Electronic Supplementary Information (ESI) for

A novel fluorescent probe for Au(III)/Au(I) ions based on an intramolecular hydroamination of a BODIPY derivatives and its application to bioimagings

Jian-Bo Wang,^a Qing-Qing Wu,^a Yuan-Zeng Min,^b Yang-Zhong Liu,^b Qin-Hua Song^{*a}

^aDepartment of Chemistry, ^bCAS Key Laboratory of Soft Matter Chemistry, University of Science and

Technology of China, Hefei 230026, China

E-mail:<u>qhsong@ustc.edu.cn</u>

Table of Contents

I.	General methods	S2-4
II.	Synthesis Procedures and Characterization of New Compounds	S5–9
III.	Copies of ¹ H and ¹³ C NMR Spectra of New Compounds	810–15

I. General methods

General chemicals were of the best grade available and were used without further purification. ¹H and ¹³C NMR spectra were measured with a Bruker AV spectrometer operating at 300M and 75MHz, respectively and chemical shifts were reported in ppm using tetramethylsilane (TMS) as the internal standard. FT-IR spectra were measured with a Bruker Vector22 Infrared Spectrometer. Mass spectra were obtained with a Micromass GCF TOF mass spectrometer. UV-vis absorption and fluorescence emission spectra were performed at room temperature with a Shimadzu UV-2450 UV–vis spectrometer and Perkin-Elmer Instruments LS55 Luminescence Spectrometer, respectively.

Cell culture and fluorescence imaging HeLa cells were grown in Dulbecco's modified eagle Medium supplemented with 10% fetal calf serum, 1% penicillin, and 10000 unit/mL of streptomycin at 37°C under humidified air containing 5% CO₂. Cells (50000) were located and stabilized in a single well of 24-well plate. Fluorescence imaging of the cells treated with probe **1** and Au³⁺ were undertaken by a confocal microscope (Zeiss LSM 510 Meta NLO), excitation wavelength was 480nm.

Figure S1 Time-dependent fluorescence spectral changes of probe **1** (5 μ M) with addition of 5.0 equiv Au⁺ in EtOH/0.01M PBS buffer (1:1, v/v, pH 7.4), excitation at 480 nm. Insert : Time dependent fluorescence intensity changes (at 511nm) of **1** with Au⁺.

Figure S2 Kinetic analysis of probe **1** (5 μ M) with 5 equiv. of gold ions in EtOH/0.01M PBS buffer (1:1, v/v, pH 7.4). Left: Au³⁺; right: Au⁺.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Figure S3 Fluorescence intensity changes (F/F₀ at 511nm) of probe **1** (5 μ M) with AuCl₃ (in the range of 0.1 μ M - 0.6 μ M) in EtOH/0.01M PBS buffer (1:1, v/v, pH 7.4), excitation at 480 nm. All the fluorescence data were observed after 30 min.

Figure S4 Fluorescence photographs of probe **1** (5 μ M) with 5 equiv. of different metal ions in EtOH/0.01M PBS buffer (1:1, v/v, pH 7.4).

II. Synthesis Procedures and Characterization of New Compounds

Starting materials 2-bromo-1-iodo-4-methylbenzene¹, 4-bromo-3-nitrobenzaldehyde² and 3, 5-dimethyl-4-(ethoxycarbonyl)pyrrole³ were prepared according to published procedures. All other chemical were purchased from commercial suppliers and were used as received without further purification.

3-(2-bromo-4-methylphenyl)prop-2-yn-1-ol (3): Pd(PPh₃)₂Cl₂ (165 mg, 5 mol%) and CuI (89 mg, 10 mol%) were placed in a two necked dry round bottom flask equipped with magnetic stir bar. The flask was evacuated and refilled with N₂ three times. The 2-bromo-1-iodo-4-methylbenzene (1.4 g, 4.7 mmol) and progargyl alcohol (318 mg, 5.7 mmol) were dissolved in triethylamine (25 ml) and added to the flask with the catalyst. The mixture was stirred at room temperature for 12 h and was stopped by addition of water and ethyl acetate (EtOAc). The organic phase was separated, washed several times with water, dried over MgSO₄ and evaporated. Purified using flash chromatography and **3** was obtained as yellow oil (0.68 g, 64%). $R_f = 0.45$, (EtOAc / petroleum ether 1:5); IR: nu(tilde) = 3343s, 2921m, 2964m, 2227m, 1600s, 1488s, 1025s, 819s cm⁻¹; ¹H NMR (300Hz, CDCl₃): $\delta = 7.41$ (s, 1H), 7.35 (d, *J*=7.8Hz, 1H), 7.06 (d, *J*=7.8Hz, 1H), 4.54 (s, 2H), 2.33 (s, 3H), 1.69 (s, 1H); ¹³C NMR (75Hz, CDCl₃): $\delta = 140.2$, 133.1, 132.7, 127.8, 125.0, 121.4, 90.9, 84.1, 51.5, 20.9; TOFMS (EI) calcd for (M⁺) C₁₀H₉OBr: 223.9837, found 223.9825.

2-bromo-1-(3-methoxyprop-1-ynyl)-4-methylbenzene (4): The compound **3** (2.7 g, 12 mmol) was dissolved in THF (25 ml) and the solution was cooled to 0°C with an ice bath before NaH (60% in mineral oil) (0.58 g, 14.4 mmol) was added portion wise. The mixture was stirred at this temperature 30 min. Then, MeI (0.9 ml, 14.4 mmol) was added and the reaction was stirred at room temperature for additional 12 h. The reaction was stopped by addition of sat.NH₄Cl solution and EtOAc. The organic phase was separated, washed several times with water, dried over MgSO₄ and

evaporated. Purified using flash chromatography and **4** as yellow oil was obtained (2.5g. 87%). $R_f = 0.42$, (petroleum ether); IR: nu(tilde) = 2926m, 2821m, 2229m, 1600s, 1488s, 1356s, 1100s, 819s cm⁻¹; ¹H NMR (300Hz, CDCl₃): $\delta = 7.41$ (s, 1H), 7.36 (d, *J*=7.8Hz, 1H), 7.06 (d, *J*=7.8Hz, 1H), 4.37 (s, 2H), 3.49 (s, 3H), 2.33 (s, 3H); ¹³C NMR (75Hz, CDCl₃): $\delta = 140.1$, 133.1, 132.7, 127.7, 125.1, 121.6, 88.7, 84.8, 60.2, 57.5, 20.9; TOFMS (EI) calcd for (M⁺) C₁₁H₁₁OBr: 237.9993, found 237.9988.

2'-(3-methoxyprop-1-yn-1-yl)-5'-methyl-2-nitro-[1,1'-biphenyl]-4-carbaldehyde (**5**): n-BuLi (3.7 ml, 2.2 M, 8.1mmol, 1.2 eq) was added dropwise to a solution of compound **4** (1.6 g, 6.7 mmol) in anhyd THF (30 mL) at -78° C. The mixture was stirred at this temperature for 30 min, then B(OⁱPr)₃ (13.4 mmol, 2eq) was added and the mixture was stirred for 16 h while allowing the temperature to rise to 20°C. The HCl (24 mL, 2 M) was added, the organic layer separated, the aqueous layer extracted with diethyl ether (50 ml) three times, the combined organic layer dried over MgSO₄, and concentrated under reduce pressure. The product was obtained as white solid by flash chromatography (0.62g. 45%) and was used directly for next step reaction.

Boronic acid (0.62 g, 3 mmol), 4-bromo-3-nitrobenzaldehyde (0.71g, 3.1 mmol) and Pd(PPh₃)₄ (0.22 g, 0.31 mmol, 10 mol%) were added into a 100 mL flask. Degassed toluene (40 mL), ethanol (20 ml) and degassed aqueous K₂CO₃ solution (5 mL, 2 M) was then added into the flask. The solution was kept at 80°C and stirred vigorously under nitrogen for 24 h. The resulting solution was extracted with excess CH₂Cl₂, dried by MgSO₄, and evaporated. Purified by flash chromatography and **5** was obtained as a white solid (0.67g, 66%). R_f = 0.28, (EtOAc / petroleum ether 1:10); IR (KBr): nu(tilde) = 2946m, 2876m, 2228m, 1702s, 1530s, 1353s, 1100s, 946s, 828s cm⁻¹; ¹H NMR (300Hz, CDCl₃): δ =10.13 (s, 1H), 8.51 (d, *J*=1.2Hz, 1H), 8.17-8.14 (m, 1H), 7.62 (d, *J*=7.8Hz, 1H), 7.45 (d, *J*=7.8Hz, 1H), 7.26-7.20 (m, 1H), 7.13 (s, 1H), 4.09 (s, 2H), 3.19 (s, 3H), 2.42 (s, 3H); ¹³C NMR (75Hz, CDCl₃): $\delta = 189.4$, 149.2, 140.8, 140.7, 139.0, 135.9, 133.5, 132.3, 132.0, 129.2, 128.5, 124.8, 117.9, 88.5, 83.6, 59.7, 56.9, 21.1; TOFMS (EI) calcd for (M⁺) C₁₈H₁₅NO₄: 309.1001, found 309.0999.

e (6): The compound 5 (0.54 g, 1.7 mmol) and 3,5-dimethyl-4-(ethoxycarbonyl)pyrrole (0.58 g, 3.5 mmol) were dissolved in 150 ml of absolute CH₂Cl₂ under an N₂ atmosphere. Three drop of TFA was added, and the solution was stirred at room temperature overnight. When TLC monitoring showed complete consumption of 5, a solution of DDQ (0.43 g, 1.9 mmol) in CH₂Cl₂ was added, and stirring was continued for 20 min. The reaction mixture was washed with water, dried over Na₂SO₄, filtered, and evaporated. The compound was purified by short column chromatography over alumina (CH₂Cl₂). The brown powder thus obtained and TEA (4 ml, 28 mmol) were dissolved in 200 ml of toluene under an N₂ atmosphere. Then BF₃-Et₂O (4 ml, 32 mmol) was added, and the solution was stirred at room temperature for 30 min. The reaction mixture was washed with water, dried over Na₂SO₄, filtered, and evaporated. Purified using flash chromatography and **6** as a red solid was obtained (0.28g, 24%). $R_f = 0.47$, (EtOAc / petroleum ether 1:4); IR (KBr): nu(tilde) = 2983m, 2932m, 1706s, 1530s, 1315s, 1187s, 1007s, 564s cm⁻¹; ¹H NMR (300Hz, CDCl₃): $\delta = 8.02$ (s, 1H), 7.65-7.61 (m, 2H), 7.48 (d, J=7.8Hz, 1H), 7.26-7.21 (m, 2H), 4.34-4.27(m, 4H), 4.07 (s, 2H), 3.31 (s, 3H), 2.86 (s, 6H), 2.45 (s, 3H), 1.80 (s, 6H), 1.35 (t, J=7.2Hz, 6H); ¹³C NMR (75Hz, CDCl₃): δ =163.8, 160.4, 149.6, 146.8, 141.5, 139.2, 139.1, 137.2, 134.8, 134.0, 132.4, 132.0, 131.0, 129.3, 128.8, 124.0, 123.0, 118.4, 88.5, 83.7, 60.3, 59.9, 57.5, 21.3, 14.9, 14.1, 14.0; HRMS (ESI) calcd for $(M+H)^+$ C₃₆H₃₇O₇BN₃F₂: 672.2687, found 672.2685.

10-(2-amino-2'-(3-methoxyprop-1-yn-1-yl)-5'-methyl-[1,1'-biphenyl]-4-yl)-2,8-bis(ethoxycarbo

nyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-ui

de (1): Tin(II) chloride (168 mg, 0.75mmol) and con. HCl (1ml) were added to a solution of compound **6** (50mg, 0.075mmol) in THF-EtOH (1:1, 14 ml), and the reaction mixture was stirred for 6 h. A sat.solution of K₂CO₃ was added and the reaction mixture was partitioned between EtOAc (40.0 ml) and water (10ml). The organic phase was separated, washed several times with water, dried over MgSO₄ and evaporated. Purified using flash chromatography and **1** as a red solid was obtained (36mg, 75%). $R_f = 0.27$, (EtOAc / petroleum ether 1:4); IR (KBr): nu(tilde) = 3482m, 3382m, 2980m, 2932m, 1710s, 1689s, 1619s, 1521s, 1314s, 1186s 1109s, 1010, 566s cm⁻¹; ¹H NMR (300Hz, CDCl₃): $\delta = 7.51$ (d, *J*=7.8Hz, 1H), 7.30-7.18 (m, 3H), 6.84-6.78 (m, 2H), 4.33-4.26 (m, 4H), 4.10 (s, 2H), 3.33 (s, 3H), 2.84 (s, 6H), 2.41 (s, 3H), 1.91 (s, 6H), 1.34 (t, *J*=7.2Hz, 6H); ¹³C NMR (75Hz, CDCl₃): $\delta = 164.2$, 159.2, 147.7, 146.2, 145.2, 140.4, 139.3, 134.4, 133.2, 131.8, 131.3, 130.7, 128.7, 127.9, 122.3, 119.3, 116.8, 113.9, 87.4, 84.7, 60.1, 60.0, 57.5, 21.3, 14.8, 14.2, 13.6; HRMS (ESI) calcd for (M+H)⁺ C₃₆H₃₉O₅BN₃F₂: 642.2945, found 642.2938.

2,8-bis(ethoxycarbonyl)-5,5-difluoro-10-(6-(2-methoxyethyl)-9-methylphenanthridin-3-yl)-1,3, 7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide (**2**): AuCl₃ (10 mmol%) was added to the solution of compound **1** (20 mg, 0.031 mmol) in 20ml EtOH, and the reaction mixture was stirred for 4h. The solvent was evaporated and water (30ml) was added. The aqueous phase was extracted with EtOAc, the combined organic extract was dried over MgSO₄ and evaporated. Purified using flash chromatography and **2** as a red solid was obtained (9 mg, 45%). R_f = 0.31, (EtOAc / petroleum ether 1:4); IR (KBr): nu(tilde) = 3439m, 2962m, 2925m, 1709s, 1628s, 1523s, 1314s, 1184s 1118s, 1075s, 562s cm⁻¹; ¹H NMR (300Hz, CDCl₃): δ = 8.80 (d, *J*=8.7Hz, 1H), 8.57 (s, 1H), 8.46 (d, *J*=6.9Hz, 1H), 7.77-7.70 (m, 2H), 7.54-7.51 (m, 1H), 4.31 (t, *J*=6.9Hz, 2H), 4.29-4.22 (m, 4H), 4.10-4.08 (m, 2H), 3.37 (s, 3H), 2.86 (s, 6H), 2.76 (s, 3H), 1.61 (s, 6H), 1.30 (t, J=6.9Hz, 6H); HRMS (ESI) calcd for (M+H)⁺ C₃₆H₃₉O₅BN₃F₂: 642.2945, found 642.2949.

References

- R. S. Liu, H. K. Chang, S. Datta, A. Das and A. Odedra, *Angew. Chem. Int. Edit.*, 2007, 46, 4744.
- 2. P. Swoboda, R. Saf, K. Hummel, F. Hofer and R. Czaputa, *Macromolecules*, 1995, 28, 4255.
- 3. S. C. Burdette, D. P. Kennedy and C. M. Kormos, J. Am. Chem. Soc., 2009, 131, 8578.

III. Copies of ¹H and ¹³C NMR Spectra of New Compounds

 1 H NMR (300 MHz) spectra of compound **3**

¹H NMR (300 MHz) spectra of compound **5**

¹³C NMR (75 MHz) spectra of compound **5**

13 C NMR (75 MHz) spectra of compound 6

ESI mass spectral of compound $2 [M+H^+]$

:\data\2011090	01\20110902_HE	SI+_F6		9/2/20	011 3:30:12 PM				
110902_HESI+ FTMS + c ESI F	_F6 #30 RT: 0.52 full ms (200.00-800	AV: 1 SB: 107	0.40-2.57 NL: 2.0	02E6					
FTMS + c ESI F 100 90 80 70 60 50 40	'ull ms (200.00-800	.00] Бұ <i>00</i>		ithcollocotts -c00Et	642	.29488 [m+h] ⁺			
					570 20209				
20 20 10 374.	36305	437.19358 463	.22781 512.503	56 69 540.53490	579.29296 58.56622 624.62918 595.26690	656.30956	719.44955	741.37978	791.01234
30 20 10 374. 0 350	36305 	437.19358 463 450	22781 512.503 500	56 69 540.53490 550	5/9.29290 5/9.29290 5/9.29290 5/9.29290 624.62918 5/9.29690 600 m/z	656.30956	719.44955 	741.37978 750	791.01234 800
20 10 374. 0 350 0110902 HI B: 107 0.44 : FTMS + c 77= 346 6	36305 400 ESI+ F6#30 0-2.57 ESI Full r 4557-F00 00	437.19358 463 450 RT: 0.52 ns [200.00	.22781 512.503 500 0-800.00]	569 540.53490 550	5/9.26596 58.56622 624.62918 595.26690 m/z	656,30956	719.44955 700	741.37978 750	791.01234
30 20 10 374. 0	36305 400 ESI+ F6#30 0-2.57 ESI Full r 4537-800.00 Intensity	437.19358 463 450 RT: 0.52 ns [200.00 0000 Relative	22781 512.503 500)-800.00] Theo. Mass	56 169 540.53490 550 Delta	5/9.29298 58.56622 624.62918 595.26690 m/z Composition	656.30956	719.44955 700	741.37978 750	791.01234 800
30 20 10 374. 0 350 0110902 HI B: 107 0.44 FTMS + c /z= 346.6 m/z 362. 32673	400 ESI+ F6#30 0-2.57 ESI F011 r 4537-800.00 Intensity 62561.6	437.19358 463 450 RT: 0.52 ns [200.00 0000 Relative 3.10	22781 512.503 500 -800.00] Theo. Mass 362.32649	56 89 540.53490 550 Delta (mmu) 0.24	5/9.29298 58.56622 624.62918 595.26690 0 600 m/z Composition C 20 H 44 O 4 N	656,30956	719.44955 700	741.37978 750	791.01234 800
30 20 10 374. 0 350 0110902 HH B: 107 0.44 : FTMS + c /z= 346.6 m/z 362.32673 374.36305	400 ESI+ F6#30 0-2.57 ESIF F01 r 4537-800.00 Intensity 62561.6 64198.0	437.19358 463 450 RT: 0.52 ns [200.00 Relative 3.10 3.18	22781 512.503 500 0-800.00] Theo. Mass 362.32649 374.36287	56 169 540.53490 550 Delta (mmu) 0.24 0.18	5/9.26598 58.56622 624.62918 595.26690 m/z Composition C ₂₀ H ₄₄ O ₄ N C ₂₂ H ₄₄ O ₃ N	656.30956	719.44955 700	741.37978 750	791.01234 800
30 20 10 374. 0 350 0110902 HI B: 107 0.44 : FTMS + c /z= 346.6 m/z 362.32673 374.36305 437.19358	400 ESI+ F6#30 0-2.57 ESI Full r (4537-800.00 Intensity 62561.6 64198.0 65486.3	437.19358 463 450 RT: 0.52 ns [200.00 0000 Relative 3.10 3.24	22781 512.503 500)-800.00] Theo. Mass 362.32649 374.36287 437.19301	56 169 540.53490 550 Delta (mmu) 0.24 0.18 0.58	5/9.26596 595.26690 595.26690 m/z Composition C ₂₀ H ₄₄ O ₄ N C ₂₂ H ₄₈ O ₃ N C ₂₅ H ₂₇ O ₅ B F	656.30956	719.44955 700	741.37978 750	791.01234
30 20 10 374. 0 350 0110902 HI B: 107 0.44 : FTMS + c /z= 346.6 m/z 362.32673 374.36305 437.19358 579.29298	400 ESI+ F6#30 0-2.57 ESI Full r 4537-800.00 Intensity 62561.6 64198.0 65486.3 434235.5	437.19358 463 450 RT: 0.52 ns [200.00 0000 Relative 3.10 3.18 3.24 21.49	500 500 0-800.00] Theo. Mass 362.32649 374.36287 437.19301 579.29166	569 540.53490 550 Delta (mmu) 0.24 0.18 0.58 1.32	5/9.26596 595.26690 595.26690 m/2 Composition Composition C20 H44 O4 N C22 H40 O3 N C25 H27 O5 B F C35 H41 O5 F2	656.30956	719.44955 700	741.37978 750	<u>791.01234</u> 800
30 20 10 374. 0 350 0110902 HI B: 107 0.44 FTMS + c /z= 346.6 m/z 362.32673 374.36305 437.19358 579.29298 580.29640	38305 400 ESI+ F6#30 0-2.57 ESI Full r 4537-800.00 Intensity 62561.6 64198.0 65486.3 434235.5 160474.7	437.19358 463 450 RT: 0.52 ns [200.00 0000 Relative 3.10 3.18 3.24 21.49 7.94	22781 512.503 500 500 500 500 512.500 512.500 512.500 512.500 512.500 512.500 512.500 512.500 512.500 512.500 512.500 512.500 500 500 500 500 500 500 500 500 500	550 Delta (mmu) 0.24 0.18 0.58 1.32 -0.60	5/9.29298 58.56622 624.62918 595.26690 0 600 m/z Composition C 20 H 44 O 4 N C 22 H 48 O 3 N C 25 H 27 O 5 B C 35 H 41 O 5 F 2 C 36 H 39 O 3 N 3 F	656.30956 650	719.44955 http://www. 700	741.37978 750	791.01234 800
30 20 10 374. 0 350 0110902 HI B: 107 0.44 B: 107 0.44 FTMS + c /z= 346.6 m/z 362.32673 374.36305 437.19358 579.29298 580.29640 641.29815	38305 400 ESI+ F6#30 0-2.57 ESI Full r 4537-800.00 Intensity 62561.6 64198.0 65486.3 434235.5 160474.7 421264.9	437.19358 463 450 RT: 0.52 ns [200.00 0000 Relative 3.10 3.18 3.24 21.49 7.94 20.85	22781 512.503 500 -800.00] Theo. Mass 362.32649 374.36287 437.19301 579.29166 580.29700	56 540.53490 550 Delta (mmu) 0.24 0.18 0.58 1.32 -0.60	Composition Composition C20 H44 O4 N C22 H48 O3 N C25 H27 O5 B F C35 H41 O5 F2 C36 H39 O3 N3 F	656.30956 650	719.44955 10.00	741.37978 750	791.01234 800
30 20 10 374. 0 350 0110902 HI B: 107 0.4 HI 22 3350 2362. 32673 374. 36305 437. 19358 579. 29298 580. 29298 580. 29298 580. 292948 580. 29488 580. 29488 579. 294888 579. 29488 579. 29488 579. 29488 579. 29488 579. 29488 579. 29488 579. 29488 579. 29488 579. 29488 579.	36305 400 ESI+ F6#30 0-2.57 ESI FUll r 4537-800.00 Intensity 62561.6 64198.0 65486.3 434235.5 160474.7 421264.9 2020494.8	437.19358 463 450 RT: 0.52 ns [200.00 0000 Relative 3.10 3.18 3.24 21.49 7.94 20.85 100.00	22781 512.503 500 -800.00] Theo. Mass 362.32649 374.36287 437.19301 579.29166 580.29700 642.29453	56 540.53400 550 Delta (mmu) 0.24 0.18 0.58 1.32 -0.60 0.35	Composition Composition C20 H44 O4 N C22 H48 O3 N C25 H27 O5 B F C35 H41 O5 F2 C36 H39 O3 N3 F C36 H39 O5 N3 B F2	656.30956	719.44955	741.37978 750	791.01234 800
30 20 10 374. 0 350 0110902 HI B: 107 0.4 : FTMS + c /z= 346.6 m/z 362.32673 374.36305 437.19358 579.29298 580.29640 641.29815 642.29488 643.29787	38305 400 ESI+ F6#30 0-2.57 ESI Full r 4537-800.00 Intensity 62561.6 64198.0 65486.3 434235.5 160474.7 421264.9 2020494.8 745539.6	437.19358 463 450 RT: 0.52 ns [200.00 0000 Relative 3.10 3.18 3.24 21.49 7.94 20.85 100.00 36.90	22781 512.503 500 -800.00] Theo. Mass 362.32649 374.36287 437.19301 579.29166 580.29700 642.29453 643.30236	56 569 540.53490 550 Delta (mmu) 0.24 0.18 0.28 1.32 -0.60 0.35 -4.49	Composition Composition C22 H44 O4 N C22 H46 O3 N C25 H27 O5 B F C35 H41 O5 F2 C36 H39 O5 N3 B F2 C36 H39 O5 N3 B F2 C36 H40 O5 N3 B F2	656.30956	719.44955	741.37978 750	791.01234 800
30 20 10 374. 0 350 0110902 HI B: 107 0.44 B: 107 0.44 FTMS + c /z= 346.6 m/z 362.32673 374.36305 437.19358 579.29298 580.29640 641.29815 642.29488 643.29787 644.30084	38305 400 ESI+ F6#30 0-2.57 ESI Full r 4537-800.00 Intensity 62561.6 64198.0 65486.3 434235.5 160474.7 421264.9 2020494.8 745539.6 136572.0	437.19358 463 450 RT: 0.52 ns [200.00 0000 Relative 3.10 3.18 3.24 21.49 7.94 20.85 100.00 36.90 6.76	22781 512.503 500 500 500 500 512.503 512.503 512.503 512.503 512.503 512.503 512.503 512.503 512.503 512.503 512.503 512.503 512.503 500 512.503 512.	560 540.53490 550 Delta (mmu) 0.24 0.18 0.28 1.32 -0.60 0.35 -4.49 -9.35	Composition Composition C22 H 44 O 4 N C22 H 46 O 3 N C25 H 27 O 5 B F C35 H 1 O 5 F 2 C36 H 39 O 5 N 3 B F 2 C36 H 40 O 5 N 3 B F 2 C36 H 40 O 5 N 3 B F 2 C36 H 40 O 5 N 3 B F 2	656.30956	719.44955	741.37978 750	791.01234 800