Supplementary Material (ESI) for Chemical Communications

Abstractions of β-hydrogen vs. alkyl groups in reactions of dialkylzinc compounds and bis(oxazolinyl)borane

Jing Zhu, Debabrata Mukherjee, and Aaron D. Sadow*

Experimental details.

General Procedures. All reactions were carried out under an inert atmosphere using standard Schlenk techniques or in a glovebox. All solvents were dried and degassed unless otherwise indicated. PhB(Ox^{Me2})₂,¹ Ph₂Zn, *n*-Pr₂Zn, *i*-Bu₂Zn, Bn₂Zn,² and DPE³ were prepared according to reported procedures. Me₂Zn (2 M in toluene), Et₂Zn, BnMgBr (1 M in Et₂O), PhMgBr (3 M in Et₂O), *i*-BuMgCl (2 M in Et₂O), and *n*-PrMgBr (2 M in Et₂O) were purchased from Aldrich and used as received. TMEDA was purchased from Aldrich and distilled from Na. All NMR spectra were obtained at room temperature using a Bruker DRX-400 spectrometer, Bruker Avance II-700 spectrometer, or Agilent MR400 spectrometer. ¹⁵N NMR chemical shifts were determined by ¹H-¹⁵N HMBC experiments recorded on an Avance II-700 spectrometer; the chemical shift values are reported relative to CH₃NO₂. ¹¹B NMR spectra chemical shifts are reported relative to BF₃·Et₂O. Elemental analyses were obtained at the Iowa State Chemical Instrumentation Facility using a Perkin-Elmer 2400 Series II CHN/S.

{**κ**²-PhMeB(Ox^{Me2})₂}ZnMe (1). PhB(Ox^{Me2})₂ (0.590 g, 2.09 mmol) was dissolved in 15 mL of benzene. A 2 M toluene solution of Me₂Zn (1.05 mL, 2.09 mmol) was added to the mixture via syringe to give a yellow solution. This solution was stirred for 24 h and then filtered to remove a white precipitate that slowly formed over time. The benzene filtrate was evaporated under reduced pressure to give a yellow solid. The crude solid was washed with 10 mL of pentane and dried under vacuum to give pale yellow, analytically pure {**κ**²-PhMeB(Ox^{Me2})₂}ZnMe (0.587 g, 1.55 mmol, 73.9%). ¹H NMR (benzene-*d*₆, 400 MHz): δ 7.78 (d, ³*J*_{HH} = 7.3 Hz, 2 H, *ortho*-C₆H₅), 7.42 (t, ³*J*_{HH} = 7.5 Hz, 2 H, *meta*-C₆H₅), 7.23 (t, ³*J*_{HH} = 7.3 Hz, 1 H, *para*-C₆H₅), 3.32 (d, ²*J*_{HH} = 8.6 Hz, 2 H, CNCMe₂CH₂O), 0.94 (s br, 3 H, BMe), 0.862 (s, 6 H, CNCMe₂CH₂O), 0.859 (s, 6 H, CNCMe₂CH₂O), -0.18 (s, 3 H, ZnMe). ¹³C{¹H} NMR (benzene-*d*₆, 125 MHz): δ 198.81 (br, CNCMe₂CH₂O), 151.92 (*ipso*-C₆H₅), 132.87 (*ortho*-C₆H₅), 128.29 (*meta*-C₆H₅), 125.85 (*para*-C₆H₅), 78.67 (CNCMe₂CH₂O), 65.29 (CNCMe₂CH₂O),

28.66 (CNC*M*₂CH₂O), 28.47 (CNC*M*₂CH₂O), 14.76 (br, B*M*e), 5.53 (br, Zn*M*e). ¹¹B NMR (benzene- d_6 , 128 MHz): δ -16.7. ¹⁵N NMR (benzene- d_6 , 71 MHz): -174.3. IR (KBr, cm⁻¹): 3065 m, 3046 m, 2967 s, 2930 s, 2899 s, 1948 vw, 1887 vw, 1817 vw, 1569 vs (CN), 1462 s, 1431 s, 1367 s, 1272 s, 1196 s, 1158 s, 1081 s, 1011 s, 976 s, 891 m, 836 m, 774 w, 740 m, 713 s, 703 s. Calcd. for C₁₈H₂₇BN₂O₂Zn: C, 56.95; H, 7.17; N, 7.38. Found: C, 57.30; H, 7.08; N, 7.01. mp 166-168 °C (dec.).

 $\{\kappa^2 - Ph_2B(Ox^{Me2})_2\}$ ZnPh (2). PhB $(Ox^{Me2})_2$ (0.749 g, 2.65 mmol) was dissolved in 15 mL of benzene. A yellow solution formed upon addition of solid Ph₂Zn (0.582 g, 2.65 mmol), and this solution was stirred for 24 hours. A white precipitate slowly formed, and the reaction mixture was filtered removed this white solid. The benzene filtrate was evaporated under reduced pressure to give a yellow solid. The crude solid was washed with 10 mL of pentane and dried under reduced pressure giving the phenyl-abstracted product 2 (0.975 g, 1.94 mmol, 72.9%). ¹H NMR (benzene- d_6 , 400 MHz): δ 7.82 (d, ${}^{3}J_{HH} = 7.3$ Hz, 4 H, ortho-C₆H₅B), 7.61 (d, ${}^{3}J_{HH} = 7.2$ Hz, 2 H, ortho-C₆H₅Zn), 7.44 (t, ${}^{3}J_{HH} = 7.4$ Hz, 4 H, meta-C₆H₅B), 7.35 (t, ${}^{3}J_{HH} = 7.1$ Hz, 2 H, *meta*-C₆H₅Zn), 7.27 (t, ${}^{3}J_{HH} = 7.4$ Hz, 2 H, *para*-C₆H₅B), 7.22 (t, ${}^{3}J_{HH} = 7.4$ Hz, 1 H, *para*-C₆H₅Zn), 3.28 (s, 4 H, CNCMe₂CH₂O), 0.84 (s, 12 H, CNCMe₂CH₂O). ¹³C{¹H} NMR (benzened₆, 125 MHz): δ 197.81 (br, CNCMe₂CH₂O), 150.93 (*ipso*-C₆H₅B), 150.40 (*ipso*-C₆H₅Zn), 138.96 (ortho-C₆H₅Zn), 134.96 (ortho-C₆H₅B), 128.92 (meta-C₆H₅Zn), 128.03 (meta-C₆H₅B), 127.77 (para-C₆H₅Zn), 126.14 (para-C₆H₅B), 78.89 (CNCMe₂CH₂O), 65.52 (CNCMe₂CH₂O), 28.63 (CNCMe₂CH₂O). ¹¹B NMR (benzene- d_{6} , 128 MHz): δ -12.4. ¹⁵N NMR δ (benzene- d_{6} , 71 MHz): -172.7. IR (KBr, cm⁻¹): 3042 m, 2995 m, 2966 s, 2928 m, 2895 m, 2870 m, 1946 w, 1871 w, 1813 w, 1554 vs br (CN), 1462 m, 1424 m, 1369 s, 1354 s, 1278 s, 1197 s, 1159 s, 1076 m, 1032 m, 969 vs, 892 m, 743 s, 735 s, 724 s, 701 vs. Calcd. for C₂₈H₃₁BN₂O₂Zn: C, 66.76; H, 6.20; N, 5.56. Found: C, 66.63; H, 6.17; N, 5.07. mp 126-130 °C.

{ κ^2 -PhCH₂PhB(Ox^{Me2})₂}ZnCH₂Ph (3). PhB(Ox^{Me2})₂ (0.449 g, 1.59 mmol) was dissolved in 15 mL of benzene and Bn₂Zn (0.394 g, 1.59 mmol) was added. After 24 h, the mixture was filtered to remove a white precipitate. The benzene filtrate was evaporated under reduced pressure to give a yellow solid. The crude solid was washed with 10 mL of pentane and dried (0.658 g, 1.24 mmol, 77.9%). ¹H NMR (benzene- d_6 , 400 MHz): δ 7.70 (d, ³ J_{HH} = 7.2 Hz, 2 H, *ortho*-C₆H₅),

7.41 (t, ${}^{3}J_{HH} = 7.2$ Hz, 2 H, meta-C₆H₅), 7.24 (t, ${}^{3}J_{HH} = 7.6$ Hz, 1 H, para-C₆H₅), 7.20-7.09 (m, 4 H, ortho-C₆H₅CH₂Zn and ortho-C₆H₅CH₂B) 7.07-6.97 (m, 4 H, meta-C₆H₅CH₂Zn and meta-C₆H₅CH₂B), 6.96-6.88 (m, 2 H, para-C₆H₅CH₂Zn and para-C₆H₅CH₂B), 3.38 (d, ${}^{3}J_{HH} = 8.8$ Hz, 2 H, CNCMe₂CH₂O), 3.25 (d, ${}^{3}J_{HH} = 8.8$ Hz, 2 H, CNCMe₂CH₂O), 2.92 (s br, 2 H, BCH₂Ph), 2.00 (s, 2 H, ZnCH₂Ph), 0.73 (s, 6 H, CNCMe₂CH₂O), 0.71 (s, 6 H, CNCMe₂CH₂O). ${}^{13}C{}^{1}H{}$ NMR (benzene-d₆, 125 MHz): δ 196.98 (br, CNCMe₂CH₂O), 150.49 (br, ipso-C₆H₅B), 148.42 (ipso-C₆H₅CH₂B), 148.24 (ipso-C₆H₅CH₂Zn), 133.34 (ortho-C₆H₅B), 129.05 (meta-C₆H₅CH₂B), 128.65 (ortho-C₆H₅CH₂B), 128.33 (meta-C₆H₅CH₂Zn), 128.15 (meta-C₆H₅B), 127.72 (ortho-C₆H₅CH₂Zn), 126.10 (para-C₆H₅B), 123.91 (para-C₆H₅CH₂Zn), 122.56 (para-C₆H₅CH₂B), 78.82 (CNCMe₂CH₂O), 65.30 (CNCMe₂CH₂O), 32.79 (BCH₂), 28.73 (CNCMe₂CH₂O), 28.23 (CNCMe₂CH₂O), 20.15 (ZnCH₂). 11 B NMR (benzene-d₆, 128 MHz): δ -14.9. 15 N NMR (benzene-d₆, 71 MHz): δ -170.5. IR (KBr, cm⁻¹): 3066 m, 3017 m, 2970 s, 2928 m, 2897 m, 1938 w, 1866 w, 1798 w, 1595 s (CN), 1572 vs (CN), 1488 vs, 1461 s, 1450 m, 1432 m, 1368 m, 1279 m, 1208 s, 1148 m, 1074 m, 1063 m, 997 m, 970 s, 799 m, 753 s 770 vs. Calcd for C₃₀H₃₅BN₂O₂Zn: C, 67.75; H, 6.63; N, 5.27. Found: C, 67.94; H, 6.55; N, 4.88. mp 140-143 °C.

{**κ**²-PhHB(Ox^{Me2})₂}ZnEt (5). PhB(Ox^{Me2})₂ (0.220 g, 0.781 mmol) was dissolved in 15 mL of THF. Et₂Zn (80.0 µl, 0.781 mmol) was added to the mixture via syringe to give a yellow solution. This solution was stirred for 24 h, and then the volatile materials were removed under reduced pressure. The residue was then extracted with benzene and the benzene was evaporated. The solid residue was then washed with 10 mL of pentane and dried (0.251 g, 0.662 mmol, 84.8%). ¹H NMR (benzene-*d*₆, 400 MHz): δ 7.87 (d, ³*J*_{HH} = 7.2 Hz, 2 H, *ortho*-C₆H₅), 7.42 (t, ³*J*_{HH} = 7.2 Hz, 2 H, *meta*-C₆H₅), 7.23 (t, ³*J*_{HH} = 7.2 Hz, 1 H, *para*-C₆H₅), 3.36 (d, ³*J*_{HH} = 8.4 Hz, 2 H, CNCMe₂CH₂O), 3.53 (1 H, BH), 3.29 (d, ³*J*_{HH} = 8.4 Hz, 2 H, CNCMe₂CH₂O), 1.51 (t, ³*J*_{HH} = 8 Hz, 3 H, ZnCH₂CH₃). ¹³C{¹H} NMR (benzene-*d*₆, 125 MHz): δ 196.88 (br, *C*NCMe₂CH₂O), 149.46 (*ipso*-C₆H₅), 135.39 (*ortho*-C₆H₅), 128.92 (*meta*-C₆H₅), 125.82 (*para*-C₆H₅), 78.72 (CNCMe₂CH₂O), 65.10 (CNCMe₂CH₂O), 28.78 (CNCMe₂CH₂O), 28.38 (CNCMe₂CH₂O), 13.35 (ZnCH₂CH₃), 1.63 (ZnCH₂CH₃). ¹¹B NMR (benzene-*d*₆, 128 MHz): δ - 19.1 (d, ¹*J*_{BH} = 88 Hz). ¹⁵N NMR (benzene-*d*₆, 71 MHz): δ -172.8. IR (KBr, cm⁻¹): 3066 w, 3044 w, 2965 s, 2931 s, 2896 s, 2871 s, 2342 w br (BH), 1945 vw, 1879 vw, 1813 vw, 1563 s (CN),

1462 s, 1432 m, 1368 s, 1273 s, 1196 s, 1156 s, 1082 s, 1028 s, 966 s, 889 m, 840 m, 802 m, 744 m, 704 s. Calcd. for C₁₈H₂₇BN₂O₂Zn: C, 56.95; H, 7.17; N, 7.38. Found: C, 56.87; H, 7.30; N, 6.97. mp 146-150 °C.

 $\{\kappa^2 - PhHB(Ox^{Me2})_2\}Zn(n-Pr)$ (7). PhB $(Ox^{Me2})_2$ (0.269 g, 0.952 mmol) was dissolved in 15 mL of THF. A vellow solution was obtained upon addition of *n*-Pr₂Zn (0.145 g, 0.952 mmol), which was stirred for 24 h and then evaporated. The residue was then extracted with benzene. After evaporation of the benzene extracts, the resulting solid was washed with 10 mL of pentane and dried (0.273 g, 0.693 mmol, 72.8%). ¹H NMR (benzene- d_6 , 400 MHz): δ 7.82 (d, ³ $J_{\rm HH}$ = 7.2 Hz, 2 H, ortho-C₆H₅), 7.41 (t, ${}^{3}J_{HH} = 7.2$ Hz, 2 H, meta-C₆H₅), 7.22 (t, ${}^{3}J_{HH} = 7.2$ Hz, 1 H, para- $C_{6}H_{5}$, 3.47 (1 H, BH), 3.36 (d, ${}^{3}J_{HH} = 8.8$ Hz, 2 H, CNCMe₂CH₂O), 3.28 (d, ${}^{3}J_{HH} = 8.6$ Hz, 2 H, CNCMe₂CH₂O), 1.84 (m, 2 H, ${}^{3}J_{HH} = 7.6$ Hz, ZnCH₂CH₂CH₃), 1.21 (t, ${}^{3}J_{HH} = 7.2$ Hz, 3 H, ZnCH₂CH₂CH₃), 0.88 (s, 6 H, CNCMe₂CH₂O), 0.87 (s, 6 H, CNCMe₂CH₂O), 0.70 (t, ${}^{3}J_{HH} = 8.0$ Hz, 2 H, ZnCH₂CH₂CH₃). ${}^{13}C{}^{1}H$ NMR (benzene- d_6 , 125 MHz): δ 196.75 (br, CNCMe₂CH₂O), 148.67 (*ipso*- C_6H_5), 135.35 (*ortho*- C_6H_5), 128.19 (*meta*- C_6H_5), 125.86 (*para*- C_6H_5), 78.75 (CNCMe₂CH₂O), 65.14 (CNCMe₂CH₂O), 28.78 (CNCMe₂CH₂O), 28.41 (CNCMe₂CH₂O), 22.75 (ZnCH₂CH₂CH₃), 22.43 (ZnCH₂CH₂CH₃), 14.03 (ZnCH₂CH₂CH₃). ¹¹B NMR (benzene-d₆, 128) MHz): $\delta -19.5$ (d, ${}^{1}J_{BH} = 89$ Hz). ${}^{15}N$ NMR (benzene- d_{6} , 71 MHz): $\delta -172.7$. IR (KBr, cm⁻¹): 3065 m, 3048 m, 2917 s, 2849 m, 2260 w (BH), 1563 s (CN), 1463m, 1432 m, 1386 m, 1368 m, 1279 m, 1262 m, 1199 m, 1029 s, 991 m, 956 m, 803 m, 718 m, 704 m. Calcd. for C₁₉H₂₉BN₂O₂Zn: C, 57.97; H, 7.43; N, 7.12. Found: C, 57.57; H, 7.30; N, 7.02. mp 122-128 °C.

{ κ^2 -PhHB(Ox^{Me2})₂}Zn*i*-Bu (9). PhB(Ox^{Me2})₂ (0.247 g, 0.875 mmol) was dissolved in 15 mL of THF and *i*-Bu₂Zn (0.157 g, 0.875 mmol) was added. This solution was stirred for 3 days, and then the volatile materials were removed in vacuo. The residue was then extracted with benzene. After evaporation of the benzene extracts, the resulting residue was washed with 10 mL of pentane and dried under reduced pressure (0.181 g, 0.445 mmol, 50.8%). ¹H NMR (benzene-*d*₆, 400 MHz): δ 7.82 (d, ³*J*_{HH} = 7.2 Hz, 2 H, *ortho*-C₆H₅), 7.41 (t, ³*J*_{HH} = 7.2 Hz, 2 H, *meta*-C₆H₅), 7.22 (t, ³*J*_{HH} = 7.3 Hz, 1 H, *para*-C₆H₅), 3.35 (d, ³*J*_{HH} = 8.8 Hz, 2 H, CNCMe₂CH₂O), 3.27 (d, ³*J*_{HH} = 8.4 Hz, 2 H, CNCMe₂CH₂O), 2.17 (m, 1 H, ³*J*_{HH} = 6.8 Hz, ZnCH₂CHMe₂), 1.19 (d, ³*J*_{HH} = 6.8 Hz, 2 H, ZnCH₂CHMe₂), 0.91 (s, 6 H, CNCMe₂CH₂O), 0.89 (s, 6 H, CNCMe₂CH₂O), 0.74

(d, ${}^{3}J_{\text{HH}} = 7.6$ Hz, 2 H, ZnC*H*₂CHMe₂). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (benzene-*d*₆, 125 MHz): δ 197.16 (br, CNCMe₂CH₂O), 148.83 (br, *ipso*-C₆H₅), 135.30 (*ortho*-C₆H₅), 128.02 (*meta*-C₆H₅, overlapped by C₆D₆, assigned by ${}^{1}\text{H}$ - ${}^{13}\text{C}$ HMQC experiment), 125.90 (*para*-C₆H₅), 78.80 (CNCMe₂CH₂O), 65.20 (CNCMe₂CH₂O), 30.10 (ZnCH₂CHMe₂), 29.20 (ZnCH₂CHMe₂) 28.80 (CNCMe₂CH₂O), 28.45 (CNCMe₂CH₂O), 24.00 (ZnCH₂CHMe₂). ${}^{11}\text{B}$ NMR (benzene-*d*₆, 128 MHz): δ -20.0 (d, ${}^{1}J_{\text{BH}} = 87$ Hz). ${}^{15}\text{N}$ NMR (benzene-*d*₆, 71 MHz): δ -172.8. IR (KBr, cm⁻¹): 3066 m, 3047 m, 2943 s, 2874 s, 2258 m br (BH), 2052 vw, 1948 vw, 1876 vw, 1818 vw, 1564 s (CN), 1461 s, 1432 s, 1386 s, 1361 s, 1282 s, 1197 s, 1159 s, 1028 s, 984 s, 956 s, 836 m, 741 w, 716 s, 704 s. Calcd. for C₂₀H₃₁BN₂O₂Zn: C, 58.92; H, 7.66; N, 6.87. Found: C, 59.13; H, 7.46; N, 6.51. mp 212-213 °C (dec.).

 ${\kappa^2-PhEtB(Ox^{Me2})_2}AlEt_2$ (10). PhB(Ox^{Me2})₂ (0.241 g, 0.856 mmol) was dissolved in 15 mL of benzene. AlEt₃ (117 µl, 0.856 mmol) was added to the mixture via syringe giving a yellow solution. This solution was stirred for 24 h and then filtered. The benzene filtrate was evaporated under reduced pressure to give a yellow solid. The crude solid was washed with 10 mL of pentane and dried (0.210 g, 0.527 mmol, 61.6%). ¹H NMR (benzene- d_{6} , 400 MHz): δ 7.71 (d, ${}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, ortho-C_{6}\text{H}_{5}), 7.39 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2 \text{ H}, meta-C_{6}\text{H}_{5}), 7.20 \text{ (t, } {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 7$ 1 H, para-C₆H₅), 3.28 (d, ${}^{3}J_{HH} = 8.4$ Hz, 2 H, CNCMe₂CH₂O), 3.15 (d, ${}^{3}J_{HH} = 8.8$ Hz, 2 H, CNCMe₂CH₂O), 1.56 (s br, 2 H, BCH₂CH₃), 1.34 (t, ${}^{3}J_{HH} = 8.0$ Hz, 3 H, AlCH₂CH₃), 1.29 (t, ${}^{3}J_{\rm HH} = 8.0$ Hz, 3 H, AlCH₂CH₃), 1.13 (t, ${}^{3}J_{\rm HH} = 7.6$ Hz, 3 H, BCH₂CH₃), 1.02 (s, 6 H, $CNCMe_2CH_2O$), 0.96 (s, 6 H, $CNCMe_2CH_2O$), 0.23 (m, ${}^{3}J_{HH} = 8.8$ Hz, 4 H, $AlCH_2CH_3$). ¹³C{¹H} NMR (benzene- d_6 , 125 MHz): δ 200.98 (br, CNCMe₂CH₂O), 134.55 (*ipso*-C₆H₅), 133.26 (ortho-C₆H₅), 127.91 (meta-C₆H₅), 126.18 (para-C₆H₅), 79.58 (CNCMe₂CH₂O), 66.02 (CNCMe₂CH₂O), 27.42 (CNCMe₂CH₂O), 26.88 (CNCMe₂CH₂O), 13.18 (BCH₂CH₃), 10.12 (AlCH₂CH₃), 9.97 (AlCH₂CH₃), 9.86 (br, BCH₂CH₃, overlapped by AlCH₂CH₃, assigned by ¹H-¹³C HMQC experiment) 3.30 (br, AlCH₂CH₃). ¹¹B NMR (benzene-*d*₆, 128 MHz): δ -14.3. ¹⁵N NMR (benzene- d_6 , 71 MHz): δ -186.5. IR (KBr, cm⁻¹): 3047 m, 3066 m, 2934 s, 2898 s, 2861 s, 2793 m, 2724 w, 1952 w, 1882 w, 1823 w, 1609 s (CN) 1464 s, 1432 m, 1411 m, 1372 w, 1297 s. 1201 s, 1162 s, 1042 s, 1026 s, 986 s, 965 s, 886 m, 845 m, 763 m, 712 s, 703 s. Calcd. for

C₂₂H₃₆AlBN₂O₂: C, 66.34; H, 9.11; N, 7.03. Found: C, 66.06; H, 8.70; N, 6.55. mp 140-142 °C (dec.).

Et₂Zn(DPE). Et₂Zn (0.23 mL, 2.24 mmol) was added to a 12 mL benzene solution of dipyrrolidinylethane (0.335 g, 1.99 mmol), and the resulting solution was stirred for 1 h at room temperature. Evaporation of the volatile materials provided analytically pure Et₂Zn(DPE) (0.55 g, 1.88 mmol, 94.8 %). ¹H NMR (benzene- d_6 , 400 MHz): δ 2.29 (s, br, 8 H, NCH₂CH₂CH₂CH₂CH₂), 2.01 (s, 4 H, N(CH₂)₂N), 1.80 (t, ³J_{HH} = 8 Hz, 6 H, ZnCH₂CH₃), 1.603 (s, br, 8 H, NCH₂CH₂CH₂CH₂), 0.25 (q, ³J_{HH} = 8 Hz, 4 H, ZnCH₂CH₃). ¹³C{¹H} NMR (benzene- d_6 , 100 MHz): δ 55.64 (NCH₂CH₂CH₂CH₂), 55.39 (N(CH₂)₂N), 23.81 (NCH₂CH₂CH₂CH₂), 15.30 (ZnCH₂CH₃), 1.50 (ZnCH₂CH₃). ¹⁵N NMR (benzene- d_6 , 41 MHz): δ -127.9. IR (KBr, cm⁻¹): 2975 (m), 2927 (m), 2873 (s), 2846 (s), 2788 (m), 1458 (s, v_{C-N}), 1414 (w), 1345 (w), 1331 (m), 1299 (m), 1264 (m), 1226 (w), 1194 (w), 1123 (m), 1079 (w), 1035 (m), 980 (m), 947 (m), 903 (s), 866 (m), 607 (s), 605 (s), 569 (m), 488 (s), 439 (m). Anal. Calc. for C₁₄H₃₀N₂Zn: C, 57.62; H, 10.36; N, 9.60. Found: C, 57.54; H, 9.70; N, 9.59. mp 103-105 °C.

Procedures for DOSY (Diffusion-Ordered Spectroscopy) experiment. All the measurements were performed on a Bruker DRX400 spectrometer using a DOSY stimulated spin-echo pulse program with bipolar gradients.⁴ Accurately known concentrations of the species in question were used. The concentrations of $\{\kappa^2$ -PhMeB(Ox^{Me2})₂ $\}$ ZnMe (1) and To^MZnMe were determined by integration of resonances corresponding to species of interest and integration of a tetrakis(trimethylsilyl)silane standard of accurately known concentration. The temperature in the NMR probe was preset to 296 K, and the probe was maintained at a constant temperature for each experiment. The delay time in between pulses was set to 5 s in order to ensure the spins are fully relaxed to their ground states. During the experiments, a series of 1D ¹H NMR spectra were acquired at increasing gradient strength. The signal intensity decay was fit by non-linear least squares regression analysis to Equation 1 to obtain the diffusion coefficient D.⁴

$$\ln\left(\frac{I}{I_0}\right) = -(\gamma\delta)^2 G^2 \left(\Delta - \frac{\delta}{3}\right) D \qquad (1)$$

where I is the observed intensity, D is the diffusion coefficient, γ is the gyromagnetic ratio of the nucleus, δ is the length of the gradient pulse, and Δ is the diffusion time.

Figure S1. Plot of intensity versus gradient strength that was used to determine the diffusion coefficient for $\{\kappa^2$ -PhMeB(Ox^{Me2})₂ $\}$ ZnMe (1).

References

1 J. F. Dunne, K. Manna, J. W. Wiench, A. Ellern, M. Pruski, A. D. Sadow, *Dalton Trans.*, 2010, **39**, 641–653.

2 A. Côté, A. B. Charette, J. Am. Chem. Soc. 2008, 130, 2771-2773.

3 J. G. Noltes, J. Boersma, J. Organomet. Chem., 1967, 9, 1-4.

4 (a) P. S. Pregosin, E. Martínez-Viviente and P. G. A. Kumar, *Dalton Trans.*, 2003, 4007-4014; (b) M. Valentini, P. S. Pregosin, H. Ruegger, *Organometallics*, 2000, **19**, 2551-2555.