The unique rht-**MOF Platform, Ideal for Pinpointing the Functionalization and CO₂ Adsorption Relationship**

Ryan Luebke, ^{*a*} Jarrod F. Eubank, ^{*b*} Amy J. Cairns, ^{*a*} Youssef Belmabkhout, ^{*a*} Lukasz Wojtas, ^{*b*} and Mohamed Eddaoudi^{**a,b*}

^{*a*} Advanced Membranes & Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia, ^{*b*} Department of Chemistry, University of South Florida, 4202 East Fowler Avenue (CHE 205), Tampa, FL 33620, USA. E-mail: mohamed.eddaoudi@kaust.edu.sa

Materials and Methods.

- > X-ray Powder Diffraction (XRPD) measurements were carried out at room temperature on a PANalytical X'Pert PRO diffractometer 45kV, 40mA for CuK α (λ = 1.5418 Å), with a scan speed of 0.02°/s and a step size of 0.008° in 20.
- ➤ Low pressure gas sorption measurements were performed on a fully automated micropore gas analyzer Autosorb-1C (Quantachrome Instruments) at relative pressures up to 1 atm. The cryogenic temperatures were controlled using a liquid argon bath at 87 K. The apparent surface areas of **rht**-MOF-7 were determined from the argon adsorption isotherm by applying the Brunauer-Emmett-Teller (BET) model using adsorption points in the pressure range of P/P₀ equal to 0.007 to 0.04. Pore size analyses were performed using a cylindrical NLDFT pore model system by assuming an oxidic (zeolitic) surface. The determination of the isosteric heats of adsorption (Q_{st}) for CO₂ was estimated by applying the Clausius-Clapeyron expression using the isotherms measured at 258, 273 and 298 K. In a typical experiment, **rht**-MOF-7 was activated by washing the assynthesized crystals with 3 x 20 mL of DMF followed by solvent exchange in absolute ethanol for 7 days. 45-60 mg of activated sample was then transferred to a 6-mm sample cell, evacuated at room temperature for 46h (using a turbomolecular vacuum pump) and then gradually heated to 120° C/16h and cooled to room temperature.

Preparation of 5,5',5''-(s-Triazine-2,4,6-triyltriimino)triisophthalic acid hexasodium salt, Na₆L.

Figure S1. Schematic representation of the synthesis of Na₆L, which was synthesized according to a modified published procedure. [12]. Reagents and Conditions: (i) 5-aminoisophthatlic acid (5-NH₂bdc) / NaOH / NaHCO₃ / H₂O, Δ = 105°C for 24h, (ii) NaOH / H₂O, rt for 1h.

5-aminoisophthalic acid (9 g, 49.6 mmol, 4 eq.), H₂O (100 mL), and aqueous NaOH (5N, 20 mL) were combined in a 500-mL round bottom flask equipped with a stir bar. NaHCO₃ (4.2 g, 49.6 mmol) was then added to the solution and cooled to 10°C. A cyanuric chloride (2.28 g, 12.5 mmol, 1 eq.) solution in acetone (12.5 mL) was prepared and subsequently added dropwise. The solution was then heated to 105° C and refluxed for 24h. The solution was filtered and the filtrate isolated, concentrated to ~50 mL with a rotary evaporator, and diluted with EtOH (75 mL). This resulted in the formation of a white precipitate which was collected via filtration, washed with EtOH/H₂O (3:1, v/v), EtOH, and Et₂O. The solid was dried in an oven at 80°C to yield 14.69g of crude product.

The crude product was then added to a round bottom flask containing H_2O (120mL) and brought to a pH of 9-10 with aqueous NaOH (5N) while stirring. The solution was stirred for 1h and subsequently filtered. The filtrate was added to a stirred flask containing EtOH (150 mL). Lastly, the white precipitate was collected by filtration, washed with EtOH and dried to give 7.92 g (85%) of the final product.

Synthesis of [Cu₃(L)₃(H₂O)₃]_{*n*}, (**rht**-MOF-7).

A solution containing $Cu(BF_4)_2$:2.5H₂O (20.0 mg, 0.071 mmol), Na₆L (18 mg, 0.024 mmol), DMF (2 mL), and 0.6 mL 3M HNO₃ in DMF was prepared in a 20-mL scintillation vial. The solution was heated to 65°C for 7 days. Green polyhedral crystals were harvested and air-

dried (Yield: 18 mg, 88%). The as-synthesized material was determined to be insoluble in H_2O and common organic solvents.

Figure S2. Experimental and calculated powder X-ray diffraction (PXRD) patterns for **rht**-MOF-7, indicating the phase purity of the as-synthesized samples.

Table S1. Structural data for rht-MOF-1 and rht-MOF-7.

	UC ^a	d ^b (g/cm ³)	FV ^c (%)	PV ^d (cm ³ /g)	Cavity dimensions								
					PV^{a} tcz		rdo-a			tcu			
					id ^e		ap ^f (Å)		id ap (Å)		id	ap (Å)	
					(Å)		4	(Å)	0		(Å)	0	Δ
rht- MOF- 1	a=44.459	0.702	76.4	1.1	15.9	6.8	4.1	20.2	7.4x 7.5	6.8	12.1	7.4x 7.5	4.1
rht- MOF- 7	a=26.6700 c=38.0416	0.836	70.5	0.894	15.7	6.8	4.1	17.8	6.4x 9.8	6.8	10.4	6.4x 9.2	4.1

a = unit cell; b = density; c = free volume; d = pore volume; e = internal diameter; f = aperture

Figure S3. a) Argon sorption isotherm for **rht**-MOF-7. b) Pore size distribution for **rht**-MOF-7 determined from the Ar sorption isotherm @ 87K. c) CO₂ sorption isotherms for **rht**-MOF-7. d) CO₂ sorption isotherms for **rht**-MOF-1.

Figure S4. CO₂ adsorption isosters for rht-MOF-7.

Figure S5. CO₂ adsorption isosters for rht-MOF-1.

CO₂ Adsorption *Q_{st}* Analysis on rht-MOF-7 using Multi-Site Langmuir model (MSL)

Equation for MSL: $n = n_{sat1} * b_1 p / l + b_1 p + n_{sat2} * b_2 p / l + b_2 p + \dots + n_{sati} * b_i p / l + b_i p$

Equation in the case of dual site Langmuir model (DSL): $q = n_{sat1} * b_1 p / 1 + b_1 p + n_{sat2} * b_2 p / 1 + b_2 p$ Where n_{sat1} and b_1 are the saturation capacity and the affinity parameters on site 1, respectively, and n_{sat2} and b_2 are the analogous parameters on site 2.

	Table S2. Dual site Langmuir parameters for CO ₂ adsorption on rht -MOF-7.								
	Doromotora	Temperatures / K							
	Parameters	258	273	278	288	298			
	n _{sat1}	0.4724	0.43668	0.43546	0.46339	0.46627			
Adsorption Site 1	b ₁	0.01419	0.00522	0.00342	0.00165	8.52E-04			
Adaption	n _{sat2}	12.81583	12.86082	13.09387	13.93269	14.34703			
Site 2	b ₂	1.67E-05	9.05E-06	7.24E-06	4.62E-06	3.12E-06			

The parameters, extracted from the best DSL fit (Table S2), were used to recalculate the adsorption isotherms and the evolution of the isosteric heat of adsorption (Q_{st}) for each site using the Clausius–Clapeyron equation. The results are shown in Figures S6-S9.

Figure S6. Example of dual site Langmuir fit for CO₂ adsorption isotherms at 258 K for **rht**-MOF-7.

Figure S7. Adsorption isotherms branch in **rht**-MOF-7 calculated using the dual site Langmuir model based on site 1 parameters (effect of the amine/triazine nitrogen atoms).

Figure S8. Adsorption isotherms branch as seen by dual site Langmuir model for site 2 (effect of the pore size).

Figure S9. Q_{st} analysis for rht-MOF-7 using the dual site Langmuir model.

Figure S10. Q_{st} of CO₂ adsorption for the acylamide-based **rht**-MOF determined using the SSL (Raw data from [11]).

	Table S3. Dual site Langmuirparameters for CO_2 adsorption onacylamide based rht ^a					
	Doromotora	Temperature / K				
	Parameters	273	298			
	n _{sat1}	10.88265	13.37589			
Adsorption Site 1	b ₁	0.00807	0.00247			
	n _{sat2}	10.88265	13.37589			
Site 2	b ₂	0.00807	0.00247			

^a Raw data from [11]

Table S4. Crystal data and structure refinement for compound rht-MOF-7					
Identification code	rht-MOF-7				
Empirical formula	C27 H12 Cu3 N6 O15				
Formula weight	851.05				
Temperature	100(2) K				
Wavelength	1.54178 A				
Crystal system, space group	Tetragonal, I4/m				
Unit cell dimensions	a = 26.6700(3) A alpha = 90 deg.				
	b = 26.6700(3) A beta = 90 deg.				
	c = 38.0416(10) A gamma = 90 deg.				
Volume	27058.6(8) A^3				
Z, Calculated density	16, 0.836 Mg/m^3				
Absorption coefficient	1.445 mm^-1				
F(000)	6768				
Crystal size	0.10 x 0.10 x 0.10 mm				
Theta range for data collection	2.02 to 65.45 deg.				
Limiting indices	-29<=h<=26, -29<=k<=21, -42<=l<=42				
Reflections collected / unique	44425 / 10968 [R(int) = 0.1105]				
Completeness to theta $= 65.45$	92.4 %				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.8689 and 0.8689				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	10968 / 3 / 466				
Goodness-of-fit on F^2	0.998				
Final R indices [I>2sigma(I)]	R1 = 0.0552, wR2 = 0.1162				
R indices (all data)	R1 = 0.0944, WR2 = 0.1239				
Largest diff. peak and hole	1.159 and -0.607 e.A^-3				

The single crystal X-ray diffraction data were collected using a Bruker-AXS SMART-APEXII CCD diffractometer using CuK α (λ = 1.54178 Å). Indexing was performed using APEX2 [1] (Difference Vectors method). Data integration and reduction were performed using SaintPlus 6.01 [2]. Absorption correction was performed by multi-scan method implemented in SADABS [3]. Space groups were determined using XPREP implemented in APEX2 [1]. Structures were solved using SHELXS-97 (Patterson methods), expanded using Fourier methods, and refined using SHELXL-97 (full-matrix least-squares on F2) contained in APEX2 [1] and WinGX v1.70.01 [4,5,6,7] program packages. Hydrogen atoms were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters: Uiso(H) = 1.2Ueq(-CH,-CH₂). The contribution of highly disordered anions / solvent molecules was treated as diffuse using the Squeeze procedure implemented in the Platon program [8, 9]. The central (organic core) part of the organic ligand for **rht**-MOF-7 was disordered. Disordered parts of the structures were refined using restraints. Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

- [1] Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- [2] Bruker (2009). SAINT. Data Reduction Software. Bruker AXS Inc., Madison, Wisconsin, USA.
- [3] Sheldrick, G. M. (2008). SADABS. Program for Empirical Absorption Correction. University of Gottingen, Germany.
- [4] Farrugia L.J. Appl. Cryst. (1999). 32, 837-838
- [5] Sheldrick, G.M. (1997) SHELXL-97. Program for the Refinement of Crystal
- [6] Sheldrick, G.M. (1990) Acta Cryst. A46, 467-473
- [7] Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- [8] Spek, T.L., Acta Cryst. (1990). A46, 194-201.
- [9] Spek, T.L., Acta Cryst. (1990). A46, c34.
- [10] Rohlicek J., Husak M. (2007) J. Appl. Cryst. 40, 600-601.
- [11] B. Zheng, J. Bai, J. Duan, L. Wojtas and M. J. Zaworotko (2010) J. Am. Chem. Soc., 133, 748-751.
- [12] Conrow, R. B.; Bernstein, S. (1980) U.S. Patent 4,183,929.