Supporting Information

Highly Diastereoselective and Enantioselective Michael Addition of 5*H*-Oxazol-4-ones to α,β-Unsaturated Ketones Catalyzed by New Bifunctional Organocatalyst with Broad Substrate Scope and Applicability

Huicai Huang, Kailong Zhu, Wenbin Wu, Zhichao Jin, and JinxingYe*

Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. yejx@ecust.edu.cn

 B: Experimental Procedure and Characterization of Catalysts	A: General Information and Starting Materials	S2
C: General Procedure for Asymmetric Michael Addition	B: Experimental Procedure and Characterization of Catalysts	S2
 D: Characterization of Michael Addition Products	C: General Procedure for Asymmetric Michael Addition	S6
 E: Derivatization of Addition Products	D: Characterization of Michael Addition Products	S7
 F: HPLC Charts of Michael Addition Products	E: Derivatization of Addition Products	S17
 G: NMR Spectra of Michael Addition Products	F: HPLC Charts of Michael Addition Products	S21
H: Absolute Configuration and X-Ray Analysis Data of 8b	G: NMR Spectra of Michael Addition Products	S49
I: References	H: Absolute Configuration and X-Ray Analysis Data of 8b	
	I: References	

A: General Information and Starting Materials

General Information. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AV-400 spectrometer (400 MHz and 100 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl₃: δ 7.26) Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.16). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). High resolution mass spectrometry (ESI) and Low resolution mass spectrometry (ESI) were carried out using a Waters Quatro Macro triple quadrupole mass spectrometer. High resolution mass spectra (EI) were measured on a Waters Micromass GCT spectrometer. Optical rotations were measured on an Autopol III automatic polarimeter (Rudolph Research analytical). IR were measured on a Nicolet 6700. Melting points were measured on a XT3A apparatus. High performance liquid chromatography (HPLC) was performed on an Agilent 1200 Series chromatographs using chiral columns (DAICEL CHIRALPAK IA, IC, AS-H, AD-H) as noted.

Starting Materials. All solvents and inorganic reagents were from commercial sources and used without purification unless otherwise noted. The pronucleophiles *5H*-Oxazol-4-ones **5** were synthesized following the literature procedure.^[1]

B: Experimental Procedure and Characterization of Catalysts

Synthetic route of new chiral Thiourea-Tertiary Amine catalyst 4e. The primary amine **A** was synthesized following the literature procedure^[2].

N-((1*S*,2*S*)-2-(3-((*S*)-3,3-dimethyl-1-(piperidin-1-yl)butan-2-yl)thioureido)-1,2-dip henylethyl)-4-nitrobenzenesulfonamide (4e)

DCC (0.83 g, 4.0 mmol) and CS₂ (0.38 g, 5.0 mmol) were added into a solution of (*S*)-3,3-dimethyl-1-(piperidin-1-yl)butan-2-amine (0.74 g, 4.0 mmol) in CH₂Cl₂ at 0°C. The resulting mixture was stirred at room temperature for 12 h. After that the solvent was removed in vacuum and the residue was redissolved with ethyl ether. After filtration the filtrate was concentrated in vacuum to afford the crude product of isothiocyanate **B** as a light yellow oil, which was taken directly to the next step.

To a solution of the diamine **C** (1.19 g, 3.0 mmol) in THF (10 mL) was added isothiocyanate **B** (4.0 mmol). The resulting solution was stirred for 12h at 45°C. The reaction was concentrated in vacuum and the residue was purified by silica gel chromatography to afford catalysts 4e as a yellow solid (1.77 g) in 95% yield. Mp 100-101°C; $[\alpha]^{24}$ D - 53.3 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.46 (d, *J* = 9.2 Hz, 1H), 7.94-7.92 (m, 2H), 7.52-7.50 (m, 2H), 7.22-7.18 (m, 5H), 6.99-6.90 (m, 5H), 6.28 (d, *J* = 5.6 Hz, 1H), 6.14 (t, *J* = 20.4 Hz, 1H), 5.00 (d, *J* = 11.2 Hz, 1H), 3.10 (t, *J* = 11.6 Hz, 1H), 2.72-2.60 (m, 6H), 1.84-1.63 (m, 6H), 1.01 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 183.2, 149.0, 147.7, 137.7, 137.4, 128.4, 128.2, 128.1, 128.1, 128.0, 127.7, 123.4, 64.9, 63.7, 63.4, 63.0, 55.2, 33.7, 26.5, 25.2, 23.9; IR (KBr): 3020-3320(NH) cm⁻¹, 1520, 1345 (NO₂) cm⁻¹, 1166 (SO₂) cm⁻¹; HRMS (ESI): exact mass calculated for [(M+H)⁺] (C₃₂H₄₂N₅O₄S₂) requires m/z 624.2678, found m/z 624.2674.

Other new chiral Thiourea-Tertiary Amine catalysts **4a**, **4b**, **4c**, **4d**, **4f**, **4g** were synthesized following the procedure of **4e**.

4-methyl-N-((1*S*,2*S*)-2-(3-((*S*)-3-methyl-1-(piperidin-1-yl)butan-2-yl)thioureido)-1,2-diphenylethyl)benzenesulfonamide (4a)

White solid. Mp 91-92°C; $[\alpha]^{24}_{D}$ – 2.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.27 (d, *J* = 9.2 Hz, 1H)) , 7.38 (br, 1H) , 7.31-7.28 (m, 2H), 7.20-7.15 (m, 5H), 7.00-6.92 (m, 7H), 6.24-6.13 (m, 2H), 4.95 (d, *J* = 10.0 Hz, 1H), 3.29-3.27 (m, 1H), 2.70-2.60 (m, 5H), 2.45 (d, *J* = 14.0 Hz, 1H), 2.27 (s, 3H), 1.88-1.58 (m, 7H), 0.97 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 182.9,

142.0, 137.8, 128.8, 128.3, 128.2, 127.9, 127.8, 127.2, 126.5, 55.0, 25.1, 24.0, 21.3, 18.2, 18.1; HRMS (ESI): exact mass calculated for $[(M+H)^+]$ (C₃₂H₄₃N₄O₂S₂) requires m/z 579.2827, found m/z 579.2832.

N-((1*S*,2*S*)-2-(3-((*S*)-3,3-dimethyl-1-(piperidin-1-yl)butan-2-yl)thioureido)-1,2-dip henylethyl)-4-methylbenzenesulfonamide (4b)

White solid. Mp 92-93°C; $[\alpha]^{24}{}_{D} - 13.2$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.36 (d, J = 9.2 Hz, 1H), 7.54 (br, 1H), 7.28-7.25 (m, 2H), 7.20-7.16 (m, 5H), 7.00-6.91 (m, 7H), 6.25 (d, J = 5.2 Hz, 1H), 6.13 (t, J = 20.4 Hz, 1H), 4.97 (d, J = 10.0 Hz, 1H), 3.09-3.07 (m, 1H), 2.69-2.63 (m, 6H), 2.27 (s, 3H), 1.80-1.61 (m, 6H), 1.01 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 183.1, 141.9, 139.0, 138.3, 137.9, 128.8, 128.3, 128.2, 128.0, 127.9,

127.8, 127.1, 126.5, 64.5, 63.9, 63.1, 62.9, 55.1, 33.7, 26.5, 25.1, 23.9, 21.3; HRMS (ESI): exact mass calculated for $[(M+H)^+]$ (C₃₃H₄₅N₄O₂S₂) requires m/z 593.2984, found m/z 593.2988.

N-((1*S*,2*S*)-2-(3-((*S*)-3,3-dimethyl-1-(pyrrolidin-1-yl)butan-2-yl)thioureido)-1,2-di phenylethyl)-4-methylbenzenesulfonamide (4c)

White solid. Mp 90-91°C; $[\alpha]^{24}_{D}$ - 11.3 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.91 (d, J = 8.8 Hz, 1H), 7.59 (br, 1H), 7.32-7.30 (m, 2H), 7.18-7.16 (m, 3H), 7.04-7.02 (m, 2H), 6.98-6.92 (m, 7H), 6.29 (d, J = 4.4 Hz, 1H), 5.98 (t, J = 19.6 Hz, 1H), 4.83 (d, J = 10.8 Hz, 1H), 3.12-3.10 (m, 1H), 2.97-2.92 (m, 2H), 2.83-2.68 (m, 5H), 2.27 (s, 3H), 2.11-2.02 (m, 4H), 1.00 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 183.4, 142.0, 138.9, 138.4,

138.3, 128.8, 128.3, 127.9, 127.8, 127.7, 127.1, 126.5, 65.1, 64.2, 64.0, 60.7, 54.7, 33.6, 26.5, 23.9, 21.3; HRMS (ESI): exact mass calculated for $[(M+H)^+]$ (C₃₂H₄₃N₄O₂S₂) requires m/z 579.2827, found m/z 579.2828.

N-((1*S*,2*S*)-2-(3-((*S*)-3,3-dimethyl-1-(pyrrolidin-1-yl)butan-2-yl)thioureido)-1,2-di phenylethyl)methanesulfonamide (4d)

White solid. Mp 190-191°C; $[\alpha]^{24}{}_{\rm D}$ - 0.7 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.37 (d, *J* = 8.8 Hz, 1H), 7.46 (br, 1H), 7.36-7.34 (m, 2H), 7.27-7.20 (m, 8H), 6.26-6.21 (m, 2H), 4.94 (d, *J* = 10.8 Hz, 1H), 3.08-3.05 (m, 1H), 2.66 -2.57 (m, 5H), 2.37 (s, 3H), 1.78-1.58 (m, 6H), 0.99 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 183.1, 139.4, 137.9, 128.7, 128.4, 128.3, 128.0, 127.9, 64.1, 63.6, 63.1, 63.0, 55.1, 42.2, 33.7, 26.5, 25.2, 23.9; HRMS (ESI): exact mass calculated for [(M+H)⁺] (C₂₇H₄₁N₄O₂S₂) requires m/z 517.2617, found m/z 517.2625.

N-((1*S*,2*S*)-2-(3-((*S*)-3,3-dimethyl-1-(piperidin-1-yl)butan-2-yl)thioureido)-1,2-dip henylethyl)-3,5-bis(trifluoromethyl)benzenesulfonamide (4f)

White solid. Mp 89-90°C; $[\alpha]^{24}{}_{D} - 37.9$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.37 (d, *J* = 9.2 Hz, 1H), 8.45 (br, 1H), 7.81-7.73 (m, 2H), 7.21-7.19 (m, 5H), 6.99-6.91 (m, 5H), 6.30 (d, *J* = 5.6 Hz, 1H), 6.16 (t, *J* = 20.4 Hz, 1H), 4.98 (d, *J* = 11.2 Hz, 1H), 3.10 (t, *J* = 12.0 Hz, 1H), 2.73-2.60 (m, 6H), 1.81-1.63 (m, 6H), 1.02 (s, 9H)¹³C NMR (100 MHz, 1.00 MHz).

CDCl₃): δ (ppm) 183.3, 144.3, 137.3, 137.1, 132.0, 131.7, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 126.9, 125.0, 123.7, 121.0, 64.9, 63.6, 63.4, 63.1, 55.2, 33.6, 26.5, 25.1, 23.9; HRMS (ESI): exact mass calculated for $[(M+H)^+]$ (C₃₄H₄₁F₆N₄O₂S₂) requires m/z 715.2575, found m/z 715.2578.

N-((1*S*,2*S*)-2-(3-((*S*)-3,3-dimethyl-1-(pyrrolidin-1-yl)butan-2-yl)thioureido)-1,2-di phenylethyl)-4-nitrobenzenesulfonamide (4g)

Yellow solid. Mp 99-100°C; $[\alpha]^{24}{}_{D}$ – 50.2 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 11.00 (d, *J* = 8.4 Hz, 1H), 7.95-7.93 (m, 2H), 7.55-7.53 (m, 2H), 7.19-7.18 (m, 3H), 7.04-6.90 (m, 7H), 6.23 (d, *J* = 5.2 Hz, 1H), 6.00 (t, *J* = 19.6 Hz, 1H), 4.85 (d, *J* = 10.8 Hz, 1H), 3.15 (t, *J* = 12.4 Hz, 1H), 2.98-2.93 (m, 1H), 2.85-2.74 (m, 5H), 2.10-2.06 (m, 4H), 1.01 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 183.5, 149.0, 147.4, 137.8, 137.7, 128.5, 128.1,

127.9, 127.7, 127.6, 123.4, 65.5, 64.2, 64.0, 54.8, 33.6, 26.5, 24.0; HRMS (ESI): exact mass calculated for $[(M+H)^+]$ ($C_{31}H_{40}N_5O_4S_2$) requires m/z 610.2522, found m/z 610.2518.

C: General Procedure for Asymmetric Michael Addition

5*H*-Oxazol-4-ones **5** (0.30 mmol, 1.0 equiv.) was added to a mixture of catalyst **4e** (0.03 mmol, 0.10 equiv.) and α,β -unsaturated ketones **6** (0.45 mmol, 1.5 equiv.) in CH₂ClCH₂Cl (0.6 mL) at 50°C. The reaction mixture was maintained at this temperature for 3 days and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired addition product. The enantiomeric ratio was determined by HPLC analysis on chiral column.

D: Characterization of Michael Addition Products

7a:(S)-5-methyl-5-((R)-3-oxo-1-phenylbutyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a white solid(80.9 mg, 84% yield). Mp 118-119°C; $[\alpha]^{24}{}_{\rm D} - 113.4$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20-8.18 (m, 2H), 7.72-7.69 (m, 1H), 7.56-7.52 (m, 2H), 7.33-7.26 (m, 4H), 7.23-7.19 (m, 1H), 3.79 (dd, J = 3.6, 10.4 Hz, 1H), 3.03 (dd, J = 10.4, 16.8 Hz, 1H), 2.70 (dd, J = 3.6, 16.8 Hz, 1H), 1.96 (s, 3H), 1.42 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃): δ (ppm) 204.8, 193.5, 185.5, 137.5, 135.4, 130.1, 129.1, 128.5, 127.8, 125.5, 89.8, 46.6, 43.4, 30.4, 21.6; IR (KBr): 1540 (NC=O)cm⁻¹, 1745 (C=O) cm⁻¹; HRMS (EI): exact mass calculated for M⁺ (C₁₉H₁₉NO₃) requires m/z 321.1365, found m/z 321.1367; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.8 mL/min]: 7.9 min (minor), 11.2 min (major), ee 96%.

7b:(S)-5-methyl-5-((R)-3-oxo-1-m-tolylbutyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a white solid(97.5 mg, 97% yield). Mp 140-141°C; $[\alpha]^{24}_{D} - 100.5$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20-8.17 (m, 2H), 7.72-7.68 (m, 1H), 7.56-7.52 (m, 2H), 7.17-7.10 (m, 3H), 7.02-7.00 (m, 1H), 3.74 (dd, J = 3.6, 10.4 Hz, 1H), 3.02 (dd, J = 10.4, 16.8 Hz, 1H), 2.68 (dd, J = 2.8, 16.8 Hz, 1H), 2.28 (s, 3H), 1.96 (s, 3H), 1.41

(s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.9, 193.6, 185.4, 138.0, 137.3, 135.4, 130.2, 130.0, 129.0, 128.5, 128.4, 125.7,125.6, 89.8, 46.6, 43.3, 30.4, 21.6, 21.4; IR (KBr): 1540 (NC=O) cm⁻¹, 1745 (C=O)cm⁻¹; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₂₁NO₃) requires m/z 335.1521, found m/z 335.1523; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 1.0 mL/min]: 5.4 min (minor), 7.2 min (major), ee 99%.

7c:(S)-5-((R)-1-(4-fluorophenyl)-3-oxobutyl)-5-methyl-2-phenyloxazol-4(5H)-one

The product was obtained as a white solid(95.6 mg, 94% yield). Mp 110-111°C; $[\alpha]^{24}_{D} - 77.4$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.18-8.16 (m, 2H), 7.71-7.69 (m, 1H), 7.57-7.53 (m, 2H), 7.31-7.28 (m, 2H), 6.99-6.94 (m, 2H), 3.79 (dd, J = 3.6, 10.4 Hz, 1H), 3.01 (dd, J = 10.8, 17.2 Hz, 1H), 2.73 (dd, J = 3.6, 17.2 Hz, 1H), 1.99 (s, 3H), 1.43 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃): δ (ppm) 204.6, 193.4, 185.4, 163.4, 160.9, 135.5, 133.4, 133.3, 130.6, 130.5, 130.0, 129.1, 125.4, 115.6, 115.4, 89.6, 45.8, 43.4, 30.4, 21.6; IR

(KBr): 1540 (NC=O)cm⁻¹, 1740 (C=O)cm⁻¹; HRMS (EI): exact mass calculated for M^+ (C₂₀H₁₈₃FNO₃) requires m/z 339.1271, found m/z 335.1275; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.8 mL/min]: 8.3 min (minor), 16.2 min (major), ee 96%.

7d:(S)-5-methyl-5-((R,E)-5-oxo-1-phenylhex-1-en-3-yl)-2-phenyloxazol-4(5H)-one

The product was obtained as a white solid(97.8 mg, 94% yield). Mp 113-114°C; $[\alpha]^{24}_{D} - 124.3$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.25-8.23 (m, 2H), 7.73-7.69 (m, 1H), 7.57-7.53 (m, 2H), 7.33-7.26 (m, 4H), 7.24-7.22 (m, 1H), 6.62 (d, *J* = 15.6 Hz, 1H), 5.96 (dd, *J* = 5.6, 15.6 Hz, 1H), 3.40 (ddd, *J* = 3.6, 9.6, 19.2 Hz, 1H), 2.67 (dd, *J* = 9.6, 16.8 Hz, 1H), 2.57 (dd, *J* = 3.6, 16.4 Hz, 1H), 2.10 (s, 3H), 1.60 (s, 3H). ¹³C NMR (100

MHz, CDCl₃): δ (ppm) 205.0, 193.3, 185.6, 136.3, 135.7, 135.4, 130.1, 129.1, 128.5, 127.9, 126.5, 125.6, 124.8, 89.2, 44.5, 42.8, 30.5, 21.2; IR (KBr): 1545 (NC=O) cm⁻¹, 1745 (C=O)cm⁻¹;HRMS (EI): exact mass calculated for M⁺ (C₂₂H₂₁NO₃) requires m/z 347.1521, found m/z 347.1523; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.8 mL/min]: 8.2 min (minor), 12.3 min (major), ee 97%.

7e:(S)-5-methyl-5-((S)-2-oxodecan-4-yl)-2-phenyloxazol-4(5H)-one

The product was obtained as a colorless oil(83.9 mg, 85% yield). $[\alpha]^{24}{}_{\rm D}$ – 8.1 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20-8.18 (m, 2H), 7.72-7.68 (m, 1H), 7.56-7.52 (m, 2H), 2.79 (dd, *J* = 5.2, 18.0 Hz, 1H), 2.72-2.66 (m, 1H), 2.67 (dd, *J* = 6.0, 17.6 Hz, 1H), 2.16 (s, 3H), 1.56-1.52 (m, 1H), 1.52 (s, 3H), 1.26-1.14 (m, 10H), 0.83-0.80(t, 3H). ¹³C

NMR (100 MHz, CDCl₃): δ (ppm) 206.4, 193.7, 185.2, 135.3, 130.1, 129.0, 125.7, 89.8, 42.9, 38.8, 31.6, 30.2, 29.2, 29.1, 27.1, 22.5, 20.6, 14.0; HRMS (EI): exact mass calculated for M⁺ (C₂₀H₂₇NO₃) requires m/z 329.1991, found m/z 329.1989; The enantiomeric excess was determined by HPLC. [IC column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.8 mL/min]: 8.9 min (minor), 11.9 min (major), ee 93%.

7f: (S)-5-methyl-5-((R)-3-oxo-1,3-diphenylpropyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a white solid(100.0 mg, 87% yield). Mp 175-176°C; $[\alpha]^{24}_{D}$ + 7.0 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.23-8.21 (m, 2H), 7.84-7.83 (m, 2H), 7.74-7.70 (m, 1H), 7.58-7.49 (m, 3H), 7.41-7.35 (m, 4H), 7.28-7.24 (m, 2H), 7.20-7.17 (m, 1H),

4.06 (dd, J = 3.6, 10.0 Hz, 1H), 3.61 (dd, J = 10.4, 16.8 Hz, 1H), 3.35 (dd, J = 3.6, 16.4 Hz, 1H), 1.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm), 196.6, 193.7, 185.5, 137.6, 136.5, 135.4, 133.3, 130.1, 129.1, 129.0, 128.6, 128.5, 128.1, 127.7, 125.6, 90.0, 47.0, 38.6, 21.8; HRMS (EI): exact mass calculated for M⁺ (C₂₅H₂₁NO₃) requires m/z 383.1521, found m/z 383.1523; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: *i*-PrOH = 4:1, 1.0 mL/min]: 12.2 min (minor), 13.1 min (major), ee 99%.

7g: (S)-5-ethyl-5-((R)-3-oxo-1-phenylbutyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a white solid(95.5 mg, 95% yield). Mp 104-105°C; $[\alpha]^{24}_{D} - 76.3$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20-8.19 (m, 2H), 7.72-7.68 (m, 1H), 7.56-7.52 (m, 2H), 7.32-7.24 (m, 4H), 7.21-7.17 (m, 1H), 3.80 (dd, J = 3.6, 10.4 Hz, 1H), 3.03 (dd, J = 10.4, 16.8 Hz, 1H), 2.69 (dd, J = 3.6, 16.8 Hz, 1H), 1.94 (s, 3H), 1.92-1.84 (m, 1H),

1.77-1.67 (m, 1H), 0.75-0.72 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.8, 193.1, 186.0, 137.7, 135.4, 130.0, 129.1, 128.5, 127.7, 125.4, 93.5, 46.1, 43.5, 30.4, 28.3, 7.2; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₂₁NO₃) requires m/z 335.1521, found m/z 335.1518; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 7.4 min (minor), 9.0 min (major), ee 97%.

7h: (S)-5-ethyl-5-((R)-3-oxo-1-m-tolylbutyl)-2-phenyloxazol-4(5H)-one

MeO

റ

The product was obtained as a colorless oil(94.3 mg, 90% yield). $[\alpha]^{24}{}_{\rm D}$ – 72.6 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.21-8.19 (m, 2H), 7.72-7.69 (m, 1H), 7.57-7.53 (m, 2H), 7.18-7.10 (m, 3H), 7.01-7.00 (m, 1H), 3.70 (dd, J = 3.2, 10.4 Hz, 1H), 3.02 (dd, J = 10.8, 16.8 Hz, 1H), 2.67 (dd, J = 3.2, 16.8 Hz, 1H), 2.3 (s, 3H), 1.96 (s, 3H),

1.92-1.85 (m, 1H), 1.78-1.69 (m, 1H), 0.76-0.72 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.9, 193.2, 186.0, 137.9, 137.5, 135.4, 130.2, 130.0, 129.1, 128.4, 128.3, 125.7, 125.4, 93.6, 46.1, 43.4, 30.4, 28.2, 21.4, 7.2; HRMS (EI): exact mass calculated for M⁺ (C₂₂H₂₃NO₃) requires m/z 349.1678, found m/z 349.1675; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 6.6 min (minor), 8.0 min (major), ee 97%.

7i: (S)-5-ethyl-5-((R)-1-(2-methoxyphenyl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a colorless oil(90.9 mg, 83% yield). $[\alpha]^{24}{}_{\rm D}$ – 70.1 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz,

CDCl₃): δ (ppm) 8.20-8.19 (m, 2H), 7.71-7.68 (m, 1H), 7.55-7.52 (m, 2H), 7.28-7.17 (m, 2H), 6.95-6.83 (m, 2H), 4.54-4.50 (m, 1H), 3.86 (s, 3H), 2.95-2.85 (m, 1H), 2.66-2.62 (m, 1H), 2.04-1.97 (m, 1H), 1.94 (s, 3H), 1.78-1.67 (m, 1H), 0.72-0.68 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.4, 193.3, 186.0, 157.7, 135.3, 130.0, 129.0, 128.7, 126.0, 125.4, 120.8, 111.0, 94.1, 55.8, 43.6, 37.1, 29.7, 27.4, 7.1; HRMS (EI): exact mass calculated for M⁺ (C₂₂H₂₃NO₄) requires m/z 365.1627, found m/z 365.1628; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 6.9 min (minor), 7.9 min (major), ee 94%.

7j:(S)-5-((R)-1-(2,3-dimethoxyphenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

The product was obtained as a colorless oil(102.0 mg, 86% yield). $[\alpha]^{24}{}_{\rm D}$ – 55.3 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.22-8.20 (m, 2H), 7.72-7.68 (m, 1H), 7.56-7.52 (m, 2H), 7.04-7.00 (m, 1H), 6.83-6.78 (m, 2H), 4.44-4.41 (m, 1H), 4.00 (s, 1H), 3.81 (s, 1H), 2.98 (dd, *J* = 12.0, 16.2 Hz, 1H), 2.61 (dd, *J* = 3.2, 16.8 Hz, 1H), 2.09-2.01 (m,

1H), 1.95 (s, 3H),1.71-1.62 (m, 1H), 0.68-0.65 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.9, 193.4, 186.1, 152.7, 147.9, 135.4, 131.5, 130.1, 129.1, 125.4, 124.0, 118.9, 111.5, 94.1, 60.6, 55.6, 53.5, 43.0, 37.8, 30.4, 27.7, 7.1; HRMS (EI): exact mass calculated for M⁺ (C₂₃H₂₅NO₅) requires m/z 395.1733, found m/z 395.1730; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 6.7 min (minor), 7.3 min (major), ee 92%.

7k: (S)-5-ethyl-5-((R)-1-(2-fluorophenyl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a white solid(101.7 mg, 96% yield). Mp 81-82°C; $[\alpha]^{24}{}_{\rm D}$ – 41.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19-8.17 (m, 2H), 7.72-7.68 (m, 1H), 7.55-7.51 (m, 2H), 7.29-7.25 (m, 1H), 7.19-7.14 (m, 1H), 7.09-7.06 (m, 1H), 7.00-6.95 (m, 1H), 4.25 (d, *J* = 9.2 Hz, 1H), 3.08 (dd, *J* = 10.8, 17.2 Hz, 1H), 2.75 (dd, *J* = 2.8, 17.2 Hz,

1H), 2.03-1.94 (m, 1H), 1.98 (s, 3H), 1.82-1.73 (m, 1H), 0.77-0.73 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.5, 192.8, 186.1, 162.4, 159.9, 135.5, 130.0, 129.3, 129.2, 129.1, 125.2, 124.8, 124.7, 124.4, 124.3, 115.7, 115.5, 93.1, 42.4, 30.0, 27.9, 7.1; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₂₀FNO₃) requires m/z 353.1427, found m/z 353.1428; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 7.7 min (minor), 11.2 min (major), ee 94%.

7l: (S)-5-((R)-1-(2-chlorophenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

The product was obtained as a colorless oil(94.1 mg, 85% yield). $[\alpha]^{24}{}_{\rm D}$ – 46.9 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.16-8.14 (m, 2H), 7.68-7.65 (m, 1H), 7.52-7.48 (m, 2H), 7.30-7.27 (m, 2H), 7.20-7.16 (m, 1H), 7.09-7.05 (m, 1H), 4.57 (dd, J = 3.6, 10.4 Hz, 1H), 3.04 (dd, J = 10.4, 16.8 Hz, 1H), 2.80 (dd, J = 3.6, 16.8 Hz, 1H), 2.09-2.00

(m, 1H), 1.96 (s, 3H),1.81-1.72 (m, 1H), 0.75-0.71 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.5, 192.9, 186.0, 135.7, 135.6, 135.5, 130.0, 129.7, 129.1, 128.7, 128.2, 127.2, 125.1, 93.4, 43.2, 41.0, 30.0, 27.6, 7.2; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₂₀ClNO₃) requires m/z 369.1132, found m/z 369.1135; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 7.2 min (minor), 9.8 min (major), ee 90%.

7m: (S)-5-((R)-1-(4-chlorophenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

The product was obtained as a colorless oil(105.2 mg, 95% yield). $[\alpha]^{24}{}_{\rm D}$ – 85.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19-8.17 (m, 2H), 7.73-7.69 (m, 1H), 7.57-7.53 (m, 2H), 7.26-7.22 (m, 4H), 3.80-3.77 (m, 1H), 3.00 (dd, *J* = 10.4, 17.2 Hz, 1H), 2.71-2.67 (m, 1H), 1.95 (s, 3H), 1.92-1.83 (m, 1H), 1.76-1.69 (m, 1H), 0.76-0.72 (t, 3H). ¹³C

NMR (100 MHz, CDCl₃): δ (ppm) 204.5, 192.8, 186.0, 136.4, 135.6, 133.5, 130.4, 130.0, 129.1, 128.7, 125.2, 93.2, 45.4, 43.3, 30.4, 28.3, 7.1; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₂₀ClNO₃) requires m/z 369.1132, found m/z 369.1129; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 7.7 min (minor), 16.1 min (major), ee 97%.

7n: (S)-5-((R)-1-(3-bromophenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

The product was obtained as a white solid (122.0 mg, 98% yield). Mp 50-51°C; $[\alpha]^{24}_{D}$ - 86.9 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20-8.18 (m, 2H), 7.72-7.70 (m, 1H), 7.58-7.54 (m, 2H), 7.47-7.46 (m, 1H), 7.33-7.31 (m, 1H), 7.26-7.24 (m, 1H), 7.16-7.12 (m, 1H), 3.78 (dd, J = 3.2, 10.4 Hz, 1H), 3.00 (dd, J = 10.4, 17.2 Hz, 1H), 2.69 (dd, J = 2.8,

17.6 Hz, 1H), 1.97 (s, 3H), 1.93-1.83 (m, 1H), 1.76-1.67 (m, 1H), 0.76-0.72 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.3, 192.7, 186.0, 140.2, 135.6, 132.2, 130.8, 130.1, 129.2, 127.6, 125.2, 122.5, 93.1, 45.6, 43.2, 30.4, 28.2, 7.2; HRMS (EI): exact mass calculated for M⁺ (C₂₁H₂₀BrNO₃) requires m/z 415.0606, found m/z 415.0615; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 7.7 min (minor), 11.9 min (major), ee 97%.

70: (S)-5-ethyl-5-((R)-1-(4-nitrophenyl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a white solid (100.4 mg, 88% yield). Mp 146-147°C; $[\alpha]^{24}{}_{\rm D} - 75.4$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19-8.17 (m, 2H), 8.12-8.10 (m, 2H), 7.74-7.70 (m, 1H), 7.57-7.51 (m, 4H), 3.94 (dd, J = 2.8, 10.4 Hz, 1H), 3.10 (dd, J = 10.8, 18.0 Hz, 1H), 2.83-2.78 (m, 1H), 2.00 (s, 3H), 1.96-1.87 (m, 1H), 1.75-1.66 (m, 1H),

0.77-0.74 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.1, 192.4, 186.1, 147.3, 145.7, 135.8, 130.1, 129.2, 124.9, 123.6, 92.6, 45.6, 43.1, 30.3, 28.3, 7.1; HRMS (EI):exact mass calculated for M⁺ (C₂₁H₂₀N₂O₅) requires m/z 380.1372, found m/z 380.1374; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, EtOH, 0.50 mL/min]: 10.0 min (minor), 19.2 min (major), ee 97%.

7p: (S)-5-ethyl-5-((R)-1-(furan-2-yl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a colorless oil(81.9 mg, 84% yield). $[\alpha]^{24}{}_{\rm D}$ – 48.9 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20-8.18 (m, 2H), 7.72-7.68 (m, 1H), 7.55-7.52 (m, 2H), 7.28-7.27 (m, 1H), 6.22-6.17 (m, 2H), 3.95 (dd, J = 2.4, 10.8 Hz, 1H), 3.08 (dd, J = 10.8, 17.2 Hz, 1H),

2.64 (dd, J = 2.0, 17.2 Hz, 1H), 2.02 (s, 3H), 1.98-1.91 (m, 1H), 1.88-1.79 (m, 1H), 0.81-0.77 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.6, 192.4, 186.1, 151.1, 142.1, 135.4, 130.1, 129.0, 125.4, 110.4, 108.6, 92.0, 41.2, 39.6, 30.2, 27.7, 7.2; HRMS (EI): exact mass calculated for M⁺ (C₁₉H₁₉NO₄) requires m/z 325.1314, found m/z 325.1317; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 8.1 min (minor), 10.4 min (maior), ee 97%.

7q: (S)-5-ethyl-5-((R)-1-(naphthalen-1-yl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a colorless oil(112.1 mg, 97% yield). $[\alpha]^{24}{}_{\rm D}$ – 106.9 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.27-8.25 (m, 2H), 7.84-7.81 (m, 4H), 7.73-7.69 (m, 1H), 7.58-7.50 (m, 3H), 7.49-7.42 (m, 2H), 4.02 (dd, J = 3.2, 17.2 Hz, 1H), 3.16 (dd, J = 10.8, 17.2 Hz, 1H),

2.75 (dd, J = 3.2, 16.8 Hz, 1H), 2.00-1.91 (m, 1H), 1.94 (s, 3H), 1.79-1.70 (m, 1H), 0.77-0.73 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.7, 193.2, 186.2, 135.5, 135.3, 133.2, 132.8, 130.1, 129.2, 128.5, 128.4, 127.9, 127.6, 126.3, 126.1, 125.4, 93.7, 46.3, 43.7, 30.4, 28.5, 7.2; HRMS (EI): exact mass calculated for M⁺

 $(C_{25}H_{23}NO_3)$ requires m/z 385.1678, found m/z 385.1679; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 8.6 min (minor), 11.1 min (major), ee 98%.

7r: (S)-5-ethyl-5-((S)-4-oxopentan-2-yl)-2-phenyloxazol-4(5H)-one

0	I	Ö
N I	$\langle \cdot \rangle$	
Ph]	

The product was obtained as a colorless oil(73.7 mg, 90% yield). $[\alpha]^{24}{}_{D} - 8.2$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.13-8.11 (m, 2H), 7.60-7.58 (m, 1H), 7.46-7.42 (m, 2H), 2.61-2.46 (m, 2H), 2.37-2.31 (m, 1H), 2.00-1.99 (m, 3H),

1.93-1.80 (m, 2H), 0.89-0.87 (m, 3H), 0.72-0.69 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 206.0, 193.1, 185.8, 135.3, 129.9, 129.0, 125.4, 93.5, 44.3, 33.7, 30.4, 26.6, 14.0, 7.1; HRMS (EI): exact mass calculated for M⁺ (C₁₆H₁₉NO₃) requires m/z 273.1365, found m/z 273.1366; The enantiomeric excess was determined by HPLC. [IC column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.80 mL/min]: 10.5 min (minor), 12.6 min (major), ee 96%.

7s: (S)-5-ethyl-5-((S)-4-oxooctan-2-yl)-2-phenyloxazol-4(5H)-one

The product was obtained as a colorless oil(76.6 mg, 81% yield). $[\alpha]^{24}_{D} - 2.7$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.22-8.20 (m, 2H), 7.70-7.67 (m, 1H), 7.55-7.51 (m, 2H), 2.73-2.68 (m, 1H), 2.56-2.55 (m,

1H), 2.44-2.26 (m, 3H), 2.05-1.88 (m, 2H), 1.52-1.45 (m, 2H), 1.29-1.19 (m, 2H), 0.96-0.94 (m, 3H), 0.86-0.83 (t, 3H), 0.82-0.79 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.6, 193.2, 185.9, 135.3, 130.0, 129.0, 125.5, 93.7, 43.4, 43.1, 33.8, 26.8, 25.8, 22.2, 14.1, 13.8, 7.2; HRMS (EI): exact mass calculated for M⁺ (C₁₉H₂₅NO₃) requires m/z 315.1834, found m/z 315.1832; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.60 mL/min]: 8.8 min (minor), 10.4 min (major), ee 98%.

7t: (S)-5-ethyl-5-((R)-4-methyl-3-oxo-1-phenylpentyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a colorless oil(93.7 mg, 86% yield). $[\alpha]^{24}_{D} - 73.0$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20-8.18 (m, 2H), 7.72-7.68 (m, 1H), 7.56-7.52 (m, 2H), 7.31-7.29 (m, 2H), 7.26-7.22 (m, 2H), 7.19-7.15 (m, 1H), 3.85 (dd, J = 3.6, 17.2 Hz, 1H), 3.09 (dd, J = 10.4, 17.2 Hz, 1H), 2.68 (dd, J = 3.2, 16.8 Hz, 1H),

2.43-2.36 (m, 1H), 1.95-1.86 (m, 1H), 1.73-1.1.71 (m, 1H), 0.92-0.91 (m, 3H), 0.81-0.79 (m, 3H), 0.77-0.73 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 210.7, 193.2, 186.0, 137.9, 135.3, 130.0, 129.1, 128.4, 127.5, 125.4, 93.7, 46.1, 41.0, 40.5,

28.4, 17.8, 17.7, 7.2; HRMS (EI): exact mass calculated for M^+ (C₂₃H₂₅NO₃) requires m/z 363.1834, found m/z 363.1836; The enantiomeric excess was determined by HPLC. [AS-H column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.60 mL/min]: 8.2 min (minor), 11.0 min (major), ee 99%.

7u: (S)-5-ethyl-5-((R)-3-oxocyclohexyl)-2-phenyloxazol-4(5H)-one

Ph

CDCl₃): δ (ppm) 8.21-8.19 (m, 2H), 7.70-7.67 (m, 1H), 7.54-7.51 (m, 2H), 2.48-2.32 (m, 4H), 2.25-2.17 (m, 1H), 2.08-1.92 (m, 4H), 1.63-1.41 (m, 2H), 0.84-0.81 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 209.0, 192.6, 186.0, 135.4, 130.1, 129.1, 125.3, 92.4, 43.0, 41.1, 40.9, 26.6, 24.8, 24.3, 7.2; HRMS (EI): exact mass calculated for M^+ (C₁₇H₁₉NO₃) requires m/z 285.1365, found m/z 285.1366; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.60 mL/min]: 15.0min (minor), 16.3 min (major), ee 90%.

8a:(S)-5-((R)-1-(3-methoxyphenyl)-3-oxobutyl)-2-phenyl-5-propyloxazol-4(5H)-o ne

The product was obtained as a colorless oil(99.0 mg, 87% yield). $[\alpha]_{D}^{24} = 50.4$ (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.21-8.19 (m, 2H), 7.72-7.68 (m, 1H), 7.56-7.52 (m, 2H), 7.21-7.17 (m, 1H), 6.91-6.89 (m, 1H), 6.86-6.85 (m, 1H), 6.76-6.74 (m, 1H), 3.78-3.75 (m, 1H), 3.75 (s, 3H), 3.00 (dd, J = 2.8, 16.8 Hz, 1H), 2.63 (dd, J = 2.8, 16.8

The product was obtained as a colorless oil(69.3 mg, 81% yield). $[\alpha]^{24}_{D} - 4.8$ (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz,

Hz, 1H), 1.95 (s, 3H), 1.86-1.78 (m, 1H), 1.70-1.62 (m, 1H), 1.19-1.09 (m, 2H), 0.78-0.75 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.7, 193.2, 186.0, 159.4, 139.2, 135.4, 130.0, 129.5, 129.1, 125.4, 121.4, 115.3, 112.7, 93.1, 55.1, 46.4, 43.4, 37.0, 30.4, 16.3, 13.7; HRMS (EI): exact mass calculated for M^+ (C₂₃H₂₅NO₄) requires m/z 379.1784, found m/z 379.1782; The enantiomeric excess was determined by HPLC. [AD-H column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.60 mL/min]: 11.9min (minor), 15.1 min (major), ee 97%.

8b:(S)-5-((R)-1-(4-bromophenyl)-3-oxobutyl)-2-phenyl-5-propyloxazol-4(5H)-one

The product was obtained as a white solid (125.6 mg, 98% yield). Mp 113-114°C; $[\alpha]_{D}^{24} - 71.3$ (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.18-8.16 (m, 2H), 7.73-7.69 (m, 1H), 7.56-7.52 (m, 2H), 7.40-7.38 (m, 2H), 7.20-7.18 (m, 2H), 3.76 (dd, J = 2.8, 10.8 Hz, 1 H), 2.99 (dd, J = 10.8, 17.2 Hz, 1H), 2.63 (dd, J = 2.4, 17.2 Hz, 1H), 1.95 (s, 3H), 1.84-1.76 (m, 1H), 1.78-1.76 (m, 1H), 1.67-1.59 (m, 1H), 1.18-1.09 (m, 1H), 0.78-0.75 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.4, 192.9, 185.9, 136.9, 135.6, 131.6, 130.8, 130.0, 129.1, 125.2, 121.7, 92.7, 45.7, 43.2, 37.0, 30.4, 16.2, 13.7; HRMS (EI): exact mass calculated for M⁺ (C₂₂H₂₂BrNO₃) requires m/z 427.0783, found m/z 427.0785; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 1.0 mL/min]: 5.7min (minor), 9.4 min (major), ee 96%.

8c: (S)-5-((R)-1-(3-nitrophenyl)-3-oxobutyl)-2-phenyl-5-propyloxazol-4(5H)-one

The product was obtained obtained as a white solid (110.0 mg, 93% yield). Mp 150-151°C; $[\alpha]^{24}{}_{\rm D} - 41.5$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.23-8.18 (m, 3H), 8.07-8.05 (m, 1H), 7.74-7.67 (m, 2H), 7.58-7.54 (m, 2H), 7.49-7.45 (m, 1H), 3.93 (dd, J = 3.2, 10.8 Hz, 1H), 3.13 (dd, J = 10.8, 17.6 Hz, 1H), 2.80 (dd, J = 3.2, 17.2 Hz, 1H), 2.00 (s, 3H), 1.88-1.80

(m, 1H), 1.65-1.58 (m, 1H), 1.23-1.11 (m, 2H), 0.80-0.76 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.1, 192.4, 185.9, 148.2, 140.2, 135.8, 135.6, 130.1, 1129.5, 129.2, 125.0, 123.7, 122.7, 92.3, 45.6, 43.0, 37.0, 30.3, 16.2, 13.7; HRMS(EI): exact mass calculated for M⁺ (C₂₂H₂₁N₂O₅) requires m/z 394.1529, found m/z 394.1533; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 1.0 mL/min]: 7.3 min (minor), 11.3 min (major), ee 95%.

8d: (S)-5-((S)-3-oxo-1-(thiophen-2-yl)butyl)-2-phenyl-5-propyloxazol-4(5H)-one

The product was obtained as a colorless oil(100.1 mg, 94% yield). $[\alpha]^{24}_{D}$ – 56.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.25-8.23 (m, 2H), 7.74-7.70 (m, 1H), 7.58-7.54 (m, 2H), 7.17-7.16 (m, 1H), 6.98-6.97 (m, 1H), 6.90-6.88 (m, 1H),4.13 (dd, *J* = 3.2, 10.8 Hz, 1H), 2.96 (dd, *J* =

2.8, 16.8 Hz, 1H), 2.63 (dd, J = 2.8, 16.8 Hz, 1H), 1.98 (s, 3H), 1.90-1.82 (m, 1H), 1.80-1.72 (m, 1H), 1.23-1.14 (m, 2H), 0.81-0.80 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.3, 192.7, 186.0, 140.0, 135.5, 130.2,129.1, 127.5, 126.7, 125.3, 125.0, 92.5, 44.6, 41.6, 36.8, 30.5, 16.2, 13.8; HRMS (EI): exact mass calculated for M⁺ (C₂₀H₂₁NO₃S) requires m/z 355.1242, found m/z 355.1239; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.8 mL/min]: 7.6min (minor), 8.0 min (major), ee 97%.

8e: (S)-5-isopropyl-5-((R)-3-oxo-1-phenylbutyl)-2-phenyloxazol-4(5H)-one

The product was obtained as a colorless oil(89.0 mg, 85% yield). $[\alpha]^{24}_{D} - 21.8$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.15-8.13 (m, 2H), 7.70-7.66 (m, 1H), 7.54-7.50 (m, 2H), 7.34-7.32 (m, 2H), 7.23-7.19 (m, 2H), 7.16-7.12 (m, 1H), 4.01 (dd, J = 2.8, 11.2 Hz, 1H), 3.19 (dd, J = 11.2, 17.2 Hz, 1H), 2.68 (dd, J = 2.8, 17.2 Hz, 1H), 2.18-2.15 (m, 1H), 1.96 (s, 3H), 1.00-0.97 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.1, 192.8, 185.8, 137.5, 135.2, 129.9, 129.1, 129.0, 128.4, 127.6, 125.3, 95.2, 43.8, 43.1, 31.9, 30.7, 16.3, 15.7; HRMS (EI): exact mass calculated for M⁺ (C₂₂H₂₃NO₃) requires m/z 349.1678, found m/z 349.1677; The enantiomeric excess was determined by HPLC. [IC column, 254 nm, *n*-Hexane: *i*-PrOH = 7:3, 0.8 mL/min]: 17.9min (minor), 40.1 min (major), ee 98%.

8f:(S)-5-isopropyl-5-((R)-1-(3-methoxyphenyl)-3-oxobutyl)-2-phenyloxazol-4(5H) -one

The product was obtained as a colorless oil(99.0 mg, 87% yield). $[\alpha]^{24}{}_{\rm D} - 25.9$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.16-8.14 (m, 2H), 7.69-7.66 (m, 1H), 7.53-7.50 (m, 2H), 7.15-7.11 (m, 1H), 6.93-6.87 (m, 2H), 6.70-6.68 (m, 1H), 3.97 (dd, *J* = 3.2, 11.2 Hz, 1H), 3.71 (s, 3H), 3.14 (dd, *J* = 3.2, 16.8 Hz, 1H), 2.62 (dd, *J* = 3.2, 16.8 Hz, 1H), 2.20-2.11 (m, 1H), 1.96

(s, 3H), 1.00-0.94 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 205.0, 192.7, 185.8, 159.3, 139.0, 135.2, 129.9, 129.4, 129.0, 125.4, 121.4, 115.4, 112.7, 95.1, 55.1, 43.8, 43.1, 31.9, 30.7, 16.3, 15.7; HRMS (EI): exact mass calculated for M⁺ (C₂₃H₂₅NO₄) requires m/z 379.1784, found m/z 379.1786; The enantiomeric excess was determined by HPLC. [IA column, 254 nm, *n*-Hexane: EtOH = 7:3, 1.0 mL/min]: 6.6min (minor), 9.2 min (major), ee 98%.

8g: (S)-5-((R)-1-(4-chlorophenyl)-3-oxobutyl)-5-isopropyl-2-phenyloxazol-4(5H)-one

The product was obtained obtained as a white solid (104.6 mg, 91% yield). Mp 58-59°C; $[\alpha]^{24}_{D} - 20.2$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.14-8.12 (m, 2H), 7.69-7.67 (m, 1H), 7.54-7.50 (m, 2H), 7.28-7.26 (m, 2H), 7.19-7.17 (m, 2H), 7.16-7.12 (m, 1H), 3.98 (dd, J = 2.4, 11.2 Hz, 1H), 3.16 (dd, J = 11.2, 17.2 Hz, 1H), 2.67 (dd, J = 2.8, 17.2 Hz, 1H), 2.17-2.13

(m, 1H), 1.97 (s, 3H), 0.980-0.96 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 204.7, 192.5, 185.8, 136.2, 135.4, 133.4, 130.5, 129.9, 129.1, 128.6, 125.2, 94.9, 43.0, 42.9, 31.9, 30.7, 16.3, 15.7; HRMS (EI): exact mass calculated for M⁺ (C₂₃H₂₂ClNO₃) requires m/z 383.1288, found m/z 383.1287; The enantiomeric excess was determined by HPLC. [IC column, 254 nm, *n*-Hexane: EtOH = 7:3, 0.8 mL/min]: 8.1min (minor), 11.6 min (major), ee 98%.

E: Derivatization of Addition Products

9a: (3S,4R)-3-methyl-2-oxo-4,6-diphenyl-2,3,4,5-tetrahydropyridin-3-yl benzoate

A 1.0 N NaOH aqueous solution (0.6 mL) was added dropwise to a stirred solution of (S)-5-methyl-5-((R)-3-oxo-1,3-diphenylpropyl)-2-phenylox azol-4(5H)-one **7f** (184 mg, 0.50 mmol) in THF (3.0 mL) at 0-5°C. After stirring at same temperature for 1 h, Et₂O (10 ml) and sat. NaCl aqueous solution (10 mL) were added to

the reaction mixture. Then the mixture was transferred to a separatory funnel, and the organic phase was dried (Na₂SO₄) and concentrated. The obtained crude product was redissolved with CH₂Cl₂ (2 mL), then conc. HBr (40% aqueous solution, 1 mL) was added, the resulting solution was stirred for 2 hrs at room temperature. Then the mixture was diluted with CH₂Cl₂ (10 mL), washed with water (2x10 mL), and the organic phase was dried (Na₂SO₄) and concentrated. The crude product was purified by silica gel chromatography to afford **9a** (149 mg, 81%) as a white solid. Mp 162-163°C; $[\alpha]^{24}_{D}$ + 8.6 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.23-8.21 (m, 2H), 7.85-7.83 (m, 2H), 7.75-7.71 (m, 1H), 7.59-7.51 (m, 3H), 7.43-7.35 (m, 4H), 7.28-7.24 (m, 2H), 7.21-7.17 (m, 1H), 4.06 (dd, *J* = 3.6, 10.4 Hz, 1H), 3.61 (dd, *J* = 10.0, 16.8 Hz, 1H), 3.37 (dd, *J* = 3.6, 16.8 Hz, 1H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 196.5, 193.6, 185.4, 137.5, 136.5, 135.3, 133.2, 130.0, 129.0, 128.9, 128.5, 128.4, 128.0, 127.6, 125.6, 89.9, 47.0, 38.6, 21.8; IR (KBr): 1550 (NC=O) cm⁻¹, 1735 (O-C=O) cm⁻¹;HRMS (EI): exact mass calculated for M⁺ (C₂₅H₂₁NO₃) requires m/z 383.1521, found m/z 383.1523.

9b:(S)-5-ethyl-5-((R)-2-(2-methyl-1,3-dithiolan-2-yl)-1-phenylethyl)-2-phenyloxaz ol-4(5H)-one

 $\stackrel{\mathsf{Ph}}{\xrightarrow[N]{}} \stackrel{\mathsf{Ph}}{\xrightarrow[N]{}} \stackrel{\mathsf{Sh}}{\xrightarrow[N]{}} \stackrel{\mathsf{$

To a stirred solution of addition product 7g (167.2 mg, 0.5 mmol) and 1,2-ethanedithiol (0.07 mL, 0.8 mmol) in anhydrous dichloromethane (2 mL) at 0°C, was added a catalytic amount of BF₃•Et₂O, and the resultant was warmed

up to room temperature and stirred overnight. Aqueous NaOH (5%) (1.0 mL) was then added, and the resulting mixture was extracted with dichloromethane. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by flash chromatography to furnish **9b** (193.5 mg, 94%) as a white solid. Mp 47-48°C; $[\alpha]^{25}_{D}$ – 90.9 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.26-8.24 (m, 2H), 7.75-7.71 (m, 1H), 7.60-7.56 (m, 2H), 7.34-7.29 (m, 5H), 3.57 (d, *J* = 10.4 Hz, 1H), 3.28-3.17 (m, 4H), 2.55 (dd, *J* = 11.2, 14.0 Hz, 1H), 2.22 (d, *J* = 14.4 Hz, 1H), 1.91-1.80 (m, 1H), 1.65-1.56 (m, 1H), 1.41 (s, 3H), 0.74-0.71 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 193.4, 186.2, 138.6, 135.3, 129.0, 128.5, 127.7, 125.5, 94.7, 66.0, 50.4, 44.8, 39.7, 38.8, 31.6, 28.6, 7.2; HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₂₃H₂₅NNaO₂S₂) requires m/z 434.1224, found m/z 434.1219.

9c:(2*S*,3*R*)-2-ethyl-2-hydroxy-4-(2-methyl-1,3-dithiolan-2-yl)-3-phenylbutanamid e

A 2.5 N NaOH aqueous solution (0.1 mL) was added to a stirred solution of **9b** (82.3 mg, 0.20 mmol) in ethanol (0.5 mL). After stirring at 60°C for 1 h, the reaction mixture was diluted with water. The mixture was extracted three times

with EtOAc, and the combined organic phase was washed with brine, dried (MgSO₄) and concentrated. The obtained crude product was chromatographed on silica (pet. ether /ethyl acetate = 1/1) to give **9c** (54.0 mg, 83%) as a white solid. Mp 125-126°C; $[\alpha]^{25}_{D} - 20.2$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.35-7.29 (m, 5H), 6.69 (br, 1H), 6.14 (br, 1H), 3.34 (d, *J* = 10.8 Hz, 1H), 3.28-3.20 (m, 4H), 2.72 (dd,

J = 10.8, 14.8 Hz, 1H), 2.65 (br, 1H), 2.38 (d, J = 14.4 Hz, 1H), 1.76-1.67 (m, 1H), 1.45 (s, 3H), 1.08-0.99 (m, 1H), 0.83-0.79 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 177.2, 140.0, 128.4, 127.3, 81.8, 66.8, 51.8, 45.7, 39.6, 38.8, 32.0, 31.7, 7.7; IR (KBr): 3405 (OH) cm⁻¹, 3350, 1660 (C=ONH₂) cm⁻¹; HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₁₆H₂₃NNaO₂S₂) requires m/z 348.1068, found m/z 348.1062.

9d:(2*S*,3*R*)-2-ethyl-2-hydroxy-4-(2-methyl-1,3-dithiolan-2-yl)-3-phenylbutanoic acid

^{HOOC, OH} ^S ^{Ph} ^{Ph} ^{Ph} ^{Ph} ^{A-hydroxy amide **9c** (0.1 mmol, 32.5 mg) was refluxed in hydrochloric acid (6 N, 4 ml) for 8 h, after extraction with ethyl acetate and column chromatography using a silica gel column with a mixture of petroleum ether and ethyl acetate (1:1) as an eluent, give α -hydroxy acid **9d** (29.4 mg, 90%) as white solid. Mp 141-142°C; $[\alpha]^{25}_{D} - 0.19$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.39-7.36(m, 2H), 7.34-7.26 (m, 3H), 3.34-3.22 (m, 5H), 2.75 (dd, J = 10.4, 14.4 Hz, 1H), 2.38 (dd, J = 1.2, 14.4 Hz, 1H), 1.71-1.64(m, 1H), 1.45 (s, 3H), 1.19-1.14 (m, 1H), 0.81-0.78 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 180.8, 139.7, 128.2, 127.3, 81.6, 77.4, 77.0, 76.7, 66.5, 51.7, 46.5, 32.2, 30.8, 7.8; IR (KBr): 3415 (OH) cm⁻¹, 3150, 1712 (COOH) cm⁻¹; HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₁₆H₂₂NaO₃S₂) requires m/z 349.0908, found m/z 349.0905.}

9e:(S)-5-ethyl-5-((7R)-5,6,7,8,9,9a-hexahydro-4a*H*-carbazol-7-yl)-2-phenyloxazol-4(5*H*)-one

4-Bromophenylhydrazine hydrochloride (55.9 mg, 0.25 mmol) was added to a solution of 7u (57.1 mg, 0.20 mmol) in 0.5 mL of acetic acid, and the reaction mixture was heated for 1.5 h at 100 °C. After this time, TLC analysis indicates complete conversion of 7u. The

reaction mixture was cooled to room temperature and then poured into 2 mL of water and extracted three times with AcOEt. The organic layers were combined, washed with 10% Na₂CO₃, and dried (MgSO₄) and concentrated. The crude reaction mixture was purified by column chromatography using (pet. ether /ethyl acetate = 5/1) to give **9d** (75.2 mg, 86%) as a white solid. Mp >180°C; $[\alpha]_{D}^{25}$ – 39.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.27-8.22 (m, 3H), 7.74-7.70 (m, 1H), 7.57-7.53 (m, 3H), 7.20-7.14 (m, 2H), 2.88-2.72 (m, 3H), 2.66-2.59 (m, 1H), 2.55-2.48 (m, 1H), 2.27-2.17 (m, 2H), 2.14-2.07 (m, 1H), 1.69-1.59 (m, 1H), 0.96-0.93 (t, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 193.5, 186.3, 135.4, 134.8, 133.8, 130.1, 129.1, 129.0, 125.4, 123.9, 120.4, 112.4, 112.1, 109.2, 93.3, 40.1, 27.1, 23.4, 23.3, 20.4, 7.3; HRMS (ESI): exact mass calculated for [M+H]⁺ (C₂₃H₂₂BrN₂O₂) requires m/z 437.0865, found m/z 437.0859.

9f:(S)-2-((R)-6-bromo-2,3,4,9-tetrahydro-1*H*-carbazol-2-yl)-2-hydroxybutanoic acid

white solid. Mp 154-156°C; $[\alpha]^{25}_{D}$ – 0.25 (*c* 0.6, CH₂Cl₂); ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 10.79 (br, 1H),7.44-7.43 (m, 1H), 7.26-7.23 (m, 2H), 7.16-7.14 (m, 1H), 7.05-7.02 (m, 1H), 4.78 (br, 1H), 2.76-2.70 (m, 2H), 2.46-2.42 (m, 1H), 2.13-1.99 (m, 2H), 1.74-1.70 (m, 2H), 1.39-1.33 (m, 1H), 0.82-0.79 (t, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm)

176.7, 136.6, 134.5, 128.7, 122.1, 119.4, 112.3, 110.5, 107.7, 78.4, 42.1, 29.0, 23.9, 22.9, 20.4, 8.0; HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₁₆H₁₈BrNNaO₃) requires m/z 374.0368, found m/z 374.0373.

F: HPLC Charts of Michael Addition Products

7a:(S)-5-methyl-5-((R)-3-oxo-1-phenylbutyl)-2-phenyloxazol-4(5H)-one

					~))	
1	5.127	578	69.1	0.1238	0.722	4.313
2	5.787	559.5	61.5	0.1382	0.85	4.175
3	8.082	6146.3	587.3	0.1629	1.006	45.860
4	11.624	6118.4	308.1	0.2987	0.841	45.653

2

7.234

23279.4

7b:(S)-5-methyl-5-((R)-3-oxo-1-m-tolylbutyl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	5.437	6153.2	778.6	0.1199	0.911	49.977
2	7.275	6158.9	479.4	0.195	0.926	50.023

1651.1

0.235

0.767

99.768

7c:(S)-5-((R)-1-(4-fluorophenyl)-3-oxobutyl)-5-methyl-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	5.169	2611	275	0.1399	0.619	9.669
2	6.14	2655.2	244.1	0.1618	0.78	9.833
3	8.279	10923.5	877	0.2076	0.856	40.453
4	17.369	10813.1	226.9	0.7191	0.533	40.044

7d:(S)-5-methyl-5-((R,E)-5-oxo-1-phenylhex-1-en-3-yl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	8.118	13319.1	1141.9	0.1944	0.917	16.962
2	9.596	26495.7	1842.3	0.2173	0.956	33.742
3	12.362	13017.1	618.3	0.314	0.724	16.577
4	15.87	25692.8	836.8	0.466	0.894	32.719

2

11.91

9180.4

312.2

0.4187

0.453

49.974

7e:(S)-5-methyl-5-((S)-2-oxodecan-4-yl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	8.917	2604.6	103.3	0.4204	0.38	3.413
2	11.886	73711.8	1995.2	0.5126	0.365	96.587

2

13.13

3335.2

164.6

0.3048

0.823

50.247

7f: (S)-5-methyl-5-((R)-3-oxo-1,3-diphenylpropyl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	12.191	12.7	7.5E-1	0.2826	1.026	0.140
2	13.132	9066.1	446.8	0.3382	0.768	99.860

7g: (S)-5-ethyl-5-((R)-3-oxo-1-phenylbutyl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.367	16215.4	1595.1	0.1521	0.884	49.579
2	9.235	16490.7	756.2	0.3635	0.586	50.421

#	Time	Area	Height	Width	Symmetry	Area %
1	7.38	883.8	84.7	0.174	0.872	1.299
2	8.996	67176.5	2579.7	0.434	0.328	98.701

#	Time	Area	Height	Width	Symmetry	Area %
1	6.551	7194.5	754.8	0.1432	0.847	50.147
2	8.021	7152.2	350.8	0.3092	0.73	49.853

#	Time	Area	Height	Width	Symmetry	Area %
1	6.585	408.6	41.4	0.1646	0.834	1.305
2	8.01	30902.6	1460.3	0.3527	0.571	98.695

7i: (S)-5-ethyl-5-((R)-1-(2-methoxyphenyl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

1 6.933 41841.3 3575.4 0.195 0.751 49.369 2 7.951 42911.5 2566.1 0.2787 0.646 50.631	#	Time	Area	Height	Width	Symmetry	Area %
2 7.951 42911.5 2566.1 0.2787 0.646 50.631	1	6.933	41841.3	3575.4	0.195	0.751	49.369
	2	7.951	42911.5	2566.1	0.2787	0.646	50.631

#	Time	Area	Height	Width	Symmetry	Area %
1	6.944	1730.5	165	0.1748	0.799	3.007
2	7.937	55815.8	3224.9	0.2885	0.593	96.993

7j:(S)-5-((R)-1-(2,3-dimethoxyphenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)one

#	Time	Area	Height	Width	Symmetry	Area %
1	6.689	28270.3	2455.7	0.1919	0	49.363
2	7.306	28999.8	1911.7	0.2528	0	50.637

#	Time	Area	Height	Width	Symmetry	Area %
1	6.7	1004.5	90.8	0.1844	0.854	4.017
2	7.315	24002.9	1570.4	0.2547	0.657	95.983

7k: (S)-5-ethyl-5-((R)-1-(2-fluorophenyl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.662	31776.9	2703.1	0.1779	0.822	45.299
2	9.995	3250.4	199.4	0.2499	1.556	4.634
3	10.596	3179.3	198.2	0.2425	1.213	4.532
4	11.556	31942.7	559.8	0.951	0.445	45.535

7l: (S)-5-((R)-1-(2-chlorophenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.201	23235.7	2286.3	0.155	0.874	49.848
2	9.762	23376.9	1044.9	0.3729	0.622	50.152

#	Time	Area	Height	Width	Symmetry	Area %
1	7.229	1605.4	145.7	0.1836	0.777	4.702
2	9.784	32537.3	1279.4	0.3782	0.535	95.298

7m: (S)-5-((R)-1-(4-chlorophenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.677	26407.4	2195.2	0.1797	0.787	50.011
2	16.766	26396.3	258.9	1.6992	0.44	49.989

#	Time	Area	Height	Width	Symmetry	Area %
1	7.69	758.3	62	0.1821	0.787	1.449
2	16.114	51580.3	485.9	1.5019	0.333	98.551

2

7n: (S)-5-((R)-1-(3-bromophenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.743	267.3	26.1	0.1708	1.002	50.666
2	12.237	260.3	4.9	0.7841	0.72	49.334

TIME	Alta	fieight	wiath	Symmet
7.728	259	20.3	0.2126	1.019
11.888	20107	382.7	0.8756	0.512

98.728

70: (S)-5-ethyl-5-((R)-1-(4-nitrophenyl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	10.146	27422.4	1595.9	0.2864	0.663	50.062
2	19.897	27355.1	458.1	0.9952	0.585	49.938

#	Time	Area	Height	Width	Symmetry	Area %
1	10.044	732	41.5	0.2938	0.818	1.494
2	19.253	48252.1	794.5	1.0121	0.586	98.506

7p: (S)-5-ethyl-5-((R)-1-(furan-2-yl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	7.977	11853.5	1103.2	0.1632	0.997	49.567
2	10.622	12060.5	436.1	0.461	0.521	50.433

#	Time	Area	Height	Width	Symmetry	Area %
1	8.071	666.9	58.3	0.1906	0.93	1.393
2	10.443	47206.8	1219.8	0.5403	0.37	98.607

7q: (S)-5-ethyl-5-((R)-1-(naphthalen-1-yl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	8.571	8687.8	610.6	0.2141	0.811	49.846
2	11.239	8741.7	238.4	0.6111	0.609	50.154

#	Time	Area	Height	Width	Symmetry	Area %
1	8.57	338.7	25.4	0.2019	0.915	0.987
2	11.116	33968.7	1017.3	0.5565	0.544	99.013

#	Time	Area	Height	Width	Symmetry	Area %
1	10.837	20450.4	818.1	0.3571	0.437	17.014
2	13.007	20330.5	699.1	0.4164	0.465	16.914
3	14.252	40021.7	1198.2	0.4785	0.456	33.296
4	20.997	39395.9	788.3	0.7199	0.448	32.776

#	Time	Area	Height	Width	Symmetry	Area %
1	10.526	813.6	34.5	0.3931	0.483	1.841
2	12.591	43372.5	1392.3	0.4435	0.409	98.159

#	Time	Area	Height	Width	Symmetry	Area %
1	8.494	24081.7	2127.4	0.1887	0	30.144
2	8.823	15693.3	1284.5	0.2036	0.74	19.644
3	9.507	25239.1	1865.8	0.2015	0.73	31.593
4	10.285	14874.5	1034.5	0.2172	1.559	18.619

7t: (S)-5-ethyl-5-((R)-4-methyl-3-oxo-1-phenylpentyl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	8.187	50904.2	1949	0.3862	0.532	49.843
2	10.993	51225	857.6	0.9955	0.731	50.157

#	Time	Area	Height	Width	Symmetry	Area %
1	8.22	23150.8	944.2	0.3676	0.594	99.517
2	11.041	112.3	3.1	0.6002	0	0.483

7u: (S)-5-ethyl-5-((R)-3-oxocyclohexyl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	13.72	7926.6	383.5	0.3023	0.809	22.237
2	14.937	10070.6	455.4	0.3279	0.994	28.252
3	16.145	7800.4	328.7	0.3598	1.516	21.883
4	16.791	9847.8	417.5	0.3494	0.816	27.627

8a:(S)-5-((R)-1-(3-methoxyphenyl)-3-oxobutyl)-2-phenyl-5-propyloxazol-4(5H)-o ne

#	Time	Area	Height	Width	Symmetry	Area %
1	5.825	1149.1	84.7	0.1933	0.389	2.620
2	7.083	1146.4	59.3	0.3222	0.534	2.613
3	11.999	20662.3	787.5	0.3789	0.519	47.102
4	15.901	20909.6	346	1.0071	0.576	47.665

2

9.391

14013.7

383.4

0.6091

0.574

49.840

8b:(S)-5-((R)-1-(4-bromophenyl)-3-oxobutyl)-2-phenyl-5-propyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	5.721	340.7	39.4	0.1329	0.892	1.944
2	9.4	17185.2	476.5	0.6011	0.539	98.056

2

11.299

50827.6

1854.1

0.4569

0.53

50.882

8c: (S)-5-((R)-1-(3-nitrophenyl)-3-oxobutyl)-2-phenyl-5-propyloxazol-4(5H)-one

8d: (S)-5-((S)-3-oxo-1-(thiophen-2-yl)butyl)-2-phenyl-5-propyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	4.849	1121.4	148.6	0.1258	0.785	3.431
2	6.291	1227.3	88.9	0.2301	0.782	3.755
3	7.681	15258.9	1441.6	0.1764	0.967	46.681
4	8.164	15079.9	1214.3	0.1886	0.835	46.133

#	Time	Area	Height	Width	Symmetry	Area %
1	7.632	542.7	52.3	0.1731	1.204	1.495
2	8.053	35762.8	2887.4	0.2064	0.737	98.505

8e: (S)-5-isopropyl-5-((R)-3-oxo-1-phenylbutyl)-2-phenyloxazol-4(5H)-one

#	Time	Area	Height	Width	Symmetry	Area %
1	12.616	33204.7	825.7	0.5798	0.467	18.476
2	17.946	57018.4	1015.5	0.8181	0.472	31.726
3	21.493	33298.8	471.8	1.0272	0.488	18.528
4	40.59	56199.1	429.4	1.923	0.48	31.270

8f:(S)-5-isopropyl-5-((R)-1-(3-methoxyphenyl)-3-oxobutyl)-2-phenyloxazol-4(5H) -one

#	Time	Area	Height	Width	Symmetry	Area %
1	4.942	8606.4	1178.1	0.11	0.87	11.075
2	5.455	8715	669.7	0.1999	0.792	11.215
3	6.572	29844.4	2871.6	0.1591	0.799	38.406
4	9.077	30541.9	747.3	0.6812	0.495	39.304

8g:(S)-5-((R)-1-(4-chlorophenyl)-3-oxobutyl)-5-isopropyl-2-phenyloxazol-4(5H)-o ne

#	Time	Area	Height	Width	Symmetry	Area %
1	8.086	49696.3	2252	0.3128	0.427	50.043
2	11.688	49611.2	1518.4	0.4714	0.448	49.957

G: NMR Spectra of Michael Addition Products

7a:(S)-5-methyl-5-((R)-3-oxo-1-phenylbutyl)-2-phenyloxazol-4(5H)-one

7b:(S)-5-methyl-5-((R)-3-oxo-1-m-tolylbutyl)-2-phenyloxazol-4(5H)-one

7c:(S)-5-((R)-1-(4-fluorophenyl)-3-oxobutyl)-5-methyl-2-phenyloxazol-4(5H)-one

7d:(S)-5-methyl-5-((R,E)-5-oxo-1-phenylhex-1-en-3-yl)-2-phenyloxazol-4(5H)-one

7e:(S)-5-methyl-5-((S)-2-oxodecan-4-yl)-2-phenyloxazol-4(5H)-one

7f: (S)-5-methyl-5-((R)-3-oxo-1,3-diphenylpropyl)-2-phenyloxazol-4(5H)-one

7g: (S)-5-ethyl-5-((R)-3-oxo-1-phenylbutyl)-2-phenyloxazol-4(5H)-one

7h: (S)-5-ethyl-5-((R)-3-oxo-1-m-tolylbutyl)-2-phenyloxazol-4(5H)-one

7i: (S)-5-ethyl-5-((R)-1-(2-methoxyphenyl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

7j:(S)-5-((R)-1-(2,3-dimethoxyphenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

7k: (S)-5-ethyl-5-((R)-1-(2-fluorophenyl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

7l: (S)-5-((R)-1-(2-chlorophenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

7m: (S)-5-((R)-1-(4-chlorophenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

7n: (S)-5-((R)-1-(3-bromophenyl)-3-oxobutyl)-5-ethyl-2-phenyloxazol-4(5H)-one

70: (S)-5-ethyl-5-((R)-1-(4-nitrophenyl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

7p: (S)-5-ethyl-5-((R)-1-(furan-2-yl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

7q: (S)-5-ethyl-5-((R)-1-(naphthalen-1-yl)-3-oxobutyl)-2-phenyloxazol-4(5H)-one

7r: (S)-5-ethyl-5-((S)-4-oxopentan-2-yl)-2-phenyloxazol-4(5H)-one

7s: (S)-5-ethyl-5-((S)-4-oxooctan-2-yl)-2-phenyloxazol-4(5H)-one

7t: (S)-5-ethyl-5-((R)-4-methyl-3-oxo-1-phenylpentyl)-2-phenyloxazol-4(5H)-one

7u: (S)-5-ethyl-5-((R)-3-oxocyclohexyl)-2-phenyloxazol-4(5H)-one

8a:(S)-5-((R)-1-(3-methoxyphenyl)-3-oxobutyl)-2-phenyl-5-propyloxazol-4(5H)-o ne

8b:(S)-5-((R)-1-(4-bromophenyl)-3-oxobutyl)-2-phenyl-5-propyloxazol-4(5H)-one

8c: (S)-5-((R)-1-(3-nitrophenyl)-3-oxobutyl)-2-phenyl-5-propyloxazol-4(5H)-one

8d: (S)-5-((S)-3-oxo-1-(thiophen-2-yl)butyl)-2-phenyl-5-propyloxazol-4(5H)-one

8e: (S)-5-isopropyl-5-((R)-3-oxo-1-phenylbutyl)-2-phenyloxazol-4(5H)-one

8f:(S)-5-isopropyl-5-((R)-1-(3-methoxyphenyl)-3-oxobutyl)-2-phenyloxazol-4(5H) -one

8g:(S)-5-((R)-1-(4-chlorophenyl)-3-oxobutyl)-5-isopropyl-2-phenyloxazol-4(5H)-o ne

9a: (3S,4R)-3-methyl-2-oxo-4,6-diphenyl-2,3,4,5-tetrahydropyridin-3-yl benzoate

9b:(S)-5-ethyl-5-((R)-2-(2-methyl-1,3-dithiolan-2-yl)-1-phenylethyl)-2-phenyloxaz ol-4(5H)-one

9c:(2S,3R)-2-ethyl-2-hydroxy-4-(2-methyl-1,3-dithiolan-2-yl)-3-phenylbutanamid

9d: (2*S*,3*R*)-2-ethyl-2-hydroxy-4-(2-methyl-1,3-dithiolan-2-yl)-3-phenylbutanoic acid

9e:(S)-5-ethyl-5-((7R)-5,6,7,8,9,9a-hexahydro-4a*H*-carbazol-7-yl)-2-phenyloxazol-4(5*H*)-one

H: Absolute Configuration and X-Ray Analysis Data of 8b

Table 1. Crystal data and structure refinement for 8b.

Identification code	mo_dm1197_0m
Empirical formula	C22 H22 Br N 03
Formula weight	428.32
Temperature	296 (2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)
Unit cell dimensions	a = 12.773(3) A alpha = 90 deg. b = 6.0463(13) A beta = 90.851(3) deg. c = 13.400(3) A gamma = 90 deg.
Volume	1034.8(4) A ³
Z, Calculated density	2, 1.375 Mg/m ³
Absorption coefficient	2.007 mm ⁻¹
F (000)	440
Crystal size	0.58 x 0.25 x 0.08 mm
Theta range for data collection	1.52 to 27.00 deg.
Limiting indices	$-16 \le h \le 16$, $-7 \le k \le 7$, $-17 \le 1 \le 16$
Reflections collected / unique	7395 / 4172 [R(int) = 0.0220]
Completeness to theta = 27.00	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8559 and 0.3890
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4172 / 1 / 246

Goodness-of-fit on F ²	0.960
Final R indices [I>2sigma(I)]	R1 = 0.0374, wR2 = 0.1150
R indices (all data)	R1 = 0.0468, wR2 = 0.1319
Absolute structure parameter	0.009(12)
Largest diff. peak and hole	0.473 and -0.617 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{\circ}4$) and equivalent isotropic displacement parameters (A² $x \ 10^{\circ}3$) for mo_dml197_Om. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
Br(1)	1977(1)	2574(1)	11947(1)	77(1)
N(1)	1211(1) 3393(9)	4851 (5)	7119(3)	57(1)
$\Omega(1)$	2001(2)	5892(4)	5995(2)	70(1)
0(1)	2001(2)	1151(3)	6871(2)	10(1)
0(2)	-522(2)	-1421(6)	6540(3)	$\frac{49(1)}{78(1)}$
C(1)	352(2)	1421(0)	6410(2)	54(1)
C(1)	2320(3)	4491(5)	6251(3)	34(1)
C(2)	2397(2)	2020(5)	0231(2)	40(1)
C(3)	5092 (2) 4570 (2)	2905(3)	7317(2)	50(1)
C(4)	4570(2)	2415(7)	7995(3)	58(1)
U(5)	4959(4)	4018(8)	8625(4)	80(1)
C(6)	5819(5)	3538(12)	9242(6)	104(2)
C(7)	6259(4)	1547 (10)	9220(6)	103(2)
C (8)	5893(4)	-89(10)	8601(6)	102(2)
C (9)	5023(3)	346(8)	7990(5)	80(1)
C(10)	2584(3)	1302(6)	5169(3)	57(1)
C(11)	3673(4)	1981 (9)	4787 (4)	84(1)
C(12)	3859(5)	970(18)	3772(4)	115(3)
C(13)	1384(2)	1044 (5)	6677(2)	44(1)
C(14)	1327 (2)	1442(5)	7793(2)	41(1)
C(15)	1656(3)	-208(6)	8454(3)	50(1)
C(16)	1639(3)	106(6)	9477 (3)	57(1)
C(17)	1308(2)	2126(6)	9842(2)	52(1)
C(18)	968(3)	3772(7)	9218(3)	60(1)
C(19)	977(3)	3425(5)	8192(3)	51(1)
C(20)	384(3)	1826(7)	6124(3)	59(1)
C(21)	-562(3)	545(8)	6446(3)	61(1)
C(22)	-1533(3)	1819(12)	6655(5)	100(2)

Br(1) - C(17)	1.904(3)	
N(1) - C(3)	1.294(5)	
N(1) - C(1)	1.405(5)	
0(1) - C(1)	1.206(5)	
0(2) - C(3)	1.335(4)	
0(2) - C(2)	1.461(4)	
0(3) - C(21)	1.196(6)	
C(1) - C(2)	1.517(5)	
C(2)-C(10)	1.535(5)	
C(2)-C(13)	1.540(4)	
C(3) - C(4)	1.464(5)	
C(4) - C(5)	1.373(6)	
C(4) - C(9)	1.378(6)	
C(5) - C(6)	1.396(8)	
C(5) - H(5)	0. 9300	
C(6) - C(7)	1.329(9)	
C(6) - H(6)	0. 9300	
C(7)-C(8)	1.368(9)	
C(7) - H(7)	0. 9300	
C(8)-C(9)	1.396(7)	
C(8) - H(8)	0.9300	
C(9) - H(9)	0. 9300	
C(10)-C(11)	1.545(5)	
С(10)-Н(10А)	0.9700	
С(10)-Н(10В)	0.9700	
C(11)-C(12)	1.513(8)	
С(11)-Н(11А)	0.9700	
C(11)-H(11B)	0.9700	
С(12)-Н(12А)	0.9600	
С(12)-Н(12В)	0.9600	
С(12)-Н(12С)	0.9600	
C(13) - C(14)	1.517(4)	
С(13)-С(20)	1.541(4)	
С(13)-Н(13)	0.9800	
С(14) –С(19)	1.390(4)	
С(14) – С(15)	1.395(4)	
С(15)–С(16)	1.384(5)	
С(15)-Н(15)	0. 9300	
С(16)-С(17)	1.384(5)	
С(16)-Н(16)	0. 9300	

Table 3. Bond lengths [A] and angles [deg] for mo_dm1197_0m.

C (17) –C (18)	1.366(5)
С (18) –С (19)	1.391(5)
С(18)-Н(18)	0.9300
С(19)-Н(19)	0.9300
С (20) –С (21)	1.504(6)
С (20) – Н (20А)	0.9700
С (20) – Н (20В)	0.9700
С (21) –С (22)	1.490(7)
С (22) – Н (22А)	0.9600
С(22)-Н(22В)	0.9600
С(22)-Н(22С)	0.9600
C(3) - N(1) - C(1)	104.9(3)
C(3) - O(2) - C(2)	106.0(2)
0(1) - C(1) - N(1)	126.4(3)
0(1) - C(1) - C(2)	124.9(4)
N(1) - C(1) - C(2)	108.7(3)
0(2) - C(2) - C(1)	101.5(3)
0 (2) -C (2) -C (10)	108.1(3)
C(1) - C(2) - C(10)	113.2(3)
0(2) - C(2) - C(13)	106.1(2)
C(1) - C(2) - C(13)	114.2(3)
C(10) - C(2) - C(13)	112.6(3)
N(1) - C(3) - 0(2)	118.8(3)
N(1) - C(3) - C(4)	125.7(3)
0(2) - C(3) - C(4)	115.5(3)
C(5) - C(4) - C(9)	119.8(4)
C(5) - C(4) - C(3)	120.4(4)
C(9) - C(4) - C(3)	119.8(4)
C(4) - C(5) - C(6)	119.4(5)
C(4) - C(5) - H(5)	120.3
C(6) - C(5) - H(5)	120.3
C(7) - C(6) - C(5)	120.3(5)
C(7) - C(6) - H(6)	119.9
C(5) - C(6) - H(6)	119.9
C(6) - C(7) - C(8)	121.9(5)
C(6) - C(7) - H(7)	119.1
C(8) - C(7) - H(7)	119.1
C(7) - C(8) - C(9)	118.7(5)
C(7) - C(8) - H(8)	120.6
C(9) - C(8) - H(8)	120.6
C(4) - C(9) - C(8)	119.9(5)
C(4) - C(9) - H(9)	120.1
C(8) - C(9) - H(9)	120.1

C(2)-C(10)-C(11)	113.0(3)
C(2)-C(10)-H(10A)	109.0
С (11) –С (10) –Н (10А)	109.0
С(2)-С(10)-Н(10В)	109.0
С (11) –С (10) –Н (10В)	109.0
H (10A) – C (10) – H (10B)	107.8
С (12) –С (11) –С (10)	110.1(4)
С(12)-С(11)-Н(11А)	109.6
С(10) –С(11) –Н(11А)	109.6
С(12)-С(11)-Н(11В)	109.6
С(10) –С(11) –Н(11В)	109.6
H(11A)-C(11)-H(11B)	108.1
С(11)-С(12)-Н(12А)	109.5
С(11)-С(12)-Н(12В)	109.5
H(12A)-C(12)-H(12B)	109.5
С(11)-С(12)-Н(12С)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(14) - C(13) - C(2)	111.0(2)
С (14) –С (13) –С (20)	111.9(2)
C(2)-C(13)-C(20)	113.6(3)
С(14)-С(13)-Н(13)	106.6
C(2)-C(13)-H(13)	106.6
С (20) –С (13) –Н (13)	106.6
С (19) –С (14) –С (15)	117.9(3)
С (19) –С (14) –С (13)	122.5(3)
C (15) –C (14) –C (13)	119.6(3)
C(16) - C(15) - C(14)	121.5(3)
С (16) –С (15) –Н (15)	119.3
С(14) – С(15) – Н(15)	119.3
С (17) –С (16) –С (15)	118.7(3)
С(17) – С(16) – Н(16)	120.7
С (15) –С (16) –Н (16)	120.7
С (18) –С (17) –С (16)	121.5(3)
C(18) - C(17) - Br(1)	119.3(3)
C(16) - C(17) - Br(1)	119.1(3)
С (17) –С (18) –С (19)	119.2(3)
С(17) – С(18) – Н(18)	120.4
С(19) – С(18) – Н(18)	120.4
С (14) –С (19) –С (18)	121.2(3)
С(14)-С(19)-Н(19)	119.4
С(18)-С(19)-Н(19)	119.4
С (21) – С (20) – С (13)	111.6(3)
С (21) – С (20) – Н (20А)	109.3

С(13)-С(20)-Н(20А)	109.3
С(21)-С(20)-Н(20В)	109.3
С(13)-С(20)-Н(20В)	109.3
H(20A)-C(20)-H(20B)	108.0
0(3)-C(21)-C(22)	121.3(4)
0 (3) -C (21) -C (20)	121.1(4)
C (22) – C (21) – C (20)	117.5(4)
С(21)-С(22)-Н(22А)	109.5
С(21)-С(22)-Н(22В)	109.5
H(22A)-C(22)-H(22B)	109.5
С(21)-С(22)-Н(22С)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
						(.)
Br(1)	76(1)	112(1)	44(1)	-14(1)	-2(1)	-23(1)
N(1)	66(2)	39(1)	66(2)	-6(1)	15(1)	-1(1)
0(1)	84(2)	41(1)	85(2)	10(1)	11(2)	12(1)
0(2)	53(1)	34(1)	60(1)	-5(1)	5(1)	1(1)
0(3)	76(2)	79(2)	78(2)	0(2)	4(1)	-18(2)
C(1)	62(2)	36(2)	62(2)	2(1)	19(2)	3(1)
C(2)	55(1)	38(2)	47(2)	-4(1)	8(1)	6(1)
C(3)	51(1)	40(2)	58(2)	-8(1)	14(1)	-4(1)
C(4)	54(1)	54(2)	66(2)	-6(2)	8(1)	-9(2)
C(5)	74(3)	62(2)	102(4)	-16(2)	-11(2)	-4(2)
C(6)	92(4)	97(4)	123(5)	-19(3)	-35(3)	-18(3)
C(7)	70(3)	84(4)	152(6)	9(3)	-38(3)	-14(3)
C(8)	68(3)	78(3)	158(6)	-10(4)	-33(3)	7(2)
C(9)	61(2)	65(2)	112(4)	-14(2)	-19(2)	6(2)
C(10)	72(2)	51(2)	49(2)	-4(1)	17(2)	3(2)
C(11)	85(3)	89(3)	79(3)	-5(2)	39(2)	-6(2)
C(12)	106(4)	157(7)	82(4)	-12(4)	46(4)	6(4)
C(13)	54(2)	37(1)	40(2)	-2(1)	4(1)	0(1)
C(14)	43(1)	38(1)	43(2)	-1(1)	2(1)	1(1)
C(15)	60(2)	42(2)	50(2)	0(1)	-1(1)	6(1)
C(16)	58(2)	61(2)	50(2)	8(2)	-9(1)	4(2)
C(17)	46(1)	70(2)	40(1)	-7(1)	0(1)	-10(1)
C(18)	63(2)	60(2)	56(2)	-14(2)	11(2)	5(2)
C(19)	64(2)	43(2)	47(2)	3(1)	7(1)	14(1)
C(20)	62(2)	69(2)	44(2)	6(1)	-3(1)	3(2)
C(21)	56(2)	89(3)	37(2)	7(2)	-6(1)	-7(2)
C(22)	60(2)	128 (5)	110(4)	24(3)	4(2)	13(3)

Table 4. Anisotropic displacement parameters (A² x 10³) for mo_dm1197_0m. The anisotropic displacement factor exponent takes the form: $-2 pi^2 [h^2 a^2 U11 + ... + 2 h k a^* b^* U12]$

	Х	у	Z	U(eq)
H(5)	4651	5411	8641	95
H(6)	6086	4617	9670	125
H(7)	6831	1257	9636	123
H(8)	6218	-1465	8588	122
H(9)	4748	-759	7580	95
H(10A)	2049	1957	4740	69
H(10B)	2514	-292	5123	69
H(11A)	3714	3580	4741	101
H(11B)	4210	1483	5254	101
H(12A)	3839	-613	3824	172
H(12B)	4531	1424	3536	172
H(12C)	3323	1457	3312	172
H(13)	1424	-561	6583	52
H(15)	1891	-1549	8202	60
H(16)	1846	-1019	9911	68
H(18)	733	5108	9477	72
H(19)	744	4541	7766	62
H(20A)	275	3386	6257	70
H(20B)	473	1646	5411	70
H(22A)	-2053	843	6919	149
H(22B)	-1794	2474	6048	149
H(22C)	-1378	2962	7132	149

Table 5. Hydrogen coordinates ($x \ 10^{\circ}4$) and isotropic displacement parameters (A² x $10^{\circ}3$) for mo_dm1197_0m.

I: References

- [1] (a) B. M. Trost, K. Dogra, M. Franzini, J. Am. Chem. Soc., 2004, 126, 1944; (b) T. Misaki, G. Takimoto, T. Sugimura, J. Am. Chem. Soc., 2010, 132, 6286.
- [2] Y. Gao, Q. Ren, L. Wang, J. Wang, Chem. Eur. J., 2010, 16, 13068.