Selective binding and fluorescence sensing of diphosphate in H₂O *via* Zn²⁺-induced allosteric regulation of the receptor structure

Carla Bazzicalupi, Andrea Bencini, Stefano Puccioni, , Paola Gratteri, Barbara Valtancoli, Alessandra Garau, Vito Lippolis

Electronic supportino Information

Chemicals.

 $Zn(ClO_4)_2$ 6H₂O and the sodium salts Na₂HPO₄, Na₄P₂O₇ 10H₂O and Na₅P₃O₁₀ 6H₂O (in all cases purity \geq 99.5 %) were purchased form Aldrich and used in all potentiometric, spectrophotometric and potentiometric titrations.

Synthesis of ligand L

Receptor L was prepared as sketched in Scheme S1. Reaction of 1,4,7-triazacyclononane-1,4dicarboxylic acid di-*tert*-butyl ester¹ **1** with 6,6"-bis(bromomethyl)-2,2':6',2"-terpyridine² **2** affords the BOC-protected L derivative **3**, which was subsequently deprotected with CF_3CO_2H .

Synthesis of 3. To a solution of 1,4,7-triazacyclononane-1,4-dicarboxylic acid di-*tert*-butyl ester [(BOC)₂-[9]aneN₃] (0.47 g, 1.43 mmol) and KOH (0.12 g, 2.14 mmol) in dry toluene (20 mL) under nitrogen, was added 6,6"-bis(bromomethyl)-2,2':6',2"-terpyridine (0.3 g, 0.72 mmol) in dry toluene (30 mL) within 30 min. The mixture was stirred at 70 °C for 6 h and at room temperature for 24 h, filtered, dried over Na₂SO₄, and concentrated under reduced pressure to give a light yellow solid (0.32 g, 48.5% yield). Mp 115 °C. Elem. Anal. Found. (calcd for C₄₉H₇₃N₉O₈): C, 64.03 (64.21); H, 8.11 (7.98); N, 13.51 (13.77)%. ¹H-NMR (400 MHz, CDCl₃), δ 1.36 (s, 36H, C(CH₃)₃), 2.71-3.55 (m, 24 H, [9]aneN₃ ring), 3.91 (s, 4H, ArCH₂N), 7.29 (d, 2H, J = 10.4 Hz), 7.81 (t, 1H, 10.0 Hz), 7.93-8.02 (m, 3H), 8.44 (m, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 28.50, 28.56 (C(CH₃)₃), 48.94, 49.33, 49.86, 50.49, 50.93, 51.68, 53.40, 54.04, 54.26 ([9]aneN₃ ring), 62.23, 62.30 (ArCH₂N), 79.48, 79.58 (*C*(CH₃)₃), 119.18, 120.76, 123.17, 125.23, 128.16, 128.97, 136.87, 137.64, 155.47, 155.72 (C=O), 159.73.

Synthesis of L·9HBr·3H₂O. To a solution of $(Boc)_4$ -L (0.91 g, 0.99 mmol) in CH₂Cl₂ (10 mL) was added CF₃CO₂H (10 mL), and the resulting solution was stirred at room temperature under nitrogen for 2 h. The solvent was removed under vacuum and the residue was taken up in water, the pH value was adjusted to 9-10 by adding 1 M NaOH, and the product extracted into CHCl₃ (4 x 20

mL). The organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a gummy yellow solid of L. ¹H-NMR (400 MHz, CDCl₃), δ 2.86-2.95 (m, 24 H, [9]aneN₃ ring), 4.01 (s, 4H, ArCH₂N), 7.28 (d, 2H, J = 10.4 Hz), 7.79 (t, 1H, 10 Hz), 7.92-7.99 (m, 3H), 8.41 (m, 3H). ¹³C-NMR (75 MHz, CDCl₃) δ 44.22, 44.92, 50.66 ([9]aneN₃ ring), 60.76 (ArCH₂N), 120.06, 121.22, 123.07, 137.57, 138.16, 155.38, 155.96, 157.91.

The HBr salt of the ligand can be prepared by dissolving the crude product in EtOH (20 mL) and adding HBr 48% resulting in the formation of a yellow precipitate of L·9HBr·3H₂O (0.43 g, 33.4% yield). Mp 180 °C with decomposition. Elem. Anal. Found. (calcd for C₂₉H₅₆N₉Br₉O₃): C, 26.52 (26.78); H, 4.48 (4.35); N, 9.54 (9.70) %.

Synthesis of the complex $[ZnLH_2](ClO_4)_4$ $^{2}H_2O$. A solution of $Zn(ClO_4)_2$ $^{6}H_2O$ (7.4 mg, 0.02 mmol) in 5 ml of H₂O was slowly added, under stirring, to a solution of L (10 mg, 0.02 mmol) in 5 ml of H₂O. The pH of the solution was adjusted at 7 with NaOH 0.1 M. NaClO₄ (100 mg) were than added. The complex was obtained as a colourless solid by slow evaporation of the resulting solution at room temperature (17.3 mg, 85% yield). Elem. Anal. Found. (calcd for C₂₉H₄₇N₉ZnCl₄O₁₈): C, 34.32 (34.25); H, 4.69 (4.66); N, 12.53 (12.40) %.

Scheme S1

Potentiometric measurements

Equilibrium constants for protonation and complexation reactions were determined by means of potentiometric measurements (pH = $-\log [H^+]$), carried out in 0.1 M NMe₄Cl at 298.1 ± 0.1 K, in

the pH range 2.5-10.5, by using the equipment that has been already described.³ The reference electrode was an Ag/AgCl electrode in saturated KCl solution. The glass electrode was calibrated as a hydrogen concentration probe by titrating known amounts of HCl with CO₂-free NaOH solutions and determining the equivalent point by the Gran's method.⁴ This allow one to determine the standard potential E^o, and the ionic product of water ($pK_w = 13.83 \pm 0.01$). 1×10^{-3} M ligand concentrations was generally employed in the potentiometric measurements. In the study on metal complexation, the metal to ligand molar ratio was varied from 0.5:1 to 3:1, while in the measurements with anions, the anion to ligand molar ratio was varied from 1 to 3:1. The computer program HYPERQUAD⁵ was used to calculate the stability constants of the complexes from e.m.f. data. The analysis of the binding ability of the mononuclear Zn^{II} complex towards phosphate anions was carried out either by performing potentiometric titrations on solutions containing the preformed $[ZnLH_2](ClO_4)_4$ 2H_2O complex $(1 \times 10^{-3} \text{ M})$ and each anion, varying the anion to complex molar ratio from 1 to 3:1 or on solution containing Zn^{II} and L in 1 x 10^{-3} M concentrations and varying the anion to Zn^{II} molar ratio from 1 to 3:1. Data treatment with the HYPERQUAD⁵ program lead to equal values of the formation constants of the ternary complexes by using the two methods. Precipitation of the complexes prevents measurements with Zn^{II} to L molar ratios greater 1 in the presence of phosphate anions. At least three measurements (about 100 experimental points each one) were performed for each system. The titration curves for each system were treated either as a single set or as separated entities without significant variations in the values of the protonation or complexation constants.

Spectrophotometric and Spectrofluorimetric Measurements

Absorption spectra were recorded on a Perkin-Elmer Lambda 25 spectrophotometer. Fluorescence emission spectra were collected on a Perkin Elmer LS55 spectrofluorimeter. In the measurements carried out at different pH values, HNO₃ and NMe₄OH were used to adjust the pH values which were measured on a Metrohm 713 pH meter. TRIS buffer (5 mM) was used in the experiments performed at pH 7. In the fluorescence emission measurements, the terpyridine unit of L was excited at 290 nm.

¹H NMR measurements.

¹H NMR spectra in D₂O solution at different pH values were recorded at 298 K on a Varian 300 MHz instrument. Peak positions are reported relative to HOD at 4.75 ppm. The pH was calculated from the measured pD value by using the relationship pH = pD - 0.40.⁶

Molecular dynamics calculations.

Molecular modelling calculations were carried out on the complex formed by $[ZnLH_2(H_2O)_2]^{2+}$ and the $P_2O_7^{4-}$ anion. The input coordinates of the $[ZnLH_2(H_2O)_2]^{2+}$ complex were built considering that the Zn^{II} ion is normally 5-coordinate in its 1:1 complexes with tpy, the metal ion being coordinated by the 3 nitrogens of tpy and 2 donor atoms of exogenous ligand(s), as pointed out by a search on the Cambridge Structural Database⁷ (CSD) on crystallographically characterized 1:1 Zn^{II} complexes with tpy. In particular, the starting coordinates for the metal coordination environment were taken from the crystal structure of bis(O,O'-di-isopropyl-dithiophosphato)-(2,2'-6',2''terpyridine)- Zn^{II} ,⁸ replacing the two phosphate groups with water molecules. The aliphatic moiety of L and the anion were built using the builder module of the program Maestro.⁹ The obtained structure was then optimized at the molecular mechanics level of theory using the OPLS2005 forcefield.¹⁰

The resulting conformer was then minimized at the DFT/B3LYP¹¹ level of theory using the LAV3P**+ basis set, which uses an effective core potential for metal atoms, as implemented in the software Jaguar,¹² and an implicit simulation of the aqueous environment by means of the Poisson-Boltzmann equation.¹³ The nature of the stationary point as a true minimum was checked by frequency calculation.

References.

- S. Kimura, E. Bill, E. Bothe, T. Weyhermüller, K. Wieghardt, J. Am. Chem. Soc., 2001, 123, 6025.
- W. Offermann, Vögtle, F. Synthesis, 1977, 272; C. J. Chandler, L. W. Deady, J. A. Reiss, J. Heterocycl. Chem. 1981, 18, 599.
- S. Bartoli, C. Bazzicalupi, S. Biagini, L. Borsari, A. Bencini, E. Faggi, C. Giorgi, C. Sangregorio, and B. Valtancoli, *Dalton Trans.*, 2009, 1223.
- 4) (a) G. Gran, Analyst 1952, 77, 661 (b) F. J. Rossotti, H. Rossotti. J. Chem. Educ. 1965, 42, 375.
- 5) P. Gans, A. Sabatini, A. Vacca, J. Chem. Soc., Dalton Trans. 1985, 1195.
- 6) A. K. Covington, M. Paabo, R. A. Robinson, R. G. Bates, Anal. Chem., 1968, 40, 700.
- 7) (a) F. H. Allen, *Acta Cryst.* 2002, **B58**, 380; (b) Cambridge Structural Database, version 5.29, 2007.
- 8) P.G. Harrison, M. J. Begley, T. Kikabhai, F. Killer, J. Chem. Soc., Dalton Trans., 1986, 929.
- 9) Maestro, version 9.2, Schrödinger, LLC, New York, NY, 2011

- 10) W. L., Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 1996, 118, 11225.
- 11) A. D. Becke, J. Chem. Phys., 1993, 98, 1372; A.D. Becke, J. Chem. Phys., 1993, 98, 5648;
 B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 200.
- 12) Jaguar version 7.8, Schrödinger L.L.C.: New York, 2011 http://www.schrodinger.com.
- 13) M. C. Cortis and R. A. Friesner, J. Comput. Chem., 1997, 18, 1591.

Table S1. Protonation constants of L (NMe₄Cl 0.1 M, 298 K)

Reaction Log K

L + H⁺ = (HL)⁺ (HL)⁺ + H⁺ = (H₂L)²⁺ (H₂L)²⁺ + H⁺ = (H₃L)³⁺ (H₃L) + H = (H₄L)⁴⁺ (H₄L)⁴⁺ + H⁺ = (H₅L)⁺ 3.0(1)

Table S2. Formation constants of the adducts of L with di- and triphosphate (NMe₄Cl 0.1 M, 298 K)

Reaction		$A = P_3 O_{10}^{5}$
]	Log K
$(H_2L)^{2+} + A^{n-} = [H_2LA]^{(2-n)+a}$	2.90(9)	2.70(9)
$(H_2L)^{2+} + HA^{(1-n)+} = [H_3LA]^{(3-n)+}$	2.89(7)	2.81(7)
$(H_3L)^{3+} + HA^{(1-n)+} = [H_4LA]^{(4-n)+}$	3.34(9)	3.17(9)
$(H_3L)^{3+} + H_2A^{(2-n)+} = [H_5LA]^{(5-n)+}$	3.14(9)	3.01(9)
$(H_4L)^{4+} + H_2A^{(2-n)+} = H_6LA^{(6-n)+}$	3.5(1)	3.3(1)

^a: n = 4 for $A = P_2O_7^{4-}$, n = 5 for $A = P_3O_{10}^{5-}$

Table S3. Formation constants of the Zn^{II} complexes with L (NMe₄Cl 0.1 M, 298 K)

Reaction	Log K
$Zn^{2+} + L = [LZn]^{2+}$	16.81(2)
$[ZnL]^{2+} + H^{+} = [ZnLH]^{3+}$	10.12(4)
$[ZnLH]^{3+} + H^+ = [ZnLH_2]^{4+}$	8.41(6)
$[ZnLH_2]^{4+} + H^+ = [ZnLH_3]^{5+}$	2.18(5)
$[ZnL]^{2+} + M^{2+} = [Zn_2L]^{4+}$	9.39(6)
$[Zn_2L]^{4+} + 2OH^- = [Zn_2L(OH)_2]^{2+}$	4.13(3)
$[Zn_2L]^{4+} + Zn^{2+} = [Zn_3L]^{6+}$	5.78(2)
$[Zn_{3}L]^{4+} + OH^{-} = [Zn_{3}L(OH)]^{5+}$	2.7(1)

Table S4. Addition constants of the phosphate anions to the mononuclear Zn^{II} complexes with L (NMe₄Cl 0.1 M, 298 K).

Reaction	$A = PO_4^{3-}$	$A = P_2 O_7^{4-}$	$A = P_3 O_{10}^{5}$
		log K	
$[ZnL]^{2+}+[A]^{n-}=[ZnLA]^{(2-n)+}$		4.51(7)	3.88(7)
$[ZnLH]^{3+} + [A]^{n-} = [ZnLHA]^{(3-n)+}$	3.5(1)	5.80(7)	4.10(7)
$Zn[LH_2]^{4+} + [A]^{n-} = [ZnLH_2A]^{(4-n)+}$	4.2(1)	6.95(6)	4.69(6)
$[ZnLH_2]^{4+} + [HA]^{(1-n)+} = [ZnLH_3A]^{(5-n)+}$	3.6(1)	5.6(1)	4.3(1)

^a:
$$n = 3 PO_4^{3-}$$
, for $n = 4$ for $A = P_2O_7^{4-}$, $n = 5$ for $A = P_3O_{10}^{5-}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Figure S1. Distribution diagrams of the protonated species of L (L = 1.0×10^{-3} M, NMe₄Cl 0.1 M, 298 K)

Figure S2. Distribution diagrams of the adducts formed by L with diphosphate (a) and triphosphate (b) $([L] = [P_2O_7^{4-}] = [P_3O_{10}^{5-}] = 1.0 \times 10^{-3} \text{ M}, \text{ NMe}_4\text{Cl } 0.1 \text{ M}, 298 \text{ K})$

Figure S3. Overall percentages of di- and triphosphate complexed by L vs pH ([L] = $[P_2O_7^{4-}] = [P_3O_{10}^{5-}] = 1.0 \times 10^{-3}$ M, NMe₄Cl 0.1 M, 298 K).

Figure S4. Distribution diagrams of the complexes formed by L with Zn^{II} ([L] = [Zn^{2+}] = 1.0 x 10⁻³ M, NMe₄Cl 0.1 M, 298 K)

Figure S5. Distribution diagrams of the adducts formed by L with mono- (a), di- (b) and triphosphate (c) ([L] = $[PO_4^{3-}] = [P_2O_7^{4-}] = [P_3O_{10}^{5-}] = 1.0 \times 10^{-3} \text{ M}$, NMe₄Cl 0.1 M, 298 K)

Figure S6. Absorption spectra of complex **I** in the absence (blue line) and in the presence (red line) of diphosphate in aqueous solution at pH 7 ([**I**] = $1.4 \cdot 10^{-4}$ M)

Figure S7. Aliphatic part of the ¹H NMR spectra of **I** alone in D₂O (*1*) and in the presence of 1 eq. of $PO_4^{3-}(2)$, $P_2O_7^{4-}(3)$ and $P_3O_{10}^{5-}(4)$.

Figure S7. Fluorescence emission intensity of complex I at 355 nm in the presence of increasing amount of monophosphate (\bigcirc), diphosphate (\bigcirc) and triphosphate (\blacksquare) in aqueous solution at pH 7.