂Si (M+Na)⁺, 345.1030; found, 345.1030.

General procedure for the preparation of (4):

To the solution of the **3** (1 equiv) in THF & MeOH (1:1), tetrabutylammonium fluoride (1 equiv.) was added. The reaction was monitored by TLC analysis. Upon the disappearance of the reactant, azides (1 equiv.) was added, followed by sodium ascorbate (0.2 equiv.) and copper ($_$) sulfate pentahydrate (0.02 equiv.). The mixture was stirred overnight, at which point it cleared and TLC analysis indicated complete consumption of the reactants. The reaction mixture was poured onto ice water, and extracted with ethyl acetate, dried over Na₂SO₄. The solvent was removed *in vacuo* and the residue was purified by column chromatography to afford **4**.

3-(1*H*-indol-3-yl)-4-(1-(3-hydroxypropyl)-1*H*-1,2,3-triazol-4-yl)-*N*-methylmaleimide (4a):

Yield 45%. ¹H NMR(400 MHz, DMSO-d₆, δ : ppm) 1.974 (2H, t, J = 6.4 Hz), 3.036 (3H, s), 3.398-3.411 (2H, m), 4.496 (2H, t, J = 6.4 Hz), 4.678 (1H, t, J = 4.0 Hz), 6.877-6.911 (2H, m), 7.125 (1H, t, J = 6.4 Hz), 7.461 (1H, d, J = 8.0 Hz), 8.209 (1H, s), 8.473 (1H, s), 11.918 (1H, s). ¹³C NMR(100 MHz, DMSO-d₆, δ : ppm) 24.033, 32.942, 46.698, 57.327, 104.720, 111.994, 119.810, 119.981, 121.567, 121.950, 125.017, 125.832, 131.768, 132.056, 136.421, 136.707, 170.776, 170.926. HRMS (ESI, m/z) calcd for C₁₈H₁₇N₅O₃Na (M+Na)⁺ 374.1226, found 374.1224.

3-(1*H*-indol-3-yl)-4-(1-(2-hydroxyethyl)-1*H*-1,2,3-triazol-4-yl)-N-methylmaleimide (4b):

Yield 55%. ¹**H** NMR(400 MHz, DMSO-d₆, δ : ppm) 3.038 (3H, s), 3.796 (2H, q, ¹*J* = ²*J* = 5.2 Hz), 4.491 (2H, t, *J* = 5.2Hz), 5.065 (1H, t, *J* = 5.2Hz), 6.916 (1H, t, *J* = 7.6 Hz), 6.995 (1H, d, *J* = 8.0 Hz), 7.128 (1H, t, *J* = 7.6 Hz), 7.460 (1H, d, *J* = 8.4 Hz), 8.227 (1H, d, *J* = 2.4 Hz), 8.479 (1H, s), 11.905 (1H, s). ¹³C NMR(100 MHz, DMSO-d₆, δ : ppm) 24.034, 52.209, 59.811, 104.736, 111.914, 119.837, 120.164, 121.749, 121.899, 125.179, 126.142, 131.744, 131.788, 136.377, 136,616, 170.830, 170.959. HRMS (ESI, m/z) calcd for C₁₇H₁₅N₅O₃Na (M+Na)⁺ 360.1062, found 360.1067.

3-(1*H*-indol-3-yl)-4-(1-(3-phenylpropyl)-1*H*-1,2,3-triazol-4-yl)-N-methylmaleimide (4c):

Yield 42%. ¹H NMR(400 MHz, DMSO-d6, δ : ppm) 2.152 (2H, penta, J = 7.2 Hz), 2.556 (2H, t, J = 7.6 Hz), 3.039 (3H, s), 4.455 (2H, t, J = 6.8 Hz), 6.824-6.878 (2H, m), 7.104 (1H, t, J = 6.4 Hz), 7.194-7.314 (5H, m), 7.461 (1H, d, J = 8.0 Hz), 8.202 (1H, s), 8.523 (1H, s), 11.930 (1H, s). ¹³C NMR(100 MHz, DMSO-d6, δ : ppm) 24.032, 31.352, 31.723, 48.955, 104.739, 112.016, 119.752, 119.987, 121.532, 121.938, 125.006, 125.725, 125.982, 128.294, 128.373, 131.735, 132.082, 136.450, 136.854, 140.689, 170.760, 170.928. HRMS (ESI, m/z) calcd for C₂₄H₂₁N₅O₂Na (M+Na)⁺ 434.1593, found 434.1587.

3-(1*H*-indol-3-yl)-4-(1-(3-phenylethyl)-1*H*-1,2,3-triazol-4-yl)-N-methylmaleimide (4d):

Yield 47%. ¹H NMR(400 MHz, DMSO-d₆, δ : ppm) 3.020 (3H, s), 3.190 (2H, t, J = 7.2 Hz), 4.714 (2H, t, J = 7.2 Hz), 6.823-6.897 (2H, m), 7.127 (2H, t, J = 7.6 Hz), 7.202-7.235 (3H, m), 7.286 (2H, t, J = 7.6 Hz), 7.461 (1H, d, J = 8.0 Hz), 8.158 (1H, d, J = 2.4 Hz), 8.433 (1H, s), 11.906 (1H, s). ¹³C NMR(100 MHz, DMSO-d₆, δ : ppm) 24.027, 35.644, 50.478, 104.770, 111.954, 119.766, 119.838, 121.693, 121.899, 125.049, 125.734, 126.586, 128.363, 128.699, 131.615, 131.661, 136.404, 136.574, 137.509, 170.779, 170.943. HRMS (ESI, m/z) calcd for C₂₃H₁₉N₅O₂Na (M+Na)⁺ 420.1431, found 420.1431.

3-(1*H*-indol-3-yl)-4-(1-(2-phenoxyethyl)-1*H*-1,2,3-triazol-4-yl)-N-methylmaleimide (4e):

Yield 22%. ¹H NMR(400 MHz, DMSO-d₆, δ : ppm) 3.035 (3H, s), 4.416 (2H, t, J = 4.8 Hz), 4.861 (2H, t, J = 4.8 Hz), 6.749 (1H, t, J = 7.6 Hz), 6.865 (1H, d, J = 8.0 Hz), 6.911-6.969 (3H, m), 7.073 (1H, t, J = 7.6 Hz), 7.286 (2H, t, J = 7.6 Hz), 7.440 (1H, d, J = 8.4 Hz), 8.191 (1H, d, J = 2.4 Hz), 8.587 (1H, s), 11.908 (1H, s). ¹³C NMR(100 MHz, DMSO-d₆, δ : ppm) 24.045, 49.115, 66.043, 104.721, 111.940, 114.557, 119.787, 119.865, 121.084, 121.605, 121.889, 125.054, 126.275, 129.544, 131.754, 131.990, 136.399,

136.835, 157.829, 170.797.170.932. **HRMS** (ESI, m/z) calcd for $C_{23}H_{19}N_5O_3Na$ (M+Na)⁺ 436.1373, found 436.1380.

3-(1*H*-indol-3-yl)-4-(1-(3-phenylmethyl)-1*H*-1,2,3-triazol-4-yl)-N-methylmaleimide (4f):

Yeild 53%. ¹H NMR (400 MHz, DMSO-d6, δ : ppm) 3.038 (s, 3H), 5.712 (s, 2H), 6.812-6.844 (m, 2H), 7.130 (t, 1H, J = 6.8 Hz), 7.309-7.479 (m, 6H), 8.209 (s, 1H), 8.574 (s, 1H), 11.935 (s, 1H). ¹³C NMR (100 MHz, DMSO-d6, δ : ppm) 24.043, 52.719, 104.677, 112.016, 119.765, 119.811, 121.531, 121.955, 124.961, 125.983, 127.699, 128.112, 128.752, 131.797, 132.187, 136.007, 136.414, 170.753, 170.900. HRMS (ESI, m/z) calcd for C₂₂H₁₇N₅O₂Na (M+Na)⁺ 406.1281, found 406.1275.

3-(1H-indol-3-yl)-4-(1-(3-cinnamyl)-1H-1,2,3-triazol-4-yl)-N-methylmaleimide (4g):

Yeild 71%. ¹**H NMR**(400 MHz, DMSO-d₆, δ : ppm) 3.047 (s, 3H), 5.283 (d, 2H, J = 6.0 Hz), 6.493-6.563 (m,1H), 6.666 (d, 1H, J = 8.0 Hz), 6.874-6.953 (m, 2H), 7.120 (t, 1H, J = 7.6 Hz), 7.299 (t, 1H, J = 7.2 Hz), 7.371 (t, 2H, J = 7.2 Hz), 7.472 (d, 3H, J = 8.0 Hz), 8.224 (d, 1H, J = 2.4 Hz), 8.532 (s, 1H), 11.942 (s, 1H). ¹³**C NMR** (100 MHz, DMSO-d₆, δ : ppm) 24.037, 51.315, 104.730, 112.003, 119.838, 119.910, 121.631, 121.935, 123.627, 125.038, 125.696, 126.545, 128.139, 128.684, 131.801, 132.060, 133.608, 135.696, 136.439, 170.768, 170.917. **HRMS** (ESI, m/z) calcd for C₂₆H₂₂N₃O₂ (M+H)⁺ 408.1460, found 408.1466.

The synthesis of 1a-1g

General procedure for the preparation of (1a-1g): To a solution of 4 (0.1 mM) in EtOH (5 mL) was added KOH aqueous solution (2 mL, 1M) and the reaction was stirred for 2 h. Water (5 mL) was added and the mixture was acidified to pH 1 with 2M HCl. After extraction with ethyl actate (three times), the organic layers were dried and concentrated to give the crude anhydride 5. To this crude anhydride in DMF (1.5 mL) was added ammonium acetate (0.5 mM). The reaction mixture was heated at 140°C for 2 h and then cooled down slowly. The reaction mixture was poured onto ice water, and extracted with ethyl acetate, dried over Na₂SO₄. The solvent was removed and the residue was purified by column chromatography to give compound 1a-1g.

3-(1*H*-indol-3-yl)-4-(1-(3-hydroxypropyl)-1*H*-1,2,3-triazol-4-yl)-maleimide (1a):

Yield 74%. ¹**H NMR** (400 MHz, DMSO-d₆, δ : ppm) 1.973 (penta, 2H, J = 6.8 Hz), 3.383-3.427 (m, 2H), 4.486 (t, 2H, J = 6.8 Hz), 4.659 (t, 1H, J = 4.8 Hz), 6.850-6.906 (m, 2H), 7.095-7.135 (m, 1H), 7.450 (d, 1H, J = 8.0 Hz), 8.169 (d, 1H, J = 2.8 Hz), 8.450 (s, 1H), 11.097 (s, 1H), 11.875 (d, 1H, J = 2.0 Hz). ¹³C NMR (100 MHz, DMSO-d₆, δ : ppm) 32.927, 46.665, 57.331, 104.632, 111.931, 119.751, 120. 671, 121.530, 121.864, 125.077, 125.831, 131.662, 132.511, 136.382, 136.670, 171.939, 172.122. HRMS (ESI, m/z) calcd for C₁₇H₁₅N₅O₃ (M+Na)⁺ 360.1070. found 360.1067.

3-(1*H*-indol-3-yl)-4-(1-(2-hydroxyethyl)-1*H*-1,2,3-triazol-4-yl)-maleimide (1b):

Yield 62%. ¹H NMR (400 MHz, DMSO-d₆, δ : ppm) 3.798 (apparent s, 2H), 4.486 (t, 2H, J = 5.2 Hz), 5.075

(s, 1H), 6.911 (t, 1H, J = 7.6 Hz), 6.979 (d, 1H, J = 8.0 Hz), 7.123 (t, 1H, J = 7.6 Hz), 7.455 (d, 1H, J = 8.4 Hz), 8.193 (s, 1H), 8.468 (s, 1H), 11.124 (s, 1H), 11.892 (s, 1H). ¹³**C** NMR (100 MHz, DMSO-d₆, δ : ppm) 52.186, 59.797, 104.648, 111.855, 119.775, 120.824, 121.710, 121.812, 125.230, 126.134, 131.685, 132.197, 136.342, 136.579, 162.868, 172.002,172.155. **HRMS** (ESI, m/z) calcd for C₁₆H₁₃N₅O₃Na (M+Na)⁺ 346.0916, found 346.0911.

3-(1*H*-indol-3-yl)-4-(1-(3-phenylpropyl)-1*H*-1,2,3-triazol-4-yl)-maleimide (1c):

Yield 81%. ¹**H NMR** (400 MHz, DMSO-d₆, δ : ppm) 2.151 (penta, 2H, J = 6.8 Hz), 2.559 (t, 2H, J = 7.6 Hz), 4.445 (t, 2H, J = 7.2 Hz), 6.818-6.872 (m, 2H), 7.075-7.116 (m, 1H), 7.176-7.211 (m, 3H), 7.275-7.312 (m, 2H). 7.450 (d, 1H, J = 8.0 Hz), 8.162 (d, 1H, J = 2.8 Hz), 8.499 (s, 1H), 11.103 (s, 1H), 11.885 (d, 1H, J = 2.0 Hz). ¹³**C** NMR (100 MHz, DMSO-d₆, δ : ppm) 31.356, 31.722, 48.925, 104.644, 111.963, 119.690, 120.649, 121.502, 121.857, 125.052, 125.730, 125.977, 128.300, 128.367, 131.640, 132.511, 136.410, 136.821, 140.698, 171.928, 172.129. **HRMS** (ESI, m/z) calcd for C₂₃H₁₉N₅O₃Na (M+Na)⁺ 420.1427. found 420.1431.

3-(1*H*-indol-3-yl)-4-(1-(2-phenylethyl)-1*H*-1,2,3-triazol-4-yl)-maleimide (1d):

Yield 53%. ¹H NMR (400 MHz, DMSO-d₆, δ : ppm) 3.188 (t, 2H, J = 7.2 Hz), 4.702 (t, 2H, J = 7.2 Hz), 6.811 (d, 1H, J = 8.0 Hz), 6.868 (t, 1H, J = 8.0 Hz), 7.120 (t, 1H, J = 7.6 Hz), 7.208-7.310 (m, 5H), 7.453 (d, 1H, J = 8.0 Hz), 8.124 (d, 1H, J = 2.8 Hz), 8.438 (s, 1H), 11.108 (s, 1H), 11.893 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆, δ : ppm) 35.657, 50.466, 104.683, 111.907, 119.720, 120.499, 121.658, 121.825, 125.105, 125.760, 126.582, 128.367, 128.711, 131.577, 132.067, 136.378, 136.544, 137.529, 171.957, 172.150. HRMS (ESI, m/z) calcd for C₂₂H₁₇N₅O₂Na (M+Na)⁺ 406.1277, found 406.1275.

3-(1*H*-indol-3-yl)-4-(1-benzyl-1*H*-1,2,3-triazol-4-yl)-maleimide (1e):

Yield 43%. ¹H NMR (400 MHz, DMSO-d6, δ : ppm) 5.695 (s, 2H), 6.820-6.832 (m, 2H), 7.095-7.136 (m, 1H), 7.307-7.463 (m, 6H), 8.166 (d, 1H, J = 2.8 Hz), 8.549 (s, 1H), 11.117 (s, 1H), 11.903 (s, 1H). ¹³C NMR (100 MHz, DMSO-d6, δ : ppm) 52.734, 104.611, 111.937, 119.736, 120.503, 121.503, 121.856, 125.057, 125.922, 127.727, 128.096, 128.729, 131.404, 131.677, 135.977, 136.396, 171.885, 172.074. HRMS (ESI, m/z) calcd for C₂₁H₁₅N₅O₂Na (M+Na)⁺ 392.1110, found 392.1118.

3-(1*H*-indol-3-yl)-4-(1-(2-phenoxyethyl)-1*H*-1,2,3-triazol-4-yl)-maleimide (1f):

Yield 28%. ¹H NMR (400 MHz, Acetone-d₆, δ : ppm) 4.503 (t, 2H, J = 5.2 Hz), 4.934 (t, 2H, J = 5.2 Hz), 6.839 (t, 1H, J = 7.6 Hz), 6.931-6.970 (m, 3H), 7.071-7.141 (m, 2H), 7.282 (t, 1H, J = 7.6 Hz), 7.460 (d, 1H, J = 8.0 Hz), 8.354 (s, 1H), 8.513 (s, 1H), 9.891 (s, 1H), 10.986 (s, 1H). ¹³C NMR (100 MHz, Acetone-d₆, δ : ppm) 50.396, 67.281, 106.501, 112.540, 115.569, 120.849, 122.091, 122.432, 122.921, 123.080, 126.693, 127.115, 130.385, 132.533, 132.698, 137.704, 138.392, 159.274, 172.351, 172.539. HRMS (ESI, m/z) calcd for C₂₂H₁₇N₅O₃Na (M+Na)⁺ 422.1222, found 422.1224.

3-(1*H*-indol-3-yl)-4-(1-(3-cinnamyl)-1*H*-1,2,3-triazol-4-yl)-maleimide (1g):

Yield 39%. ¹H NMR (400 MHz, DMSO-d₆, δ : ppm) 5.320 (d, 2H, J = 6.0 Hz), 6.539-6.610 (dt, 1H, $J_1 = 16.0$ Hz, $J_2 = J_3 = 6.0$ Hz), 6.720 (d, 1H, J = 15.6 Hz), 6.912-6.986 (m, 2H), 7.159 (dt, 1H, $J_1 = J_2 = 8.0$ Hz, $J_3 = 1.2$ Hz), 7.346(t, 1H, J = 7.6 Hz), 7.417 (t, 2H, J = 7.6 Hz), 7.498-7.530 (m, 3H), 8.230 (d, 1H, J = 2.8 Hz), 8.561 (s, 1H), 11.183 (s, 1H), 11.956 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆, δ : ppm) 51.297, 104.640, 111.936, 119.768, 120.600, 121.592, 121.846, 123.611, 125.105, 125.676, 126.550, 128.130, 128.675, 131.689, 132.508, 133.639, 135.704, 136.401, 136.977, 171.928, 172.101. HRMS (ESI, m/z) calcd for C₂₁H₁₅N₅O₂Na (M+Na)⁺ 418.1270, found 418.1275.

¹H NMR, ¹³C NMR, HRMS spectrum of 3-(1*H*-indol-3-yl)-1-methyl-4-((trimethylsilyl) ethynyl)-1*H*-pyrrole-2,5-dione (3):

¹H NMR, ¹³C NMR, HRMS spectrum of 3-(1*H*-indol-3-yl)-4-(1-(3-hydroxypropyl)-1*H*-1,2,3-triazol-4-yl)-*N*-methylmaleimide (4a):

¹H NMR, ¹³C NMR, HRMS spectrum of 3-(1*H*-indol-3-yl)-4-(1-(2-hydroxyethyl)-1*H*-1,2,3-triazol-4-yl)-*N*-methylmaleimide (4b):

¹H NMR, ¹³C NMR, HRMS spectrum of 3-(1*H*-indol-3-yl)-4-(1-(3-phenylpropyl)-1*H*-1,2,3-triazol-4-yl)-N-methylmaleimide (4c):

¹H NMR, ¹³C NMR, HRMS spectrum of 3-(1*H*-indol-3-yl)-4-(1-(3-phenylethyl)-1*H*-1,2,3-triazol-4-yl)-*N*-methylmaleimide (4d):

- 9 -

¹H NMR, ¹³CNMR, HRMS spectrum of 3-(1*H*-indol-3-yl)-4-(1-(2-phenoxyethyl)-1*H*-1,2,3-triazol-4-yl)-*N*-methylmaleimide (4e):

- 15 -

- 17 -

A panel of 124-kinase assay for 1c at 500 nM.

The kinases represent for the following abbreviations can be found on <u>http://www.kinase-screen.mrc.ac.uk/index.htm</u>.

general assay procedure:

All assays (25.5 μ L volume) are carried out robotically at room temperature (21 °C) and are linear with respect to time and enzyme concentration under the conditions used. Assays are performed for 30 min using Multidrop Micro reagent dispensers in a 96-well format. To plates containing 0.5 μ L of compounds, 15 μ L of an enzyme mix containing enzyme and peptide/protein substrate in buffer is added. Compounds are pre-incubated in the presence of the enzyme and peptide/protein substrate for 5 minutes before initiation of the reaction by addition of 10 μ L of ATP .Assays are incubated at room temperature for 30mins before termination by the addition of 5 μ L orthophosphoric acid. The assay plates are then harvester onto P81 Unifilter Plates by a Perkin Elmer Harvester and dried in air. The dry Unifilter plates are then sealed on the addition of MicroScint O and are counted in Packard Topcount NXT scintillation counters.

Kinaes Mean %activit y	MKK 1 95±10	MKK2 107±2 2	MKK 6 93±7	ERK 1 91±9	ERK 2 111± 9	JNK 1 94±2	JNK2 100±1 8	JNK3 115± 6	p38a MAP K 93±3	p38 MA K 110≠	b pî P M ⊧6 11	38g IAP M K 9±5 1	538d MAP K 20±7	
Kinaes	ERK 8	RSK 1	RSK 2	PDK 1	ΡΚΒα	ΡΚΒβ	SGK 1	S6K1	PKA	RO 2	CK I	PRK 2	PKC α	
Mean %activit y	71±9	108± 2	89±7	109± 8	120±1 3	128±2 4	100± 1	122±2 3	101± 8	- 111	±9	125± 7	110±	
	1													
Kinaes	РКСү	PKCz	PKD	1 STK	33 MSI	K1 MN	K1 MN	MA K2	APKAP -K2	MAP -K	KAP K3	PRAK	CAMKKb	CAMK
Mean %activity	122±6	108±10	87±4	100±	=2 93±	⊨4 94±	12 108	±4 1	00±5	110)±9	112±11	82±23	92±3
Kinaes	SmMLC	CK PH	IK DA	APK1	CHK1	CHK2	GSK3b	CDK2-C	Cyclin	PLK1	Auror A	ra Auro B	ora TLK1	LKB1
Mean %activity	94±20) 108	3±4 10	4±14	100±16	104±2	32±0	95±	-2	91±1	89±3	8 101	±4 109±5	108±8
Kinaes	AMPK	MARK	KI MA	ARK2 1	MARK3	MARK4	BRSK	1 BRS	K2 N	1ELK	NUAK	1 TSS	K1 CK1	CK2
Mean %activity	111±5	107±	6 10	00±1	97±15	94±2	95±3	104±	=10 9	95±18	94±7	84±	13 103±12	94±4

Kinaes	ERK	RSK	RSK	PDK	ΡΚΒα	ΡΚΒβ	SGK	S6K1	PKA	ROCK	PRK	РКС
--------	-----	-----	-----	-----	------	------	-----	------	-----	------	-----	-----

	8	1	2	1		1				2	2	α	-	
Mean %activit y	71±9	108± 2	10 89±7	09± 120 8 3	0±1 128 3 4	3±2 100	± 122±	-2 10	01± 8	111±9	125± 7	= 110±		
													_	
Kinaes	TTBK 1	DYRK1 A	DYRK 2	DYRK 3	NEK2 a	NEK6	IKKb	IKK e	TBK 1	PIM 1	PIM	PIM 12 3		
Mean %activi ty	102±1	88±18	120±6	106±2 1	127±8	102±1 8	91±2 0	90± 9	94±7	84±5	100: 8	± 82±4		
	CDDW	1110				unu c	I.W. DA	**		DAW	DAV		-	
Kinaes	SRPK 1	EF2 K	EIF2AK 3	HIPK 1	нірк і 2	арк С 3	LK PA 2 2	K P	AK4	РАК 5	PAK 6	MST2		
Mean %activi ty	120±5	95±3	101±12	111±4 1	1 103±1	05±1 4	2±1 8	4± 1	08±1 4	106± 6	112±	126±1 2		
Vinces	MST4	CCV	MINIZ 1	MEVV 1	MI V1	MLV 2	TERV 1	TAOI	4 51	Z1 T	A 1/ 1			-
Mean %activity	94±5	94±8	104±1	116±2	90±4	101±4	113±19	129±1	1 112	±4 10	4±13	99±10	93±6	
Kinaes	RIPK2	OSR1	TTK	MPSK	1 Src	Lck	CSK	YES	I AB	L B	TK	JAK2	SYK	-
Mean %activity	84±12	115±3	108±13	90±1	91±10	99±5	100±11	87±2	5 105	±3 10	6±11	111±4	89±3	
Kinaes	ZAP70	TIE2	BRK	EPH-A2	EPH-A	4 EPH-I	31 EPH	-B2 I	EPH-B3	EPH-	B4 I	FGF-R1	HER4	IGF-
Mean %activity	24±32	102±4	101±15	138±2	113±8	113±2	22 133±	=11	92±3	114±	17	84±14	130±15	102:
Kinaes	IR	IRR	TrkA	VEGFR2	-									

Mean %activity 101±4 106±6 116±11 52±1

Compound 1c IC50

GSK3b assay

GSK3b (5–20 mU diluted in 20 mM MOPS pH 7.5, 1 mM EDTA, 0.01% Brij35, 5% glycerol, 0.1% b-mercaptoethanol, 1 mg/ml BSA) is assayed against Phospho-GS2 peptide (YRRAAVPPSPSLSRHSSPHQS(PO4)EDEEE) in a final volume of 25.5 μ l containing 8 mM MOPS pH 7.0, 0.2 mM EDTA, 20 μ M Phospho GS2 peptide, 10 mM magnesium acetate and 0.005 mM [33P-g-ATP] (50-1000 cpm/pmole) and incubated for 30 min at room temperature. Assays are stopped by addition of 5 μ l of 0.5 M (3%) orthophosphoric acid and then harvested onto P81 Unifilter plates with a wash buffer of 50 mM orthophosphoric acid.

%	activity	
---	----------	--

micromolar	100.000	30.000	10.000	3.000	1.000	0.300	0.100	0.030	0.010	0.003	nM	micromola
1c	12.6	28.4	24.6	21.2	32.0	44.5	66.9	118.3	120.7	114.4	108.8	0.11
1c	11.1	23.6	33.0	36.1	39.7	52.4	62.5	144.2	139.0	141.4	83.89	0.08

CLK2 assay

CLK2 (5-20mU diluted in 50 mM Tris pH 7.5, 0.1 mM EGTA, 1 mg/ml BSA) is assayed against a substrate peptide (RNRYRDVSPFDHSR) in a final volume of 25.5 μ l containing 50mM Tris pH 7.5, 0.3mM peptide, 10mM DTT, 10 mM magnesium acetate and 0.005 mM [33P- γ -ATP] (50-1000 cpm/pmole) and incubated for 30 min at room temperature. Assays are stopped by addition of 5 μ l of 0.5 M (3%) orthophosphoric acid and then harvested onto P81 Unifilter plates with a wash buffer of 50 mM orthophosphoric acid.

%	activity
/0	activity

micromolar	100.000	30.000	10.000	3.000	1.000	0.300	0.100	0.030	0.010	0.003	nM	micromolar
1c	2.1	3.2	3.0	11.6	22.8	45.0	102.3	98.4	104.9	94.9	345.2	0.3452
1c	1.2	2.3	5.1	13.9	19.2	51.9	88.9	89.5	97.0	99.3	346.3	0.3463
			,	125 100- 75-	X	CLK2						

% activi

ZAP70 assay

ZAP70 (5-20mU diluted in 50 mM Tris pH 7.5, 0.1 mM EGTA, 1 mg/ml BSA0.1%, β -mercaptoethanol) is assayed against a substrate peptide (Poly Glut Tyr) in a final volume of 25.5 μ l containing 50mM Tris pH 7.5, 0.1mMEGTA, 10mM MnCl,1mg/ml substrate peptide, 10 mM magnesium acetate 0.005 mM [33P- γ -ATP] (50-1000cpm/pmole) and incubated for 30 min at room temperature. Assays are stopped by addition of 5 μ l of 0.5 M (3%) orthophosphoric acid and then harvested onto P81 Unifilter plates with a wash buffer of 50mM orthophosphoric acid.

30.000 0.003 micromolar 100.000 10.000 3.000 1.000 0.300 0.100 0.030 0.010 nM micromolar 48.7 84.9 89.9 97.2 1c 25.4 23.7 30.6 109.8 105.9 101.2 2089 2.09 1c 29.6 20.4 26.7 50.1 69.1 84.5 94.6 109.5 111.0 96.6 1229 1.23 ZAP70 % activity

LOG

% activity

VEGFR2 assay

VEGFR2 (5-20mU diluted in 50 mM Tris pH 7.5, 0.1 mM EGTA, 1 mg/ml BSA) is assayed against a substrate peptide (KKKSPGEYVNIEFG) in a final volume of 25.5 μ l containing 50mM Tris pH 7.5, 300 μ M substrate peptide, 10 mM magnesium acetate and 0.02 mM [33P-g-ATP] (50-1000 cpm/pmole) and incubated for 30 min at room temperature. Assays are stopped by addition of 5 μ l of 0.5 M (3%) orthophosphoric acid and then harvested onto P81 Unifilter plates with a wash buffer of 50 mM orthophosphoric acid.

% activity

micromolar	100.000	30.000	10.000	3.000	1.000	0.300	0.100	0.030	0.010	0.003	nM	micromolar
1c	8.0	8.9	9.2	14.3	22.5	44.8	69.9	96.0	102.3	112.5	159.1	0.16
1c	6.4	6.5	9.2	17.4	23.8	57.6	66.1	90.4	98.4	109.0	232.7	0.23

% activity												
micromolar	100.000	30.000	10.000	3.000	1.000	0.300	0.100	0.030	0.010	0.003	nM	micromolar
1d	47.5	77.4	96.2	91.1	94.3	131.2	127.6	129.2	101.4	91.6	39492	39.49
1d	52.2	60.7	108.7	78.7	104.6	124.2	119.8	96.7	115.3	124.7	30290	30.29
1e	18.0	32.8	32.1	49.3	69.4	105.0	91.1	96.2	87.5	111.5	2003	2.00
1e	27.8	31.8	35.9	42.5	80.6	101.2	99.6	106.5	111.2	107.3	1458	1.46
1g	28.8	33.9	41.5	45.5	64.6	77.1	83.4	106.0	85.3	111.0	1730.9	1.73
1g	21.3	35.5	34.4	43.7	56.0	69.9	72.2	102.7	107.7	110.0	1246.5	1.25

Compound 1d, 1e and 1g IC50

GSK3 beta

ATP-competation assay of compound 1c against GSK-3β

The ATP competitive assays followed the same assay procedure of kinase assay but different concentrations of ATP were used. We used 10 dilutions of ATP ranging from 0.5uM to 500uM.

ATP conc. (µM)	0.5	1	2	5	10	20	50	100	200	500
mean % activity	11.8	18.1	40.0	43.3	53.5	57.6	66.8	81.2	83.9	91.1
SD	4.2	1.8	3.1	2.8	1.3	2.4	7.0	5.0	6.1	6.1

SUMMARY mean % activity and standard deviation of compound