Supporting Information (I)

Proteomic Profiling and Potential Cellular Target Identification of K11777, a Clinical

Cysteine Protease Inhibitor, in Trypanosoma brucei

Peng-Yu Yang, ${ }^{\text {a }}$ Min Wang, ${ }^{\text {b }}$ Cynthia Y. He, ${ }^{\text {b }}$ and Shao Q. Yao ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543;
${ }^{b}$ Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.

Corresponding author (S.Q.Y.: chmyaosq@nus.edu.sg)

1. General Procedures.

All chemicals were purchased as reagent grade and used without further purification, unless otherwise noted. Tetrahydrofuran (THF) was distilled over sodium benzophenone and used immediately. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled over CaH_{2}. All non-aqueous reactions were carried out under nitrogen atmosphere in oven-dried glassware. Reaction progress was monitored by TLC on pre-coated silica plates (Merck $60 \mathrm{~F} 254,250 \mu \mathrm{~m}$ thickness) and spots were visualized by basic KMnO_{4}, UV light or iodine. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker model Avance 300 MHz or DPX- 300 MHz or DPX- 500 MHz NMR spectrometer. Chemical shifts are reported in parts per million relative to internal standard tetramethylsilane $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}=0.00 \mathrm{ppm}\right)$ or residual solvent peaks $\left(\mathrm{CHCl}_{3}=7.26\right.$ $\mathrm{ppm})$.
(A)

(B)

Fig. S1. (A) Structural representatives of vinyl sulfones which are anti-Trypanosomal agents (WRR-483, ${ }^{1}$ Cbz-Phe-Hph- $\mathrm{VSCH}_{2} \mathrm{Ph}^{2}$ and $\mathrm{Cbz}-\mathrm{Phe}-\mathrm{Hph}^{2}-\mathrm{VSOPh}^{3}$), or anti-malarial agents (Mu-Leu-Hph-VSPh, ${ }^{4 \mathrm{a}, 5}$ N-Me-Pip-Leu-Hph-VSPh, ${ }^{4 \mathrm{~b}, 5}$ and N-Me-Pip-Leu-Hph-VSNp-2 ${ }^{4 c, 5}$). (B) Structures of the two azide-containing reporter tags used in current study. ${ }^{6}$

2. Synthesis and Characterizations

2.1 Synthesis of compound 1 (VS-1).

Scheme S1. Synthesis of probe 1 (VS-1).

Diethyl phenylthiomethylphosphonate (4)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of hexane-washed $\mathrm{NaH}(60 \%$ in mineral oil; $1.0 \mathrm{~g}, 24 \mathrm{mmol})$ in dry THF $(100 \mathrm{~mL})$ was added benzenethiol ($2.0 \mathrm{~mL}, 20 \mathrm{mmol}$) drop-wise via syringe. The mixture was stirred for an additional 30 min at $0^{\circ} \mathrm{C}$ until effervescence ceased. Diethyl iodomethylphosphonate ($4.0 \mathrm{~mL}, 22 \mathrm{mmol}$) was added and the mixture was stirred for 12 h . A cold HCl solution (1 M) was added to break up the gelatinous emulsion until $p \mathrm{H} 6 \sim 7$ was reached. Upon concentration in vacuo, the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash column chromatography (silica gel; using 20 to 50% EtOAc in hexanes) gave the product $\mathbf{4}$ as a colorless liquid $(4.79 \mathrm{~g}, 92 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.30(\mathrm{t}, J=7.1,6 \mathrm{H}), 3.20(\mathrm{~d}, J=14.0$, 2H), 4.09-4.20 (m, 4H), 7.20-7.33 (m, 3H), 7.42-7.46 (m, 2 H).

Diethyl phenylsulfonylmethylphosphonate (5)

To a solution of compound $4(5.0 \mathrm{~g}, 19.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added m-chloroperbenzoic acid (12.9 g of $77 \% \mathrm{~m}$-CPBA, 57.2 mmol) over 1 h . The mixture was stirred overnight while being warmed to room temperature. The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $\mathrm{NaOH}(2 \mathrm{M})$ until $p \mathrm{H} 8 \sim 9$. The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness, giving the product 5 as a colorless oil ($5.6 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR (300
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.77(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.21(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.71(\mathrm{~m}, 1$ H), 7.98-8.01 (m, 2 H).

(S)-tert-butyl [1-(methoxymethylcarbamoyl)-3-phenylpropyl]carbamate (6)

To a solution of (S)-Boc-Homophenylalanine ($5.59 \mathrm{~g}, 20 \mathrm{mmol}$) in dry THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added EDC $(4.60 \mathrm{~g}$, 24 mmol), $\operatorname{HOBt}(3.24 \mathrm{~g}, 12 \mathrm{mmol}), N, O$-dimethylhydroxylamine hydrochloride ($2.34 \mathrm{~g}, 24 \mathrm{mmol}$) and DIPEA (5.2 mL , $30 \mathrm{mmol})$. The reaction was stirred at room temperature for 12 h , and concentrated in vacuo. Upon dilution with $\mathrm{H}_{2} \mathrm{O}(150$ mL) and extraction with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined organic extracts were washed with $1 \mathrm{wt} \% \mathrm{HCl}, 20 \mathrm{wt} \%$ $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by column chromatography (silica gel; using 20 to 50% EtOAc in hexanes), giving Boc-Hph-N(Me)OMe (6) as a white solid (6.20 g , $96 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.80-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.31(\mathrm{~m}, 5 \mathrm{H})$.

(S)-tert-butyl (1-formyl-3-phenylpropyl)carbamate (Boc-Homophenylalaninal, Boc-HphH, 7)

To a solution of $6(3.2 \mathrm{~g}, 10 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(0.45 \mathrm{~g}, 12 \mathrm{mmol})$ over 10 min , with vigorous stirring. The mixture was stirred for an additional 20 min at $0^{\circ} \mathrm{C}$, whereupon cold water was carefully added until effervescence ceased. A cold HCl solution (1 M) was added to break up the gelatinous emulsion until $p \mathrm{H} 6 \sim 7$. Upon dilution with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and extraction with EtOAc $(3 \times 50 \mathrm{~mL})$, the combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash column chromatography (silica gel; using 20 to 50% EtOAc in hexanes) provided the product 7 as a white solid ($1.92 \mathrm{~g}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.83-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.17-7.32(\mathrm{~m}, 5 \mathrm{H}), 9.55(\mathrm{~s}, 1 \mathrm{H})$.

(S)-tert-butyl (3-benzenesulfonyl-1-phenethylallyl)carbamate (Boc-HphVSPh, 8)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of hexane-washed $\mathrm{NaH}(60 \%$ in mineral oil; $0.24 \mathrm{~g}, 6 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ was added drop-wise $\mathbf{5}(1.61 \mathrm{~g}, 5.5 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ via syringe. The mixture was stirred for an additional 30 min at $0^{\circ} \mathrm{C}$ and $7(1.32 \mathrm{~g}, 5 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ was added drop-wise. The stirring was continued for 1 h , before a cold 5 $\mathrm{wt} \% \mathrm{NaHSO}_{4}$ solution was added to break up the gelatinous emulsion until $p \mathrm{H} 6 \sim 7$. The solution was concentrated in vacuo, diluted with water $(100 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Purification by flash column chromatography (silica gel; using 20 to $50 \% \mathrm{EtOAc}$ in hexanes) provided the product $\mathbf{8}$ as a white foam (1.4 $\mathrm{g}, 70 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.83-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.70(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 6.43 (br d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.90(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.51-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$; LC-IT-TOF/MS (m/z) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 424.1661, Found: 424.1575.

(S)-3-benzenesulfonyl-1-phenethylallylamine trifluoroacetate (TFA•HphVSPh, 9)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{8}(1.2 \mathrm{~g}, 3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added drop-wise TFA (5 mL) via syringe. After stirring for 2 h , the reaction was added $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The precipitate was filtered off, washed twice with $\mathrm{Et}_{2} \mathrm{O}$, and finally dried in vacuo to give $9(0.95 \mathrm{~g} ; 76 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.34(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.76-1.86(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=5.6,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.86(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$. This material was pure enough to be used in the next step without further purification.

(\boldsymbol{S})- \boldsymbol{N}-(4-chlorobenzylidene)phenylalanine methyl ester ($\mathrm{HCl} \cdot$ Phe-OMe, 10)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of phenylalanine $(16.5 \mathrm{~g}, 100 \mathrm{mmol})$ in dry $\mathrm{MeOH}(150 \mathrm{~mL})$ was added drop-wise $\mathrm{SOCl}_{2}(9 \mathrm{~mL}, 120 \mathrm{mmol})$ over 1 h . The mixture was kept cool in an ice-bath throughout the whole duration in order to
keep the temperature $<5^{\circ} \mathrm{C}$. The clear solution was stirred for 12 h and subsequently heated at $50{ }^{\circ} \mathrm{C}$ for 2 h . Upon evaporation of the solvent under reduced pressure, $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added with stirring. The precipitate was filtered off, washed twice with ether, and finally dried in vacuo to give $10(21.6 \mathrm{~g} ; 100 \%)$ as a white solid. This material was pure enough to be used in the next step without further purification.

Methyl (S)-2-isocyanato-3-phenylpropanoate (OCN-PheOMe, 11)

To a solution of $\mathbf{1 0}(5.5 \mathrm{~g}, 25.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and triphosgene ($2.52 \mathrm{~g}, 8.42 \mathrm{mmol}$) in a single portion with vigorous stirring. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and then poured into a $250-\mathrm{mL}$ separatory funnel. The organic layer was collected, and the aqueous layer is extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, vacuum filtered, and concentrated at reduced pressure using a rotary evaporator to give the product 11 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.03(\mathrm{dd}, J=7.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=4.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{dd}, J=$ $4.61,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 3 \mathrm{H})$. This material was used in the next step without further purification, assuming a quantitative yield.

tert-Butyl 1-piperazinecarboxylate (12)

To a solution of di-tert-butyl dicarbonate ($5.80 \mathrm{~g}, 25.54 \mathrm{mmol}$) in 50 mL of dry MeOH was added drop-wise a solution of piperazine ($4.0 \mathrm{~g}, 46.44 \mathrm{mmol}$) in 100 mL of dry MeOH at $0^{\circ} \mathrm{C}$. After 30 min , the mixture was warmed to room temperature and the reaction was continued for 2 d . Upon concentration under reduced pressure, the crude solid was dissolved in 200 mL of $\mathrm{Et}_{2} \mathrm{O}$, and the left-over white precipitate was filtered off. The aqueous solution obtained by extracting the organic solution with 1 M citric acid (aq) $(3 \times 100 \mathrm{~mL})$ was washed with EtOAc $(3 \times 100 \mathrm{~mL})$ and brought to $p \mathrm{H} \sim 11$ by adding solid $\mathrm{K}_{2} \mathrm{CO}_{3}$. The turbid solution was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated under reduced pressure at $40^{\circ} \mathrm{C}$ and stripped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield a clear oil which was recrystallized into a white solid upon drying under reduced pressure. Yield: 71\%; ${ }^{1} \mathrm{H} \mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 3.45-3.33(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.74(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.

tert-Butyl 4-propargylpiperazine-1-carboxylate (13)

To a solution of $\mathbf{1 2}(1.86 \mathrm{~g}, 10 \mathrm{mmol})$ and diisopropylethylamine $(1.9 \mathrm{~mL}, 11 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added drop-wise a solution of propargyl bromide (80% in toluene, $1.2 \mathrm{~mL}, 10 \mathrm{mmol}$) in CHCl_{3} (50 mL). After the mixture was stirred for 24 h at room temperature, the solution obtained was washed with $5 \% \mathrm{NaHCO}_{3}(3 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was filtered and evaporated to provide a brown oil. Purification by flash column chromatography (silica gel; using 50% EtOAc in hexanes) provided the product 13 as a yellow oil ($1.4 \mathrm{~g}, 86 \%$), which ultimately crystallized upon standing. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.49(\mathrm{~s}, 9 \mathrm{H}), 2.26$ $(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.32(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 29.10,47.67,52.32,74.10,79.10,80.40,155.39$.

\boldsymbol{N}-Propargylpiperazine $\cdot \mathbf{T F A}$ salt (14)

To a solution of $\mathbf{1 3}(1.1 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added trifluoroacetic acid (25 mL). The solution was stirred at room temperature overnight, and then evaporated to dryness in vacuo. The residue was suspended in 20 mL of THF and used immediately in the next step without further purification.

(S)-methyl 3-phenyl-2-(4-(prop-2-yn-1-yl)piperazine-1-carboxamido)propanoate (15)

To a solution of $\mathbf{1 4}(0.7 \mathrm{~g}, 2 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added drop-wise a solution of DIEA $(0.7 \mathrm{~mL}, 4$ mmol) in 10 mL of dry THF. After 10 min , a solution of $11(0.68 \mathrm{~g}, 2.4 \mathrm{mmol})$ in dry THF (10 mL) was added. The mixture was stirred for 12 h and concentrated in vacuo to give a brown oil, which was subsequently diluted with water
$(100 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash column chromatography (silica gel; using 5 to 10% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided the product 15 as a white solid ($0.53 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.49-2.56(\mathrm{~m}, 4 \mathrm{H}), 3.08-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.43(\mathrm{~m}, 6 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.77-4.80(\mathrm{~m}$, $1 \mathrm{H}), 4.81-4.91(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 38.97,44.24,47.53$, $52.02,52.87,55.00,74.23,78.88,127.68,129.17,129.96,136.87,157.07,173.74$, LC-IT-TOF/MS (m/z) calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 352.1739$, Found: 352.1738.

(S)-3-phenyl-2-(4-(prop-2-yn-1-yl)piperazine-1-carboxamido)propanoic acid hydrochloride (16)

To a solution of $\mathbf{1 5}(0.6 \mathrm{~g}, 1.8 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added drop-wise a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.23 \mathrm{~g}$, 5.5 mmol) in 10 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred for 4 h , and 4 N HCl in dioxane was then added slowly to adjust the $p \mathrm{H}$ of the mixture to ~ 2 at $0{ }^{\circ} \mathrm{C}$. The resulting solution was evaporated in vacuo. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 25 \mathrm{~mL})$, dried in vacuo, and then lyophilized overnight to give the crude product 16, along with a small amount of LiCl , which was used directly in the following reaction without further purification, assuming a quantitative yield.

N-((S)-1-oxo-3-phenyl-1-(($(S, E)-5-p h e n y l-1-(p h e n y l s u l f o n y l) p e n t-1-e n-3-y l) a m i n o) p r o p a n-2-y l)-4-(p r o p-2-y n-1-y l$)piperazine-1-carboxamide (1)

To a solution of $\mathbf{1 6}(215 \mathrm{mg}, 0.6 \mathrm{mmol})$ in DMF (5 mL) was added EDC/HCl $(115 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{HOBt}(81 \mathrm{mg}$, 0.6 mmol) and DIEA ($0.4 \mathrm{~mL}, 2.4 \mathrm{mmol}$). After 10 min , TFA• $\operatorname{HphVSPh}(9 ; 208 \mathrm{mg}, 0.5 \mathrm{mmol})$ in DMF (5 mL) was added drop-wise. The reaction was stirred at rt for 21 h . The resulting solution was evaporated in vacuo to give a brown oil, which was diluted with water $(50 \mathrm{~mL})$ and extracted with DCM $(3 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash column chromatography (silica gel; using 5 to 10% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided the product 1 as a white solid ($165 \mathrm{mg}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.72-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.84(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.56(\mathrm{~m}, 7 \mathrm{H}), 3.01(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.37(\mathrm{~m}, 6 \mathrm{H}), 4.54-4.60(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=1.2,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (dd, $J=4.9,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.77,35.70,36.49,38.48,43.71$, $46.82,49.10,51.26,56.01,73.66,78.14,126.25,127.14,127.66,128.37,128.56,128.72,129.26,129.30,130.48$, $133.47,136.66,140.23,140.44,145.66,156.90,171.86$; LC-IT-TOF/MS (m/z) calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 599.2614, Found: 599.2545.

2.2 Synthesis of compounds K11002 and K11777

Scheme S2. Synthesis of K11002 and K11777.

(S)-benzyl-2-isocyanato-3-phenylpropionate (OCN-PheOBzl, 17) ${ }^{7}$

To a solution of (S)-Benzyl-2-amino-3-phenylpropionate hydrochloride ($\mathrm{HCl} \cdot \mathrm{PheOBzl}$) ($3.72 \mathrm{~g}, 12.75 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and triphosgene ($1.25 \mathrm{~g}, 4.21 \mathrm{mmol}$) in a single portion with vigorous stirring. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and then poured into a $250-\mathrm{mL}$ separatory funnel. The organic layer was collected, and the aqueous layer is extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, vacuum filtered, and concentrated at reduced pressure using a rotary evaporator to give a colorless oil. The product, OCN-PheOBzl was used in the next step without further purification, assuming a quantitative yield.

(S)-benzyl 2-(morpholine-4-carboxamido)-3-phenylpropanoate (18) ${ }^{7}$

To a solution of $\mathbf{1 9}(3.59 \mathrm{~g}, 12.75 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added morpholine ($\left.1.1 \mathrm{~mL}, 12.75 \mathrm{mmol}\right)$. The mixture was stirred for 1 h and was concentrated in vacuo to a pale orange oil, and diluted with water (100 mL) and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{HCl}(1 \mathrm{M})$, saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Purification by flash column chromatography (silica gel) using 10 to $20 \% \mathrm{EtOAc}$ in hexanes to give the product (S)-benzyl 2-(morpholine-4-carboxamido)-3-phenylpropanoate (Mu-PheOBzl, 18) as a white solid ($3.9 \mathrm{~g}, 83 \%$ over two steps). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.11(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.31(\mathrm{~m}, 4 \mathrm{H}), 3.62-3.65(\mathrm{~m}, 4 \mathrm{H}), 4.81-4.90(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{dd}$, $J=12.3,27.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=3.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 38.22,43.92,54.28,66.41,67.20,127.01,128.51,128.58,129.34,135.19,136.01,156.66,172.43$.

(S)-2-(morpholine-4-carboxamido)-3-phenylpropanoic acid (19) ${ }^{7}$

A solution of Mu-PheOBzl (18) ($3.9 \mathrm{~g}, 10.6 \mathrm{mmol}$) in $1 \% \mathrm{HOAc} /$ ethanol $(100 \mathrm{~mL})$ was charged with 10% palladium on active charcoal (Aldrich: 0.4 g). The solution in the Parr bottle was exposed to hydrogen on a Parr shaker $(50 \mathrm{psi})$ for 12 h , filtered through Celite, and concentrated in vacuo. The residue was triturated with ether (100 mL) to remove residual ethanol and was reprecipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether to give $2.94 \mathrm{~g}(99 \%)$ of (S)-2-(morpholine-4-carboxamido)-3-phenylpropanoic acid (Mu-PheOH, 19). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 2.86-2.94 (m, 1H), 3.00-3.16 (m, 1H), 3.18-3.28 (m, 4H), 3.41-3.48 (m, 4H), 4.19-4.27 (m, 1H), $6.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17-7.30(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta 36.60,43.94,65.87,126.24,128.08,129.15,138.44,157.37$, 174.24. Without further purification, the mixture was used directly in the next step.

N-((S)-1-oxo-3-phenyl-1-(((S,E)-5-phenyl-1-(phenylsulfonyl)pent-1-en-3-yl)amino)propan-2-yl)morpholine-4-car boxamide (K11002)

Prepared according to the similar procedure mentioned above by using $19(290 \mathrm{mg}, 1.04 \mathrm{mmol}), 9(420 \mathrm{mg}, 1.0$ $\mathrm{mmol}), \mathrm{EDC} / \mathrm{HCl}(190 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{HOBt}(140 \mathrm{mg}, 1.0 \mathrm{mmol})$ and DIEA ($0.34 \mathrm{~mL}, 2 \mathrm{mmol}$) in DMF (5 mL). Purification by flash column chromatography (silica gel) using 25 to $50 \% \mathrm{EtOAc}$ in hexanes to give K11002 as a white solid ($450 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.74-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.60(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.25-3.34 (m, 4H), 3.59-3.65 (m, 4H), 4.51 (m, 1H), $4.62(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=1.65,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=4.85,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.65 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$; LC-IT-TOF/MS (m/z) calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 562.2297$, Found: 562.2629.

(S)-benzyl 2-(4-methylpiperazine-1-carboxamido)-3-phenylpropanoate (20) ${ }^{7}$

Prepared according to the similar procedure mentioned above by using (S)-benzyl-2-amino-3-phenylpropionate hydrochloride $(\mathrm{HCl} \cdot \mathrm{PheOBzl})(5.84 \mathrm{~g}, 20 \mathrm{mmol})$, triphosgene $(1.98 \mathrm{~g}, 6.67 \mathrm{mmol})$, and N-methylpiperazine (2.2 mL , 20 mmol). Purification by flash column chromatography (silica gel) using 5 to 10% methanol in DCM to give the
product [(S)-benzyl-2-[(4-methylpiperazine-1-carbonyl)amino]-3-phenylpropionate, MePip-PheOBzl, 20) as a pale orange oil.

(S)-2-(4-methylpiperazine-1-carboxamido)-3-phenylpropanoic acid (21) ${ }^{7}$

Prepared according to the similar procedure mentioned above by using MePip-PheOBzl (20) ($7.5 \mathrm{~g}, 19.7 \mathrm{mmol}$), $10 \% \mathrm{Pd} / \mathrm{C}(0.75 \mathrm{~g})$ in $1 \% \mathrm{HOAc} /$ ethanol $(50 \mathrm{~mL})$ under 50 psi for 12 h . The compound was obtained as white solid $(5.61 \mathrm{~g}, 98 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.94(\mathrm{dd}, J=10.8,15.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.95-3.04 (dd, $J=5.0,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.30(\mathrm{~m}, 4 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.27(\mathrm{~m}, 5 \mathrm{H})$.

4-Methyl- N-((S)-1-oxo-3-phenyl-1-(((S,E)-5-phenyl-1-(phenylsulfonyl)pent-1-en-3-yl)amino)propan-2-yl)pipera zine-1-carboxamide (K11777) ${ }^{7}$

Prepared according to the similar procedure mentioned above by using $21(291 \mathrm{mg}, 1.0 \mathrm{mmol}), 9(420 \mathrm{mg}, 1.0$ $\mathrm{mmol}), \mathrm{EDC} / \mathrm{HCl}(190 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{HOBt}(140 \mathrm{mg}, 1.0 \mathrm{mmol})$ and DIEA ($0.34 \mathrm{~mL}, 2 \mathrm{mmol}$) in DMF (5 mL). Purification by flash column chromatography (silica gel) using 5 to 10% methanol in DCM to give K11777 as a white solid ($260 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.76-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.35(\mathrm{~m}, 7 \mathrm{H}), 2.55-2.60(\mathrm{~m}, 2 \mathrm{H}), 3.05$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.29-3.37(\mathrm{~m}, 4 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=1.55,15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79(\mathrm{dd}, J=4.95,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.25$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.87(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H})$; LC-IT-TOF/MS (m/z) calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 575.2614$, Found: 575. 2600.

2.3 Synthesis of compound 2 (VS-2)

Scheme S3. Synthesis of probe 2 (VS-2).

(S)-methyl 2-((((4-ethynylbenzyl)oxy)carbonyl)amino)-3-phenylpropanoate (22)

To a solution of $11(2.46 \mathrm{~g}, 12 \mathrm{mmol})$ in anhydrous toluene (25 mL) was added (4-ethynylphenyl)methanol $(1.32 \mathrm{~g}, 10 \mathrm{mmol})$. The resulting solution was heated to $100^{\circ} \mathrm{C}$ for 6 h and concentrated in vacuo to give a pale orange oil, which was diluted with water $(100 \mathrm{~mL})$ and extracted with ether $(3 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{HCl}(1 \mathrm{M})$, saturated aqueous NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification by flash column chromatography (silica gel; using 10% EtOAc in hexanes) provided 22 as a white solid ($2.65 \mathrm{~g}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.03-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.62-4.69(\mathrm{~m}, 1 \mathrm{H}), 5.03-5.12(\mathrm{~m}, 2 \mathrm{H})$, 5.34 (br d, $J=12.65 \mathrm{~Hz}, 2 \mathrm{H}$), $7.08-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.46(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 38.90,53.01,55.49,67.02,78.19,83.98,122.60,127.85,128.46,129.30,129.92,132.93,136.32,137.71$, 156.12, 172.59.

To a solution of $\mathbf{1 5}(3.4 \mathrm{~g}, 10 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added drop-wise an aqueous solution of LiOH $(0.72 \mathrm{~g}, 30 \mathrm{mmol})$ in 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction was stirred for 2 h$)$ of the starting ester, then acidified with 2 M HCl (to $p \mathrm{H} 2$) and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. Upon drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration and evaporation of the organic phase, the compound was used directly in the following reaction without further purification (assuming quantitative yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.88-3.11(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 7.20-7.31$ $(\mathrm{m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=13.45 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=13.95 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta 36.49,55.52,64.73$, 80.86, 83.27, 121.01, 126.39, 127.54, 128.18, 129.09, 131.65, 137.86, 138.00, 155.88, 173.26.

4-Ethynylbenzyl((S)-1-oxo-3-phenyl-1-(((S,E)-5-phenyl-1-(phenylsulfonyl)pent-1-en-3-yl)amino)propan-2-yl)car bamate (2)

Prepared according to the same procedure mentioned above by using $23(162 \mathrm{mg}, 0.5 \mathrm{mmol}), 9(208 \mathrm{mg}, 0.5$ $\mathrm{mmol}), \mathrm{EDC} / \mathrm{HCl}(115 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{HOBt}(81 \mathrm{mg}, 0.6 \mathrm{mmol})$ and DIEA ($0.2 \mathrm{~mL}, 1.2 \mathrm{mmol}) \mathrm{in} \mathrm{DMF}(5 \mathrm{~mL})$. Purification by flash column chromatography (silica gel; using 20% EtOAc in hexanes) provided 2 as a white solid ($258 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.74-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.95-3.03$ $(\mathrm{m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=3.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{br} \mathrm{d}, J=6.25 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{br}$ d, $J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=0.9,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=4.7,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.35 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}$, $J=7.65 \mathrm{~Hz}, 2 \mathrm{H})$; LC-IT-TOF/MS (m/z) calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 607.2188$, Found: 607. 2078.

2.4 Synthesis of compound $\mathbf{3}$ (VS-3)

Scheme S4. Synthesis of probe 3 (VS-3)

Diethyl (((4-(prop-2-yn-1-yloxy)phenyl)sulfonyl)methyl)phosphonate (24)

A mixture of 4-hydroxy-thiophenyl-methyl-diethylphosphonate sulfone ${ }^{8}$ ($3.08 \mathrm{~g}, 10 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.66 \mathrm{~g}, 12 \mathrm{mmol})$ in dry acetone $(50 \mathrm{~mL})$ was stirred at rt for $2 \mathrm{~h} .80 \%$ of propargyl bromide in toluene (1.25 $\mathrm{mL}, 11 \mathrm{mmol}$) was added drop-wise. The mixture was then stirred for 12 h , and TLC analysis indicated all the starting materials had been consumed. Upon removal of acetone under reduced pressure, the reaction mixture was poured into water $(50 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed successively with 1 M HCl , water, and brine. Upon drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration and evaporation of the organic phase, the compound was purified by flash column chromatography (silica gel; using 50% EtOAc in hexanes) provided 24 as a white solid (3.01 $\mathrm{g}, 87 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.57(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.15(\mathrm{~m}, 4 \mathrm{H}), 4.78(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.95(\mathrm{~m}, 2 \mathrm{H})$.

($\boldsymbol{S}, \boldsymbol{E}$)-tert-butyl (5-phenyl-1-((4-(prop-2-yn-1-yloxy)phenyl)sulfonyl)pent-1-en-3-yl)carbamate (25)

Prepared according to the same procedure mentioned above by using $24(3.0 \mathrm{~g}, 8.67 \mathrm{mmol}), 7(2.1 \mathrm{~g}, 7.88$ mmol), and $\mathrm{NaH}(60 \%$ in oil, $0.38 \mathrm{~g}, 9.5 \mathrm{mmol}$) in anhydrous THF (100 mL). Purification by flash column chromatography (silica gel; using 20% EtOAc in hexanes) provided 25 as a white solid ($2.67 \mathrm{~g}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.70(\mathrm{~m}, 2 \mathrm{H}), 4.35$ (br s, 1H), $4.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=3.8,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (t, $J=3.15 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=6.95 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{dd}, J=2.55,11.35 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.23,31.89,35.96,50.62,56.03,76.53,77.30,80.23,115.44,126.32,128.32,128.61,129.84$, $131.09,132.67,140.75,145.23,154.88,161.42,184.26$.

(S,E)-5-phenyl-1-((4-(prop-2-yn-1-yloxy)phenyl)sulfonyl)pent-1-en-3-amine trifluoroacetate (26)

Prepared according to the same procedure mentioned above by using $25(2.28 \mathrm{~g}, 5.0 \mathrm{mmol})$ in 100 mL of TFA/DCM (1/1). Upon completion of the reaction, the mixture was precipitated with $\mathrm{Et}_{2} \mathrm{O}$, filtered off, washed twice with $\mathrm{Et}_{2} \mathrm{O}$, and finally dried in vacuo to give $2.3 \mathrm{~g}(98 \%)$ of $\mathbf{2 6}$. This material was pure enough to be used in the next step without further purification.

N-((S)-1-oxo-3-phenyl-1-(((S,E)-5-phenyl-1-((4-(prop-2-yn-1-yloxy)phenyl)sulfonyl)pent-1-en-3-yl)amino)propa n-2-yl)morpholine-4-carboxamide (3)

Prepared according to the same procedure mentioned above by using 19 ($139 \mathrm{mg}, 0.5 \mathrm{mmol}$), 26 ($234 \mathrm{mg}, 0.5$ $\mathrm{mmol}), \mathrm{EDC} / \mathrm{HCl}(115 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{HOBt}(81 \mathrm{mg}, 0.6 \mathrm{mmol})$ and DIEA ($0.2 \mathrm{~mL}, 1.2 \mathrm{mmol})$ in DMF (5 mL). Purification by flash column chromatography (silica gel; using 20% EtOAc in hexanes) provided $\mathbf{3}$ as a white solid ($265 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.64-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=7.55 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.31(\mathrm{~m}, 4 \mathrm{H}), 3.60-3.66(\mathrm{~m}, 4 \mathrm{H}), 4.46(\mathrm{dd}, J=7.6,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J$ $=2.55 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.50(\mathrm{br} \mathrm{d}, J=15.15 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=5.0,15.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=6.95 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=1.9,6.95 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.80(\mathrm{dd}, J=1.85,6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.68,35.48,37.97,43.92,49.15,56.04,56.20,66.27,76.62,77.32,115.41,126.25$, $127.15,128.32,128.53,128.79,129.22$, $129.84,131.16,132.63,136.68,140.37,144.48,157.23,161.41,171.64 ;$ LC-IT-TOF/MS (m/z) calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}:$616.2403, Found: 616. 2293.

3. Biological and Other Experiments.

3.1 General.

Anti-cathepsin L (ab6314) was from Abcam. Anti-rhodesain, and anti-TbCatB were generous gifts from James H. McKerrow (University of California, San Francisco). Other reagents are from commercial sources, unless otherwise indicated. For Cell Cultures, T. brucei procyclic cells YTAT 1.1 were grown at $28^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ in Cunningham's medium supplemented with 15% heat-inactivated fetal bovine serum (FBS). T. brucei BSF cells were grown at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ in HMI-9 medium supplemented with 20% heat-inactivated fetal bovine serum (FBS). HepG2 cells were grown in DMEM containing 10% heat-inactivated fetal bovine serum, $100 \mathrm{U} / \mathrm{mL}$ penicillin and $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin and maintained in a humidified $37^{\circ} \mathrm{C}$ incubator with $5 \% \mathrm{CO}_{2}$.

3.2 Molecular modeling.

Fig. S2. Molecular docking experiments were carried out as previously described. ${ }^{6}$ Superimposition of rhodesain•K11777 (PDB entry 2P7U) and rhodesain•K11002 (PDB entry 2P86) are shown. Images were generated with PyMOL.

3.2 Guava ViaCount anti-trypanocidal assay.

Parasite number and percentage viability were determined in 96 -well plate format using the Guava ViaCount assay on a Guava PCA-96 system (Guava Technologies, USA) following the manufacturer's instructions. Briefly, BSF and PCF trypanosomes were harvested in exponential growth phase and adjusted to a concentration of 1×10^{5} cells $/ \mathrm{mL}$ in complete growth medium. Diluted trypanosomes were dispensed manually using a multichannel pipette. After 24 h of incubation with compounds, the final DMSO concentration in the assay never exceeded 1% in cultivation medium, and medium containing 1% DMSO was used as a negative control. Cell density and viability were evaluated using ViaCount assay on the Guava PCA-96 system. ED_{50} values were calculated by sigmoid curve fitting with GraphPad Prism 5.0 software (San Diego, USA). All data were collected in triplicate.

3.3 In situ proteomic profiling and in-gel fluorescence scanning.

T. brucei parasites were plated into 6 -well plates (PCF, 2 mL at $\sim 1 \times 10^{7}$ cells $/ \mathrm{mL}$) or $25-\mathrm{mL}$ cell culture flasks (BSF, 10 mL at $\sim 2 \times 10^{6}$ cells $/ \mathrm{mL}$), and incubated with probe for 2 h at culture temperature with or without a competing inhibitor, K11777. All compounds were solubilized in DMSO. To avoid adverse effects on parasite growth, the final DMSO concentration in the assay never exceeded 1% in cultivation medium. After incubation, the parasite cells were pelleted at $2,000 \mathrm{rpm}$ for 10 min , washed twice with PBS and re-suspended in PBS $(100 \mu \mathrm{~L})$. Cells were homogenized by sonication, and diluted to $\sim 1 \mathrm{mg} / \mathrm{mL}$ with PBS. To initiate the click chemistry reaction, $20 \mu \mathrm{~L}$ of freshly premixed solution containing rho-azide ($100 \mu \mathrm{M}$ final concentration), TCEP (1 mM final concentration), ligand ($100 \mu \mathrm{M}$ final concentration), and $\mathrm{CuSO}_{4}\left(1 \mathrm{mM}\right.$ final concentration) was added. The reaction was incubated at $10{ }^{\circ} \mathrm{C}$ for 4 h with gentle mixing. Termination of the reaction was done by addition of pre-chilled acetone (0.5 mL). The resulting solution was then placed at $-20^{\circ} \mathrm{C}$ for 30 min , followed by centrifugation ($13000 \mathrm{rpm} \times 10 \mathrm{~min}$) at $4{ }^{\circ} \mathrm{C}$. The supernatant was discarded and the precipitated protein pellets were washed with pre-chilled methanol ($2 \times 200 \mu \mathrm{~L}$), air-dried for 10 min , resuspended in $1 \times$ standard reducing SDS-loading buffer $(25 \mu \mathrm{~L})$ then heated for 10 min at $95^{\circ} \mathrm{C}$. Finally, the protein sample ($\sim 20 \mu \mathrm{~g} /$ lane) was loaded onto 12% SDS-PAGE gel, separated followed by in-gel fluorescence scanning with a Typhoon 9410 Variable Mode Imager scanner (GE Amersham).

Fig. S3 Dose-dependent in situ proteome profiling of T. brucei in BSF and PCF with VS-1.

3.4 Affinity pull-down and LC/MS-MS experiments.

For proteomic experiments, BSF and PCF trypanosomes ($\sim 2 \times 10^{9}$ cells, $\sim 5 \mathrm{mg}$ each), labeled in Cunningham's media (1×10^{7} cells $/ \mathrm{mL}$) with VS-1 $(25 \mu \mathrm{M})$ or DMSO (negative control), were harvested, washed and homogenized in PBS. CuAAC reagents were added at the same concentrations as described above, except that biotin-azide was substituted for rho-azide. Acetone-precipitated and methanol-washed protein pellets were solubilized in PBS containing $0.1 \%(\mathrm{w} / \mathrm{v})$ SDS by brief sonication. Insoluble materials were precipitated by centrifugation ($13,000 \mathrm{~g} \times 10 \mathrm{~min}$) at $4{ }^{\circ} \mathrm{C}$. The supernatants were then incubated with gentle shaking at $4{ }^{\circ} \mathrm{C}$ overnight with Neutravidin agarose beads ($50 \mu \mathrm{~L} / \mathrm{mg}$ protein, Prod \# 29204, Thermo Scientific, USA) which have been pre-washed twice with PBS. After centrifugation, the bead/complexes were washed extensively 8 times with 1% (w/v) SDS in PBS, three times with PBS and twice with 250 mM of ammonium bicarbonate (ABC). Elution of bound proteins from beads was then performed twice using the boiling buffer (200 mM Tris $p \mathrm{H} 6.8,400 \mathrm{mM}$ DTT, $8 \%(\mathrm{w} / \mathrm{v})$ SDS), then pooled. Protein samples were concentrated using an YM-10 Centricon spin column (Millipore, USA). Following SDS-PAGE separation, protein bands were visualized by Coomassie blue staining. Gel lanes corresponding to both DMSO- and VS-1-treated samples were then each cut into 10 slices. Subsequent trypsin digestion (using In-Gel Trypsin Digestion Kit, Pierce Co., USA) and peptide extraction (with 50% acetonitrile and 1% formic acid) generated a total of 10 LCMS samples for each pull-down experiment. All samples were dried in vacuo and stored at $-20^{\circ} \mathrm{C}$ until future LCMS analysis.

Each LCMS sample was resuspended in 0.1% formic acid for mass spectrometry analysis as previously described. ${ }^{9}$ Briefly, peptides were separated and analyzed on a Shimadzu UFLC system (Shimadzu, Kyoto, Japan) coupled to an LTQ-FT Ultra (Thermo Electron, Germany). Mobile phase A (0.1% formic acid in $\mathrm{H}_{2} \mathrm{O}$) and mobile phase B (0.1% formic acid in acetonitrile) were used to establish the 60 min gradient comprised of 45 min of $5-35 \% \mathrm{~B}, 8 \mathrm{~min}$ of $35-50 \%$ B and 2 min of 80% B followed by re-equilibrating at 5% B for 5 min . Peptides were then analyzed on LTQ-FT with an ADVANCE ${ }^{\text {TM }}$ CaptiveSpray ${ }^{\text {TM }}$ Source (Michrom BioResources, USA) at an electrospray potential of 1.5 kV . A gas flow of $2 \mathrm{~L} / \mathrm{min}$, ion transfer tube temperature of $180^{\circ} \mathrm{C}$ and collision gas pressure of 0.85 mTorr were used. The LTQ-FT was set to perform data acquisition in the positive ion mode as previously described except that the m / z range of $350-1600$ was used in the full MS scan. ${ }^{10}$ The raw data were converted to mgf format as previously described. ${ }^{9}$ The database (76708 sequences, 33362815 residues) used for Mascot search was a concatenated T. brucei protein database. The database search was performed using an in-house Mascot server (version 2.2.07, Matrix Science, UK) with MS tolerance of 10 ppm and $\mathrm{MS} / \mathrm{MS}$ tolerance of 0.8 Da . Two missed cleavage sites of trypsin were allowed. Carbamidomethylation (C) was set as a fixed modification, and oxidation (M) and phosphorylation (S, T and Y) were set as variable modifications.

LCMS results obtained from above experiments (with VS-1 as well as with DMSO as a negative control) were processed as above. As in the case of most large-scale LCMS experiments, a large number of proteins were identified from each LCMS run, many of which were "sticky" and/or highly abundant proteins. These proteins were excluded. For those proteins that appeared in the "negative" run (i.e. pull-down/LCMS experiments with DMSO in place of VS-1), they were automatically removed from the list as well. The final list was shown in SI_2. From this list, we placed our focus on those proteins that might be potential K11777 targets, and they were shown in Table S1 (in ESI) and Table 1 in the maintext.

3.5 Pull-down and western blotting analysis.

Pull-down samples from in situ labeling with VS-1 $(25 \mu \mathrm{M})$ were separated on 12% SDS-PAGE gel together with pull-down sample from DMSO-treated (negative control). After SDS-PAGE gel separation, proteins were then transferred to a PVDF membrane and subsequently blocked with $3 \% ~(w / v)$ BSA/PBST overnight at $4^{\circ} \mathrm{C}$. Membranes were incubated for 1 h at room temperature with the respective antibodies (anti-cathepsin L for HepG2; anti-rhodesain, or anti-TbcatB for T. brucei), and washed with PBST ($3 \times 15 \mathrm{~min}$ with gentle agitation), then followed by incubation
with an anti-mouse-IgG conjugated secondary antibody in the blocking buffer mentioned above. After washing with PBST (3×15 min with gentle agitation), the SuperSignal West Pico kit (Pierce) was used to develop the blot.

3.6 Fluorescence Microscopy.

For drug uptake analysis, trypanosomes $\left(1 \times 10^{5}\right.$ cells $/ \mathrm{mL}$ for both forms) were incubated in growth medium containing different concentrations of VS-1 at culture temperature and $5 \% \mathrm{CO}_{2}$ for 2 h . Medium containing 1% DMSO was used as a negative control. The parasites were then washed twice with PBS, and fixed with 4% paraformaldehyde in PBS for 15 min at room temperature and washed with PBS ($2 \times 5 \mathrm{~min}$ with gentle agitation $)$, and then sedimented to poly-L-lysine-coated coverslips. Fixed cells were permeabilized with 0.25% Triton-X 100 in PBS for 15 min at room temperature, and washed with PBS ($2 \times 5 \mathrm{~min}$ with gentle agitation $)$. The cells were blocked with $3 \% \mathrm{BSA}$ in PBS for 30 min at room temperature, and washed with $\mathrm{PBS}(2 \times 5 \mathrm{~min}$ with gentle agitation $)$. The cells were then treated with a freshly pre-mixed click chemistry reaction solution [rhodamine-azide ($10 \mu \mathrm{M}$ final concentration from a 10 mM stock solution in DMSO), TCEP (1 mM final concentration from a 50 mM freshly prepared stock solution in deionized water), TBTA ($100 \mu \mathrm{M}$ final concentration from a 10 mM stock solution in DMSO), and CuSO_{4} (1 mM final concentration from a 100 mM freshly prepared stock solution in deionized water)] in PBS for 1 h at room temperature. The cells were washed with PBS ($1 \times 5 \mathrm{~min}$ with gentle agitation), and cold methanol ($1 \times 5 \mathrm{~min}$ with gentle agitation), followed by 1% Tween- 20 and 0.5 mM of EDTA in PBS ($3 \times 2 \mathrm{~min}$ with gentle agitation), and with PBS ($2 \times 5 \mathrm{~min}$ with gentle agitation). The cells were then incubated in PBS containing $2 \mu \mathrm{~g} / \mathrm{mL}$ of DAPI for 15 min at room temperature to stain the kinetoplast and nuclear DNA, and washed with PBS ($2 \times 5 \mathrm{~min}$ with gentle agitation) and a final wash with deionized water ($1 \times 5 \mathrm{~min}$ with gentle agitation) before mounting onto the Fluoromount G (Emsdiasum, USA). For immunofluorescence (IF) analysis, cells were then incubated for 1 h in PBS with anti-rhodesain and washed with PBS (3 $\times 5 \mathrm{~min}$ with gentle agitation), followed labeled with FITC-conjugated anti-rabbit IgG (1:500) and a final wash with PBS (3×5 min with gentle agitation) before mounting. Confocal images were taken on a Leica TCS SP5X Confocal Microscope System equipped with Leica HCX PL APO 100×/1.40 oil objective, 405 nm Diode laser, White laser (470 nm to 670 nm , with 1 nm increments, with 8 channels AOTF for simultaneous control of 8 laser lines, each excitation wavelength provides 1.5 mV , PMT detector range from 420 nm to 700 nm for steady state fluorescence. DAPI, FITC and rhodamine were excited with a krypton/argon laser at $405,488 \mathrm{~nm}$ and 554 nm , respectively, and the emission was collected through a $420-470$, $500-550$ and $565-650 \mathrm{~nm}$ filters, respectively. Images were processed with Leica Application Suite Advanced Fluorescence (LAS AF).

Fig. S4 Cellular uptake of VS-1 within T. brucei. Parasites (2×10^{5} cells) were incubated with VS-1 (at 0, 10 and 25 $\mu \mathrm{M}$, respectively) for 2 h , reacted with $10 \mu \mathrm{M}$ of rho-azide under CuAAC conditions, and then imaged. DAPI stained (with nucleus and/or kinetoplast pseudocolored in Blue); Rhodamine channel showing cellular distribution of VS-1 (pseudocolored in Red). Scale bar represents $10 \mu \mathrm{~m}$.

Fig. S5 Confocal microscope images of rhodesain in BSF (top) and PCF (bottom) treated with DMSO and immunofluorescence staining. Panel (a) and (e): Bright field images of the corresponding parasites. Panel (b) and (f): 554 nm channel (pseudocolored in red). Panel (c) and (g): immunofluorescence staining at 488 nm channel (pseudocolored in green) using anti-rhodesain primary antibody and FITC-conjugated anti-rabbit IgG secondary antibody detecting cellular localization of rhodesain. Panel (d) and (g): merged images of panels (b) and (c), (f) and (g) together with stained nuclei (with DAPI; pseudocolored in blue). All images were acquired under the same settings. Scale bar $=10 \mu \mathrm{~m}$.

4. In Situ Proteomic Profiling and Fluorescence Microscopy in HepG2 Mammalian Cells.

For in situ proteomic profiling and cellular imaging of HepG2 live cells using VS-1, our previous published procedures were followed. ${ }^{6}$ Briefly, cells were grown to $80-90 \%$ confluence in 24 -well plates, and medium was removed, washed twice with cold PBS, then treated with 0.5 mL of DMEM-containing probe for 2 h (the final DMSO concentration in the assay never exceeded 1% in cultivation medium) as previously described. ${ }^{6}$ After incubation, the growth medium was aspirated, and cells were washed twice with PBS to remove the excessive probe, trypsined, and pelleted at $1,000 \mathrm{rpm}$ for 10 min , washed twice with PBS and re-suspended in PBS $(100 \mu \mathrm{~L})$. Cells were homogenized by sonication, and diluted to $\sim 1 \mathrm{mg} / \mathrm{mL}$ with PBS, then followed by click chemistry, SDS-PAGE gel analysis, and in-gel fluorescence scanning (Fig. S6). For cellular imaging, cells were grown to $\sim 50 \%$ confluence in 24 -well plates containing sterile glass coverslips, and medium was removed, washed twice with cold PBS, then treated with 0.5 mL of DMEM-containing probe for 2 h . After incubation, the growth medium was aspirated, and cells were washed twice with PBS. Cells were fixed, permeabilized, and blocked, then followed by click chemistry, washing, staining (for IF, using mouse anti-cathepsin L; 1:100) and mounting mentioned above. Confocal images were taken as above described using a Leica TCS SP5X Confocal Microscope System equipped with Leica HCX PL APO 63x/1.20 W CORR CS (Fig. S7).

Fig. S6 In situ proteome-profiling of VS-1 against HepG2 live cells and Western blotting analysis of pulled-down fractions treated with VS-1 $(25 \mu \mathrm{M})$, or DMSO as negative controls with anti-cathepsin L antibody.

Fig. S7 Confocal microscope images of cathepsin L in HepG2 cells treated with DMSO (top) or VS-1 (bottom) and immunofluorescence staining. Panel (a) and (e): Bright field images of the corresponding cells. Panel (b) and (f): 554 nm channel (pseudocolored in red) detecting cellular localization of VS-1. Panel (c) and (g): immunofluorescence staining at 488 nm channel (pseudocolored in green) using anti-cathepsin L primary antibody and FITC-conjugated anti-rabbit IgG secondary antibody detecting cellular localization of cathepsin L. Panel (d) and (g): merged images of panels (b) and (c), (f) and (g) together with stained nuclei (with Hoechest; pseudocolored in blue). All images were acquired under the same settings. Scale bar $=10 \mu \mathrm{~m}$.

5. Affinity Pull-Down and LC/MS-MS Results

Details are described in the maintext and key proteins (i.e., putative drug targets) were summarized in Table 1. Table S1 provides a list of the rest of functional proteins (some of them are also putative drug targets), many of which are high-abundance proteins (such as proteins involved in carbohydrate metabolism), and some are sensitive to RNA interference. Though they only appeared in our positive pull-downs, some of them could be due to non-specific bindings (as a result of high abundance). The complete list is shown in SI_2.

Table S1. Representative proteins identified in Trypanosoma brucei ${ }^{\text {a }}$

T. brucei gene	protein name	$\mathrm{M}_{\mathrm{w}} / \mathrm{kDa}$	location	detection
Carbohydrate metabolism				
Tb10.70.5820	hexokinase1 (HK1)**	51.3	G	both
Tb10.70.1370	fructose-biphosphate aldolase (ALD)**	41.07	G	both
Tb927.3.3270	ATP-dependent phosphofructokinase (PFK)**	53.52	G	both
Tb11.02.3210	trisephosphate isomerase (TIM)**	26.82	G	both
Tb927.6.4280	glyceraldehyde 3-phosphate dehydrogenase (GAPDH)**	39.05	G	both
Tb927.8.3530	glycerol-3-phosphate dehydrogenase [NAD+]**	37.81	G	both
Tb927.1.700	phosphoglycerate kinase (PGK)**	47.25	G	BSF
Tb09.211.3550	glycerol kinase	56.37	G	both
Tb10.70.4740	enolase**	46.59	G	PCF
Amino acid metabolism				
Tb927.6.4840	S-adenosylhomocysteine hydrolase	43.54	n / a	PCF
Tb09.160.4560	arginine kinase	44.72	G	PCF
Tb927.8.6060	2-amino-3-ketobutyrate coenzyme A ligase	43.74	M	PCF
Protein synthesis				

Tb10.05.0220	60S ribosomal protein L10a	24.6	ribosome	PCF
Tb10.70.3510	60S ribosomal protein L18a	20.91	ribosome	PCF
Tb10.70.7010	60S ribosomal protein L9	21.86	ribosome	PCF
Tb11.46.0001	60S acidic ribosomal subunit protein	34.63	ribosome	PCF
Tb09.160.4450	40S ribosomal protein S3	30.72	ribosome	PCF
Tb10.61.1960	40S ribosomal protein S2	28.8	ribosome	PCF
Tb10.70.1670	40S ribosomal protein S10	19.33	ribosome	PCF
Tb09.160.4450	40S ribosomal protein S3	30.4	ribosome	PCF
Tb10.70.7695	40S ribosomal protein S11	20.30	ribosome	PCF
Cytoskeletal proteins				
Tb927.1.2340	alpha tubulin	49.79	cytoskeleton	both
Tb927.1.2330	beta tubulin	49.71	cytoskeleton	both
Tb927.8.4970	69 kDa paraflagellar rod protein (PFR2)*	69.6	flagellum	BSF
Tb927.3.4290	73 kDa paraflagellar rod protein (PFR1)*	68.68	flagellum	both

[^0]
6. References

1. Y. T. Chen, L. S. Brinen, I. D. Kerr, E. Hansell, P. S. Doyle, J. H. McKerrow, W. R. Roush, PLoS Negl. Trop. Dis. 2010, 4, e825.
2. L. S. Brinen, E. Hansell, J. Cheng, W. R. Roush, J. H. McKerrow, R. Fletterick, J. Struct. Fold. Design 2000, 8, 831.
3. W. R. Roush, J. Cheng, B. Knapp-Reed, A. Alvarez-Hernandez, J. H. McKerrow, E. Hansell, J. C. Engel, Bioorg. Med. Chem. Lett. 2001, 11, 2759.
4. a) P. J. Rosenthal, J. E. Olson, G. K. Lee, J. T. Palmer, J. L. Klaus, D. Rasnick, Antimicrob. Agents Chemother. 1996, 40, 1600; b) A. Semenov, J. E. Olson, P. J. Rosenthal, Antimicrob. Agents Chemother. 1998, 42, 2254; c) A. Singh, P. J. Rosenthal, Antimicrob. Agents Chemother. 2001, 45, 949; d) B. R. Shenai, B. J. Lee, A. Alvarez-Hernandez, P. Y. Chong, C. D. Emal, R. J. Neitz, W. R. Roush, P. J. Rosenthal, Antimicrob. Agents Chemother. 2003, 47, 154.
5. J. E. Olson, G. K. Lee, A. Semenov, P. J. Rosenthal, Bioorg. Med. Chem. 1999, 7, 633.
6. (a) P.-Y. Yang, K. Liu, M. H. Ngai, M. J. Lear, M. R. Wenk, S. Q. Yao, J. Am. Chem. Soc. 2010, 132, 656; (b) P.-Y. Yang, K. Liu, C. Zhang, G. Y. J. Chen, Y. Shen, M. H. Ngai, M. J. Lear, S. Q. Yao, Chem. Asian. J. 2011, 6, 2762-2775.
7. J. R. Somoza, H. Zhan, K. K. Bowman, L. Yu, K. D. Mortara, J. T. Palmer, J. M. Clark and M. E. McGrath, Biochemistry, 2000, 39, 12543.
8. G. Wang, M. Uttamchandani, G.Y.J. Chen, S. Q. Yao, Org. Lett. 2001, 5, 737.
9. P. Hao, T. Guo, X. Li, S. S. Adav, J. Yang, M. Wei, S. K. Sze, J. Proteome Res. 2010, 9, 3520.
10. C. S. Gan, T. Guo, H. Zhang, S. K. Lim, S. K. Sze, J. Proteome Res. 2008, 7, 4869.

py0614 71 D: chemstud

Alk-Pip-PheOMe in CDCl3 1H AMX500

Alk-Pip-PheOMe in 13C AMX500

PY-04-260 13C Standard AC300

PY-04-261 in DMSO-d6 1H normal range AC300

PY-04-261 in DMSO-d6 13C Standard AC300

py0422 Alkyne-Cbz-Phe-HphvSPh in CDCl 3 1H AM $\times 500$

in amxiou

> py0514 $1 \quad 1 \mathrm{~d}:$ chemstud
> BocNH-HphVSPhOAlk in CDCl3 1H AMX500

∞

$\omega-$
$+-$

0

BocNH-HphVSPhOAlk in CDCI3 13C AMX500

Mu-Phe-Hph-VS-OAlk in CDCl31H AMX500

Mu-Phe-Hph-VS-OAlk in CDCl3 13C AMX50

t__ hit_num	protacc	prot_desc	prot_score	mass		_m	
	1 Tb927.1.2330	beta tubulinTrypanosoma bruceichr 1 Manual	2501	50413	57.	8	
	2 Tb927.1.2340	alpha tubulinTrypanosoma bruceichr 1Manual	1260	50383	36.15	8	
	3 Tb927.8.3530	glycerol-3-phosphate dehydrogenase [$\mathrm{NAD}+$], glycosomaltypanosoma bruceichr 8Manual	1051	38408	27.32	4	
	4 Tb10.70.4740	enolaseTrypanosoma bruceichr 10 Manual	1042	47133	60.38	${ }^{8}$	RNA: ilethal
	5 Tb927.6.2790	L-threonine 3-dehydrogenase, putativeTrypanosoma bruceichr 6Manual	919	37333	36.31	${ }^{6}$	
	6 Tb09.211.2730	gim5AGim5A proteinTrypanosoma bruceichr 9Manual	897	2679	30.9	5	
	7 Tb11.02.3210	TIMItriosephosphate isomeraseTrypanosoma bruceichr 11 Manual	792	26973	70.27		d
	8 Tb10.70.5650	TEF1elongation factor 1-alphaTrypanosoma bruceichr 10Manual	766	49474	23.07	7	
	9Tb11.01.3110	heat shock protein 70Trrpanosoma bruceichr 11Manual	613	75719	89.97	11	
10	Trb927.6.3740	heat shock 70 kDa protein, mitochondrial precursor, putativeTrypanosoma bruceichr 6 Manual	606	72000	23.37	${ }^{6}$	
11	1 Tb10.61.0980	gMDHglycosomal malate dehydrogenase Trypanosoma bruceich 10 Manual	604	33917	52.61	7	
12	Tb10.70.0280	HSP60chaperonin Hsp60, mitochondrial precursorTrypanosoma bruceichr 10Manual		59751	27.11	13	
	13 Tb09.211.3550		468	57071	62.22	10	
	T T10.70.1370	ALDfructose-bisphosphate aldolase, glycosomalTrypanosoma bruceichr 10Manual	396	41558		6	
15	Tt10.26.1080	heat shock protein 83Trypanosoma bruceichr 10Manual	373	81169	22.81	5	
16	6 Tb927.6.4280	GAPDHglyceraldehyde 3-phosphate dehydrogenase, glycosomalTrypanosoma bruceichr 6Manual	327	39251	25.31		d
17	Tb10.70.5110	mMDHmitochondrial malate dehydrogenaseTrypanosoma bruceichr 10Manual	319	33567	63.43	9	
18	87b927.2.4210	28H13.455glycosomal phosphoenolpyruvate carboxykinaseTTrypanosoma bruceichr 2Manual	290	58927	28.47	1	
19	9Tb10.v4.0053	hypothetical proteinTTypanosoma bruceichr 10PartialManual	277	483570	26.83	12	
20	Tb927.3.1380	ATP Synthase beta chain, mitochondrial precursorTrypanosoma bruceichr 3Manual	248	55969	21.28		drug targ
21	1 Tb927.6.4840	S-adenosylmethionine synthetase, putativeTrypanosoma bruceichr 6 Manual	241	43855	21.89		
22	Trb927.6.4440	hypothetical protein, conservedTrypanosoma bruceichr 6Manual	218	37923	64.13	13	
23	23 Tb09.160.4250	TRYP1TXNPx, 28G16.415tryparedoxin peroxidaseTrypanosoma bruceichr 9Manual	217	22752			drug target
24	4 Tb09.160.4560	AKarginine kinasetrypanosoma bruceichr 9 Manual	216	44973	51.29		drug target
	5 Tb10.70.2650	elongation factor 2Trypanosoma bruceichr 10Manual		95300		${ }^{6}$	
26	Tb11.03.0090	ribokinase, putativeTrypanosoma bruceichr 11Manual	199	35779	32.29	${ }^{6}$	
	T¢b927.7.1780	adenine phosphoribosyltransferase, putativeTrypanosoma bruceichr 7Manual	176	26185	87.25	11	
28	Tb927.2.470	3810.190retrotransposon hot spot (RHS) protein, putativeTrypanosoma bruceichr 2Manual	176	98769	39.95	8	
29	Tb11.46.0001	605 acidic ribosomal subunit protein, putative Trypanosoma bruceichr 11Manual	171	34891	45.15	8	
30	Tb927.3.4500	fumarate hydratase, putativeTrypanosoma bruceichr 3 Manual	151	62907	21.59		
31	17b927.6.1000	CPCysteine peptidase precursor, Clan CA, family C1, Cathepsin L-likeTrypanosoma bruceichr 6Manual	139	49224	25.46		rug tare
	Tb10.61.1810	mitochondrial carrier protein, putativeTrypanosoma bruceichr 10Manual	135	34338	47.27	8	
33	T Tb927.8.6060	2-amino-3-ketobutyrate coenzyme A ligase, putativeTrypanosoma bruceichr 8Manual	33	44049	20.61		
34	T Tb927.6.3840	reticulon domain proteinTrypanosoma bruceichr 6Manual	132	21285	59.47		
35	Tb11.03.0410	elf-5Aeukaryotic translation initiation factor 5a, putativeTrypanosoma bruceichr 11Manual	129	17923	64.64	10	
	Tb927.8.1990	TRYP2tryparedoxin peroxidaseTrypanosoma bruceichr 8 Manual		25786			
37	Tb927.2.2510	25N14.10hypothetical protein, conservedTrypanosoma bruceichr 2Manual	126	29684	25.45	9	
	Tb11.01.3550	2-0xoglutarate dehydrogenase E2 component, putative Trypanosoma bruceichr 11Manual		41516		0	
39	Tb10.70.3360	405 ribosomal protein 53, putativeTrypanosoma bruceichr 10Manual	126	29632		7	
	Tb11.01.1820	biotin--acetyl-CoA-carboxylase ligase, putative Trypanosoma bruceichr 11Manual	125	26642	70.05	17	
41	1 Tb10.70.5820	HK1hexokinaseTrypanosoma bruceichr 10Manual	123	51776	54		drug ta
42	Tb927.7.2980	hypothetical protein, conservedTrypanosoma bruceichr 7 Manual	123	21457	22.57	5	
43	3 Tb09.160.3270	1112.525 eukaryotic initiation factor 4a, putativeTrypanosoma bruceichr 9 Manual	119	45447	48.21	8	
44	4 Tb927.3.4290	PFR1PFRC73 KDa paraflagellar rod proteinTrypanosoma bruceichr 3Manual	110	69096	62.96	11	
	Tb10.05.0220	60 ribosomal protein L10aTrypanosoma bruceichr 10Manual	109	25037		${ }^{17}$	
46	Tb09.211.2570	TCP-1-etat-complex protein 1, eta subunit, putativeTrypanosoma bruceich 9 Manual	103	6231	28.52	16	
	Tb927.8.5440	Tb-24flagellar calcium-binding proteinTrypanosoma bruceichr 8 Manual		24580			
48	T¢9277.8.5470	Tb-17flagellar calcium-binding proteinTrypanosoma bruceichr 8 Manual	93	25728	75.11	16	
	Tb927.8.5600	transaldolase, putativeTrypanosoma bruceichr 8Manual		36832	31.81		
50	Trb927.5.1210	short-chain dehydrogenase, putativeTrypanosoma bruceichr 5Manual	86	34083	30.79		
	1 Tb10.70.5380	pyruvate dehydrogenase complex E3 binding protein, putativeTrypanosoma bruceichr 10Manual	86	27489	27.88		
52	2 Tb09.160.4450	RPS340S ribosomal protein S3, putativeTrypanosoma bruceichr 9Manual	81	30724	80.15	9	
	Tb11.01.3170	TRACKguanine nucleotide-binding protein beta subunit--Iike proteinTrypanosoma bruceichr 11Manua	80	35181	43.67	10	
54	54 Tb10.70.3510	60 ribosomal protein L18a, putativeTrypanosoma bruceichr 10Manual	77	21119	63.68	10	
55	5 Tb927.8.6750	translationally controlled tumor protein (TCTP), putativeTrypanosoma bruceichr 8Manual	76	19367	50.54	8	
	6Tb927.10.290	proteasome alpha 2 subunit, putativeTrypanosoma bruceichr 10 Manual		25567	74.74		R
	Tb11.02.1070	aminopeptidase, putativeTrypanosoma bruceichr 11Manual	73	98494	40.91	8	
	Tb927.8.3750	nucleolar protein, putativeTrypanosoma bruceichr 8 Manual		54723			
59	99t10.6k15.1220	IleRSisoleucy-tRNA synthetase, putativeTrypanosoma bruceichr 10Manual	72	131490	72.11	11	
	Tb11.03.0250	CYPAcyclophilin aTrypanosoma bruceichr 11Manual		18933			
	17t10.389.0880	heat shock protein, putativeTrypanosoma bruceichr 10Manual	72	91491	43.11	9	
	2 Tb927.3.3270	TbPFKATP-dependent phosphofructokinaseTrypanosoma bruceich 3Manual	71	53997	71.14		drus targ
	3 Tb927.3.3750	hypothetical protein, conservedTrypanosoma bruceichr 3Manual	70	20018	58.87	8	
64	4 Tb927.3.2230	succinyl-CoA synthetase alpha subunit, putativeTrypanosoma bruceichr 3Manual	68	31844	40.23	16	
	Tb11.v4.0004	RNR2ribonucleoside-diphosphate reductase small chainTrypanosoma bruceichr 11Manual					
	6 Tb10.61.1960	RPS240S ribosomal protein S2, putativeTrypanosoma bruceichr 10Manual	64	28795	63.67		
	Tb11.22.0001	hypothetical protein, conservedTrypanosoma bruceichr 11Manual		24736			
	T Tb927.7.7040	methylthioadenosine phosphorylase, putative Trypanosoma bruceichr 7Manual	63	33536	22.63		
	Tb927.7.1790	adenine phosphoribosyltranserase, putative Trypanosoma bruceichr 7Manual	62	25779	62.27	21	
	Tb09.160.1820	CoxV3C4.225 cytochrome oxidase subunit VTrypanosoma bruceichr 9Manual		22329	41.07		
	1 Tb927.8.7040	hypothetical protein, conservedTrypanosoma bruceichr 8Manual	59	21523	58.72		
	2 Tb927.7.4570	nucleoside hydrolase, putativeTrypanosoma bruceichr 7 Manual		39708			
	3 Tb10.70.1130	hypothetical protein, conservedTrypanosoma bruceichr 10Manual	58	48342	55.3	8	
	Tb927.10.7410	succiny-CoA ligase [GDP-forming] beta-chain, putative Trypanosoma bruceichr 10Manual					RNAillet
	Tb10.70.5050	hypothetical protein, conservedTrypanosoma bruceichr 10Manual	56	21966	56.09	10	
	6 Tb10.70.7190	hypothetical protein, conservedTrypanosoma bruceichr 10Manual					
	Tb10.70.6540	HGPRThypoxanthine-guanine phosphoribosyltransferaseTTrypanosoma bruceichr 10Manual	54	23585	54.25	9	
	Ttb11.02.2960	mitochondrial carrier protein, putativeTrypanosoma bruceichr 11Manual	54	30206	53.71	7	
	97b927.10.6080	PRCEproteasome beta 5 subunit, putativeTrypanosoma bruceichr 10Manual	54	34850	53.7		NAi:leth
	Tb10.70.1670	405 ribosomal protein S10, putativeTrypanosoma bruceichr 10Manual	53	19331	45.26	${ }^{6}$	
	1 Tb10.6k15.2330	TCP-1-thetat-complex protein 1, theta subunit, putativeTrypanosoma bruceichr 10Manual	52	58501		9	
	2 Tb10.70.4280	delta-1-pyrroline-5-carboxylate dehydrogenase, putativeTrypanosoma bruceichr 10Manual	52	62624	25.3		
	T Tb10.70.7010	60 r ribosomal protein L9, putativeTrypanosoma bruceichr 10Manual		21901		10	
	Tb10.70.7695	40 S ribosomal proteins S11, putative Trypanosoma bruceichr 10Manual		20303	50.18		
	T Tb927.3.1120	rtb2GTP-binding nuclear protein rtb2, putativeTrypanosoma bruceichr 3Manual		24732	50.67	12	
	Tb09.211.0740	p21 antigen protein, putativeTrypanosoma bruceichr 9 9Manual		21104	49.57		
	Tb927.3.1790	pyruvate dehydrogenase E1 beta subunit, putativeTrypanosoma bruceichr 3Manual		37998	49.52	8	
	TTb11.01.5100	paraflagellar rod component, putativeTrypanosoma brueichr 11Manual		68934	49.37		
	Tb09.244.2600	ankyrin-repeat protein, putativeTrypanosoma bruceichr 9Manual	48	338870	21.15	6	
	Tb927.5.3350	iron superoxide dismutase, putativeTrypanosoma bruceichr 5Manual		27148			drug target
	1 Tb11.02.4150	PPDKpyruvate phosphate dikinaseTrypanosoma bruceichr 11Manual	47	101300	35.8		
	2Tb10.6k15.3820	sterol 24-c-methyltransferase, putativeTrypanosoma bruceichr 10Manual		40673	46.61	10	
93	Tb927.5.940	NADH-dependent fumarate reductase, putativeTrypanosoma bruceichr 5 Manual		95546	22.82		
	Tb927.6.2420	p22 protein precursorTrypanosoma bruceichr 6Manual		25391			
	Tb11.01.3370	PEX111glycosomal membrane protein, putative Trypanosoma bruceichr 11Manual		24240	44.89	12	
	Tb11.01.8510	TCP-1-alphat-complex protein 1, alpha subunit, putativeTrypanosoma bruceichr 11Manual		54875			
	Tb09.160.3710	28616.165 proliferative cell nuclear antige (PCNA), putativeTrypanosoma bruceichr 9Manual	43	32750	43.4		
	8 Tb927.3.2960	IAGNHinosine-adenosine-guanosine--nucleosidehydrolaseTrypanosoma bruceichr 3Manual		36509	43.2	13	
	Tb11.02.4300	hypothetical protein, conservedTrypanosoma bruceichr 11Manual		48868	32.96		
	Tb927.7.3590	hypothetical protein, conservedTrypanosoma bruceichr 7Manual		17122	36.34		
101	1 Tb11.01.3040	cytosolic malate dehydrogenase, putativeTrypanosoma bruceichr 11Manual		35528	40.11	17	
102	2Tb927.5.1060	mitochondrial processing peptidase, beta subunit, putativeTrypanosoma bruceichr 5 Manual	40	54773	39.83	${ }^{6}$	
103	Tb10.70.7050	TCP-1-deltat-complex protein 1, delta subunit, putative Trypanosoma bruceichr 10Manual		59009	33.5		
104	4 Tb10.6k15.3850	GAPglyceraldehyde 3-phosphate dehydrogenase, cytosolicTrypanosoma bruceich 10 Manual	39	35760	25.31		
105	Tb11.02.4700	14-3-3-3ike protein, putativeTrypanosoma bruceichr 11Manual		29463			
106	Tb927.3.2100	hypothetical protein, conservedTrypanosoma bruceichr 3Manual	37	34260	37.3		
	Tb11.02.5450	glucose-regulated protein 78, putativeTrypanosoma bruceichr 11Manual	37	71505	37.29	11	
108	(Tb927.3.4740	hypothetical protein, conservedTrypanosoma bruceichr 3Manual		46361	37.14	5^{5}	
	Tb927.4.1300	hypothetical protein, conservedTrypanosoma bruceichr 4Manual	37	42444	36.97		
	Tb927.1.4100	Coxivcytochrome oxidase subunit IVTrypanosoma bruceichr 1 Manual	37	40680	21.05	7	
	1 Tb09.v1.0380	spermidine synthase, putativeTrypanosoma bruceichr 9Manual		33304	24.12		drug target

prot_hit_num	prot_acc	prot_desc ${ }^{\text {a }}$	prot_scdprot_mapep_sc¢pep_num_match							
1	Tb927.6.1000	CPcysteine peptidase precursor, Clan CA, family C1, Cathepsin L-likeTrypanosoma bruceichr 6Manua	2627	49224	50.89	6				
2	Tb10.70.1370	ALDfructose-bisphosphate aldolase, glycosomalTrypanosoma bruceichr 10Manual	2134	41558	50.76	6				
3	Tb927.1.2330	beta tubulinTrypanosoma bruceichr 1Manual	932	50413	68.14	8				
4	Tb11.02.5450	glucose-regulated protein 78, putativeTrypanosoma bruceichr 11Manual	695	71505	37.91	6				
	Tb927.3.3270	TbPFKATP-dependent phosphofructokinaseTrypanosoma bruceichr 3Manual	528	53997	27.83	8	drug target			
	Tb09.211.3550	glk1gkglycerol kinase, glycosomalTrypanosoma bruceichr 9Manual	498	57071	43.95	9				
7	Tb10.70.5820	HK1hexokinaseTrypanosoma bruceichr 10Manual	475	51776	46.85	7	drug target			
8	Tb927.1.2340	alpha tubulinTrypanosoma bruceichr 1Manual	395	50383	26.04	6				
9	Tb10.6k15.2290	BS2protein disulfide isomeraseTrypanosoma bruceichr 10Manual	369	55887	58.41	13				
10	Tb927.5.1210	short-chain dehydrogenase, putativeTrypanosoma bruceichr 5Manual	257	34083	39.14	5				
11	Tb11.02.3210	TIMtriosephosphate isomeraseTrypanosoma bruceichr 11Manual	214	26973	60.51	8	drug target			
12	Tb927.6.4280	GAPDHglyceraldehyde 3-phosphate dehydrogenase, glycosomalTrypanosoma bruceichr 6Manual	202	39251	23.81	6	drug target			
13	Tb927.8.5440	Tb-24flagellar calcium-binding proteinTrypanosoma bruceichr 8Manual	198	24580	67.02	9				
14	Tb927.8.5470	Tb-17flagellar calcium-binding proteinTrypanosoma bruceichr 8Manual	198	25728	67.02	9				
15	Tb09.211.2730	gim5AGim5A proteinTrypanosoma bruceichr 9Manual	179	26790	39.83	19				
16	Tb10.70.5650	TEF1elongation factor 1-alphaTrypanosoma bruceichr 10Manual	141	49474	26.92	5				
17	Tb927.8.3530	glycerol-3-phosphate dehydrogenase [NAD+], glycosomalTrypanosoma bruceichr 8Manual	136	38408	54.8	8				
18	Tb927.6.560	TbcatBcysteine peptidase C (CPC)Trypanosoma bruceichr 6Manual	124	38112	50.98	10				
19	Tb11.01.2000	hsIVU complex proteolytic subunit, putativeTrypanosoma bruceichr 11Manual	123	22898	37.84	7				
20	Tb10.70.0280	HSP60chaperonin Hsp60, mitochondrial precursorTrypanosoma bruceichr 10Manual	113	59751	44.12	7				
21	Tb11.01.3110	heat shock protein 70Trypanosoma bruceichr 11Manual	95	75719	24.37	9				
22	Tb927.4.5010	calreticulin, putativeTrypanosoma bruceichr 4Manual	90	45242	60.7	19				
23	Tb927.4.2450	thioredoxin, putativeTrypanosoma bruceichr 4Manual	83	44748	60.64	8	null=viable			
24	Tb927.6.3740	heat shock 70 kDa protein, mitochondrial precursor, putativeTrypanosoma bruceichr 6Manual	79	72000	63.05	14				
25	Tb927.5.1810	lysosomal/endosomal membrane protein p67Trypanosoma bruceichr 5Manual	78	73028	22.64	6				
26	Tb927.3.1380	ATP synthase beta chain, mitochondrial precursorTrypanosoma bruceichr 3Manual	76	55969	75.6	11	drug target			
27	Tb10.26.1080	heat shock protein 83Trypanosoma bruceichr 10Manual	72	81169	57.37	8				
28	Tb927.3.4290	PFR1PFRC73 kDa paraflagellar rod proteinTrypanosoma bruceichr 3Manual	71	69096	53.86	11				
29	Tb11.01.3550	2-oxoglutarate dehydrogenase E2 component, putativeTrypanosoma bruceichr 11Manual	70	41516	45.05	16				
30	Tb927.4.1610	hypothetical protein, conservedTrypanosoma bruceichr 4Manual	67	39892	67.4	16				
31	Tb927.7.7420	ATP synthase alpha chain, mitochondrial precursorTrypanosoma bruceichr 7Manual	64	63862	32.6	5	drug target			
32	Tb927.1.700	PGKCgPGKphosphoglycerate kinaseTrypanosoma bruceichr 1Manual	63	47558	62.64		drug target			
33	Tb927.1.120	retrotransposon hot spot (RHS) protein, putativeTrypanosoma bruceichr 1Manual	61	98534	61.38	8				
34	Tb10.61.1810	mitochondrial carrier protein, putativeTrypanosoma bruceichr 10Manual	60	34338	48.12	16				
35	Tb927.8.4970	PFR2PFR69 kDa paraflagellar rod proteinTrypanosoma bruceichr 8Manual	59	69953	42.17	8				
36	Tb927.2.2510	25N14.10hypothetical protein, conservedTrypanosoma bruceichr 2Manual	55	29684	54.83	8				
37	Tb927.3.3580	LPG3lipophosphoglycan biosynthetic protein, putativeTrypanosoma bruceichr 3Manual	54	87712	54.09	11				
38	Tb927.2.4210	28H13.455glycosomal phosphoenolpyruvate carboxykinaseTrypanosoma bruceichr 2Manual	53	58927	52.75	11				
39	Tb927.6.3840	reticulon domain proteinTrypanosoma bruceichr 6Manual	50	21285	49.75	12				
40	Tb10.70.5250	MCA4metacaspase MCA4, cysteine peptidase, Clan CD, family C13Trypanosoma bruceichr 10Manua	48	39628	49.05	7	drug target			
41	Tb927.7.4180	fatty acid elongase, putativeTrypanosoma bruceichr 7Manual	48	34077	26.17	10	null=viable			
42	Tb10.70.7190	hypothetical protein, conservedTrypanosoma bruceichr 10Manual	46	66417	26.5	5				
43	Tb10.v4.0053	hypothetical proteinTrypanosoma bruceichr 10PartialManual	44	483570	44.38	10				
44	Tb927.7.3330	hypothetical protein, conservedTrypanosoma bruceichr 7Manual	44	504918	43.65	14				
45	Tb09.160.4560	AKarginine kinaseTrypanosoma bruceichr 9Manual	42	44973	41.94	12				
46	Tb11.03.0230	IDHisocitrate dehydrogenase, putativeTrypanosoma bruceichr 11Manual	41	47140	40.8	6				
47	Tb10.6k15.3640	AOXTAOalternative oxidaseTrypanosoma bruceichr 10Manual	39	37738	38.88		drug target			
48	Tb927.6.2420	p22 protein precursorTrypanosoma bruceichr 6Manual	39	25391	38.8	10				
49	Tb10.70.6640	hypothetical protein, conservedTrypanosoma bruceichr 10Manual	38	28302	37.85	8				
	Proteins who were also detected in procyclic forms are shaded in Turquoise.									

[^0]: ${ }^{a}$ G, M and n/a represent, respectively, glycosomal, mitochondrial and not available. Symbols in the protein name column: *, sensitive to RNA interference; **, putative drug target.

