Supplementary Information for:

Design of Multinuclear Zn(II) Complex as New Molecular Probe for Fluorescence Imaging of His-tag Fused Proteins

Sho-hei Fujishima, ${ }^{1}$ Hiroshi Nonaka, ${ }^{1}$ Sho-hei Uchinomiya, ${ }^{1}$ Yoshiyuki Alex. Kawase, ${ }^{1}$ Akio Ojida ${ }^{2}$ and Itaru Hamachi ${ }^{1}$
${ }^{I}$ Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura campus, Kyoto, 615-8510, Japan.
${ }^{2}$ GraduateSchool of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. E-mail: ihamachi@sbchem.kyoto-u.ac.jp

1 Supplementary Figures

3 Fig. S1 (a) Fluorescence spectral change of the EGFP tetherd with a His10 tag (His10-EGFP, (pH 7.2), $100 \mathrm{mM} \mathrm{NaCl}, 25^{\circ} \mathrm{C}$.

9

Fig. S2 (a) Fluorescence spectral change of the EGFP tethered with a His10 tag (His10-EGFP, $0.1 \mu \mathrm{M})$ upon addition of $\mathbf{6}(0-1 \mu \mathrm{M})$ in the presence of $10 \mu \mathrm{M}$ of $\mathrm{Zn}(\mathrm{II})$-Ida dimer 28 as a competitive binder (see Supplementary Methods). (b) Curve-fitting analysis of the fluorescence emission change at $510 \mathrm{~nm} .^{\text {S1 }}$ Measurement conditions: 50 mM HEPES (pH 7.2), $100 \mathrm{mM} \mathrm{NaCl}, 25^{\circ} \mathrm{C}$.

Supplementary Methods

General materials and methods for organic synthesis

All chemical reagents and solvents were obtained from commercial suppliers (Aldrich, Tokyo Chemical Industry (TCI), Wako Pure Chemical Industries, Acros Organics, Sasaki Chemical, or Watanabe Chemical Industries) and used without further purification.

Thin layer chromatography (TLC) was performed on silica gel $60 \mathrm{~F}_{254}$ precoated aluminium sheets (Merck) and visualized by fluorescence quenching or ninhydrin staining. Chromatographic purification was conducted by flash column chromatography on silica gel 60 N (neutral, $40-50 \mu \mathrm{~m}$, Kanto Chemical). ${ }^{1} \mathrm{H}$ NMR spectra were recorded in deuterated solvents on a Varian Mercury $400(400 \mathrm{MHz})$ spectrometer and calibrated to the residual solvent peak or tetramethylsilane ($=0 \mathrm{ppm}$). Multiplicities are abbreviated as follows: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}$ $=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ double doublet. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) was measured by an Autoflex II instrument (Bruker Daltonics) using α-cyano-4-hydroxycinnamic acid (CHCA) or sinapinic acid as the matrix. High-resolution electrospray ionization quadrupole fourier transform mass spectroscopy (HR-ESI Qq-LTMS) was measured by a Bruker apex-ultra (7T) mass spectrometer. We acknowledge Dr. Keiko Kuwata (Graduate School of Engineeing, Kyoto University) for the measurements of the high-resolution mass spectroscopy.

Synthesis of 1

Compound 7

A solution of 2,6-bis(chloromethyl)-p-cresol ($50 \mathrm{mg}, 241 \mu \mathrm{~mol}$), di-tert-butyl iminodiacetate ($130 \mathrm{mg}, 530 \mu \mathrm{~mol}$), potassium carbonate ($74 \mathrm{mg}, 530 \mu \mathrm{~mol}$) and potassium iodide ($16 \mathrm{mg}, 96 \mu \mathrm{~mol}$) in dry DMF (5 mL) was stirred for 3 h at $40^{\circ} \mathrm{C}$. After removal of the solvent by evaporation, the residue was diluted with CHCl_{3}. The organic layer was washed with sat. NaHCO_{3} and brine followed by drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent by evaporation, the residue was purified by flash column chromatography on SiO_{2} (Hexane : AcOEt $=8: 1$) to give $7(53 \mathrm{mg}, 35 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 4 \mathrm{H}), 3.42(\mathrm{~s}, 8 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 36 \mathrm{H})$.

Compound $\mathbf{8}$

A solution of $7(53 \mathrm{mg}, 85 \mu \mathrm{~mol})$ in TFA (3 mL) was stirred for 4 h at rt . The solvent was removed to give 8 (59 mg , quant.) as a white powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.08(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 8 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) . \quad$ HR-ESI MS m/e calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ 399.1398, found 399.1393.

Compound 1

A solution of $\mathbf{8}(28 \mathrm{mg}, 70 \mu \mathrm{~mol}), \mathrm{ZnCl}_{2}(140 \mu \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was stirred for 1 h at rt. The solution was filtered through a cellulose acetate filter and then lyophilized. The solid was filtered and washed with AcOEt followed by drying in vacuo at $40{ }^{\circ} \mathrm{C}$ to give $\mathbf{1}$ (33 $\mathrm{mg}, 90 \%$) as a white powder.

Synthesis of 3

Compound 10

A solution of $\boldsymbol{9}^{\mathrm{S} 2}(100 \mathrm{mg}, 286 \mu \mathrm{~mol})$, di-tert-butyl iminodiacetate ($154 \mathrm{mg}, 628 \mu \mathrm{~mol}$), potassium carbonate $(87 \mathrm{mg}, 628 \mu \mathrm{~mol})$ and potassium iodide $(19 \mathrm{mg}, 114 \mu \mathrm{~mol})$ in dry DMF $(5 \mathrm{~mL})$ was stirred for 3 h at $40^{\circ} \mathrm{C}$. The solution was diluted with sat. NaHCO_{3} and extracted with CHCl_{3}. The organic layer was washed with brine followed by drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

8 After removal of the solvent by evaporation, the residue was purified by flash column
chromatography on $\mathrm{SiO}_{2}($ Hexane $: \mathrm{AcOEt}=4: 1)$ to give $\mathbf{1 0}(124 \mathrm{mg}, 57 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 8 \mathrm{H}), 1.45(\mathrm{~s}, 36 \mathrm{H})$. HR-ESI MS m/e calcd for $[\mathrm{M}+\mathrm{H}]^{+} 768.4066$, found 768.4058.

Compound 11

A solution of $\mathbf{1 0}(81 \mathrm{mg}, 106 \mu \mathrm{~mol})$ in THF $(5 \mathrm{~mL}) /$ hydrazine monohydrate $(0.4 \mathrm{~mL})$ was stirred for 21 h at rt . After addition of 2 N aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$, the reaction mixture was further stirred for 1.5 h at rt . The resultant mixture was extracted with CHCl_{3} and the organic layer was washed with brine followed by drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent by evaporation, the residue was purified by flash column chromatography on SiO_{2} $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: 25 \%\right.$ aqueous $\left.\mathrm{NH}_{3}=400: 10: 1\right)$ to give $11(55 \mathrm{mg}, 82 \%)$ as a pale-yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.42$ $(\mathrm{s}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 36 \mathrm{H})$. HR-ESI MS m / e calcd for $[\mathrm{M}+\mathrm{H}]^{+}$638.4011, found 638.4006.

Compound 12
A solution of $\mathrm{H}-\mathrm{Glu}(\mathrm{O} t \mathrm{Bu})-\mathrm{O} t \mathrm{Bu} \cdot \mathrm{HCl}(210 \mathrm{mg}, 710 \mu \mathrm{~mol})$, Fmoc- $\beta \mathrm{Ala}-\mathrm{OH}(265 \mathrm{mg}$, $852 \mu \mathrm{~mol}), \mathrm{EDCI} \cdot \mathrm{HCl}(191 \mathrm{mg}, 995 \mu \mathrm{~mol}), \mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(152 \mathrm{mg}, 995 \mu \mathrm{~mol})$ and DIEA $(238 \mu \mathrm{~L}$, 1.42 mmol) in dry DMF (5 mL) was stirred for 15 h at rt . The reaction mixture was diluted with sat. NaHCO_{3} and extracted with AcOEt. The organic layer was washed with water and brine followed by drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent by evaporation, the residue was purified by flash column chromatography on SiO_{2} (Hexane : $\mathrm{AcOEt}=2: 1$) to give 12 (400 mg, quant.) as a white amorphous powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.17$
$(\mathrm{m}, 1 \mathrm{H}), 1.88-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) . \quad$ HR-ESI MS m / e calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ 553.2908, found 553.2909.

Compound 13

A solution of $\mathbf{1 2}(400 \mathrm{mg}, 724 \mu \mathrm{~mol})$ in THF (5 mL) / 4 N aqueous $\mathrm{HCl}(5 \mathrm{~mL})$ was stirred for 19 h at rt . After removal of the solvent by evaporation, the residue was dissolved in sat. NaHCO_{3}. The aqueous layer was washed with AcOEt, acidified to pH 2 with 1 N aqueous HCl , and then extracted with AcOEt. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by evaporation to give $\mathbf{1 3}$ (327 mg , quant.) as a white amorphous powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.13-2.22 $(\mathrm{m}, 1 \mathrm{H}), 1.90-1.98(\mathrm{~m}, 1 \mathrm{H})$. HR-ESI MS m / e calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$463.1476, found 463.1476.

Compound 14
A solution of $\mathbf{1 3}(80 \mathrm{mg}, 182 \mu \mathrm{~mol}), \mathbf{1 1}(244 \mathrm{mg}, 382 \mu \mathrm{~mol}), \mathrm{EDCI} \cdot \mathrm{HCl}(98 \mathrm{mg}, 510$ $\mu \mathrm{mol}$), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(78 \mathrm{mg}, 510 \mu \mathrm{~mol})$ and DIEA ($123 \mu \mathrm{~L}, 728 \mu \mathrm{~mol}$) in dry DMF (5 mL) was stirred for 20 h at rt . The reaction mixture was diluted with sat. NaHCO_{3} and extracted with CHCl_{3}. The organic layer was washed with sat. NaHCO_{3}, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by concentration in vacuo. The residue was purified by flash column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=30: 1\right)$ to give $\mathbf{1 4}(116 \mathrm{mg}, 38 \%)$ as a pale-yellow oil. $\quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H})$, $6.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.19-4.46(\mathrm{~m}, 8 \mathrm{H}), 3.90(\mathrm{~s}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 4 \mathrm{H}), 3.49(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.40(\mathrm{~s}, 8 \mathrm{H}), 3.39(\mathrm{~s}, 8 \mathrm{H}), 2.48(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.29-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 36 \mathrm{H})$,
$1.45(\mathrm{~s}, 36 \mathrm{H})$. HR-ESI MS m / e calcd for $[\mathrm{M}+\mathrm{H}]^{+} 1679.9322$, found 1679.9328 .

Compound 15
A solution of $\mathbf{1 4}(25 \mathrm{mg}, 14.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}) /$ TFA $(1 \mathrm{~mL})$ was stirred for 1 h at rt. After removal of the solvent by evaporation, the residue was purified by RP-HPLC (column: YMC-pack ODS-A, $250 \times 25 \mathrm{~mm}$, mobile phase; $\mathrm{CH}_{3} \mathrm{CN}$ (containing $0.1 \% \mathrm{TFA}$) : $\mathrm{H}_{2} \mathrm{O}($ containing $0.1 \% \mathrm{TFA})=20: 80(0 \mathrm{~min}) \rightarrow 40: 60(40 \mathrm{~min})$, flow rate; $10 \mathrm{~mL} / \mathrm{min}$, detection; UV (220 nm)) to give $\mathbf{1 5}(11 \mathrm{mg}, 60 \%)$ as a white powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 4 \mathrm{H}), 4.10-4.36(\mathrm{~m}, 16 \mathrm{H}), 3.79(\mathrm{~s}, 8 \mathrm{H}), 3.78(\mathrm{~s}, 8 \mathrm{H}), 3.41(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.45(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}) . \quad$ HR-ESI MS m / e calcd for $[\mathrm{M}+\mathrm{H}]^{+}$1231.4314, found 1231.4279.

Compound $\mathbf{3}$

A solution of $\mathbf{1 5}\left(200 \mu \mathrm{M}\right.$, determined by $\left.\varepsilon(\mathbf{1 5})_{299 \mathrm{~nm}}=7.63 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ in 50 mM HEPES buffer ($2 \mathrm{~mL}, \mathrm{pH} 7.2,100 \mathrm{mM} \mathrm{NaCl}$) was mixed with ZnCl_{2} (4 equiv.) to give a stock solution of $\mathbf{3}(200 \mu \mathrm{M})$, which was used for ITC titration experiments.

Synthesis of 4

Compound 16
A solution of Cy5-bisCO $\mathrm{H}^{\mathrm{S3}}(21 \mathrm{mg}, 39 \mu \mathrm{~mol}), 11(55 \mathrm{mg}, 86 \mu \mathrm{~mol}), \mathrm{EDCI} \cdot \mathrm{HCl}(11 \mathrm{mg}$, $55 \mu \mathrm{~mol}), \mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(8 \mathrm{mg}, 55 \mu \mathrm{~mol})$ and DIEA $(27 \mu \mathrm{~L}, 155 \mu \mathrm{~mol})$ in dry DMF $(3 \mathrm{~mL})$ was stirred for 15 h at rt . After removal of the solvent by evaporation, the residue was purified by RP-HPLC (column: YMC-pack ODS-A, $250 \times 25 \mathrm{~mm}$, mobile phase; $\mathrm{CH}_{3} \mathrm{CN}$ (containing 0.1% TFA) $: \mathrm{H}_{2} \mathrm{O}($ containing $0.1 \% \mathrm{TFA})=50: 50(0 \mathrm{~min}) \rightarrow 90: 10(40 \mathrm{~min})$, flow rate; 10 $\mathrm{mL} / \mathrm{min}$, detection; UV $(220 \mathrm{~nm})$) to give $\mathbf{1 6}(27 \mathrm{mg}, 37 \%)$ as a deep blue powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~s}, 2 \mathrm{H}), 7.87(\mathrm{t}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 8 \mathrm{H}), 7.19(\mathrm{~s}, 4 \mathrm{H})$, $6.61(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.29(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $4 \mathrm{H}), 4.25(\mathrm{~s}, 8 \mathrm{H}), 3.72(\mathrm{~s}, 16 \mathrm{H}), 2.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.65(\mathrm{~s}, 12 \mathrm{H}), 1.46(\mathrm{~s}, 72 \mathrm{H})$. HR-ESI MS m / e calcd for $[\mathrm{M}]^{+} 1738.0257$, found 1738.0252.

Compound 17
A solution of $\mathbf{1 6}(20 \mathrm{mg}, 11 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}) /$ TFA $(1 \mathrm{~mL})$ was stirred for 6 h at rt .

After removal of the solvent by evaporation, the residue was purified by RP-HPLC (column: YMC-pack ODS-A, $250 \times 25 \mathrm{~mm}$, mobile phase; $\mathrm{CH}_{3} \mathrm{CN}$ (containing $0.1 \% \mathrm{TFA}$) : $\mathrm{H}_{2} \mathrm{O}$ $($ containing $0.1 \% \mathrm{TFA})=20: 80(0 \mathrm{~min}) \rightarrow 50: 50(40 \mathrm{~min})$, flow rate; $10 \mathrm{~mL} / \mathrm{min}$, detection; UV $(220 \mathrm{~nm})$) to give $\mathbf{1 7}(11 \mathrm{mg}, 73 \%)$ as a deep blue powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 8.21(\mathrm{t}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 4 \mathrm{H}), 6.54(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.22(\mathrm{~s}, 8 \mathrm{H}), 4.19(\mathrm{~s}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 16 \mathrm{H}), 2.72(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.67$ $(\mathrm{s}, 12 \mathrm{H}) . \quad$ HR-ESI MS m / e calcd for $[\mathrm{M}]^{+}$1289.5249, found 1289.5182 . Compound 4

Compound 4 was dissolved in DMSO. The concentration of 4 was determined based on the UV absorbance at 647 nm using the extinction coefficient of $\mathrm{Cy} 5\left(\varepsilon_{647 \mathrm{~nm}}=250,000\right.$ $\left.\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. ${ }^{\mathrm{S} 3}$ The solution was mixed with 4 equiv of $\mathrm{ZnCl}_{2}\left(100 \mathrm{mM}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to give a stock solution of $4(1.0 \mathrm{mM})$, which was stored in a refrigerator $\left(-30^{\circ} \mathrm{C}\right)$ and thawed before use.

18

$\mathrm{EDCl} \cdot \mathrm{HCl}, \mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$

19

Compound 19
A solution of $\mathbf{1 8}^{\mathrm{S} 4}(60 \mathrm{mg}, 140 \mu \mathrm{~mol}), \mathrm{Cy} 5-\mathrm{bisCO}_{2} \mathrm{H}(30 \mathrm{mg}, 56 \mu \mathrm{~mol}), \mathrm{EDCI} \cdot \mathrm{HCl}(30$ $\mathrm{mg}, 157 \mu \mathrm{~mol}), \mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(24 \mathrm{mg}, 157 \mu \mathrm{~mol})$ and DIEA $(38 \mu \mathrm{~L}, 218 \mu \mathrm{~mol})$ in dry DMF (2 mL) was stirred for 13 h at rt . After removal of the solvent by evaporation, the residue was diluted with CHCl_{3}. The organic layer was washed with brine followed by drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent by evaporation, the residue was purified by flash column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: 25 \%\right.$ aqueous $\left.\mathrm{NH}_{3}=400: 40: 1\right)$ to give 19 (77 mg , quant.) as a deep blue oil. $\quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.31-7.40 (m, 6H), 7.19-7.23 (m, 2H), $6.95(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.42$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.49(\mathrm{~m}, 8 \mathrm{H}), 3.18-3.29(\mathrm{~m}, 4 \mathrm{H}), 2.83(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.68(\mathrm{~s}, 12 \mathrm{H}), 1.54-1.73(\mathrm{~m}, 12 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}), 1.42(\mathrm{~s}, 36 \mathrm{H}) . \quad$ HR-ESI MS m / e calcd for $[\mathrm{M}]^{+} 1323.8466$, found 1323.8460 .

Compound 20

A solution of $\mathbf{1 9}(42 \mathrm{mg}, 31 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}) / \mathrm{TFA}(1 \mathrm{~mL})$ was stirred for 12 h at
rt. After removal of the solvent by evaporation, the residue was purified by RP-HPLC (column: YMC-pack ODS-A, 250 x 25 mm , mobile phase; $\mathrm{CH}_{3} \mathrm{CN}$ (containing $0.1 \% \mathrm{TFA}$) : $\mathrm{H}_{2} \mathrm{O}($ containing $0.1 \% \mathrm{TFA})=20: 80(0 \mathrm{~min}) \rightarrow 50: 50(40 \mathrm{~min})$, flow rate; $10 \mathrm{~mL} / \mathrm{min}$, detection; UV (220 nm)) to give $20(19 \mathrm{mg}, 56 \%)$ as a deep blue powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.24(\mathrm{t}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 8 \mathrm{H}), 3.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{br} \mathrm{s}, 4 \mathrm{H})$, $2.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.72(\mathrm{~s}, 12 \mathrm{H}), 1.28-1.39(\mathrm{~m}, 12 \mathrm{H}) . \quad$ HR-ESI MS m/e calcd for $[\mathrm{M}]^{+}$ 987.4710, found 987.4734.

Compound 5-2M(II)
Compound 20 was dissolved in DMSO. The concentration of $\mathbf{2 0}$ was determined based on the UV absorbance at 647 nm . The solution was mixed with 2 equiv of NiCl_{2} and ZnCl_{2}
 The stock solution was stored in a refrigerator $\left(-30^{\circ} \mathrm{C}\right)$ and thawed before use.

Synthesis of 6

Compound 21

A solution of $14(88 \mathrm{mg}, 52 \mu \mathrm{~mol})$ in DMF $(2 \mathrm{~mL}) /$ piperidine $(0.2 \mathrm{~mL})$ was stirred for 30 min at rt . After removal of the solvent by evaporation, the residue was dissolved in yellow amorphous powder. $\quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.56(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H})$,
$7.84(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 6.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.18-4.52(\mathrm{~m}, 5 \mathrm{H}), 3.91(\mathrm{~s}, 4 \mathrm{H}), 3.89(\mathrm{~s}$,
$4 \mathrm{H}), 3.41(\mathrm{~s}, 8 \mathrm{H}), 3.40(\mathrm{~s}, 8 \mathrm{H}), 2.91-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.41(\mathrm{~m}, 4 \mathrm{H}), 2.07-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}$,
$72 \mathrm{H}) . \quad$ HR-ESI MS m / e calcd for $[\mathrm{M}+\mathrm{H}]^{+} 1457.8641$, found 1457.8622 .

Compound 23

A solution of $21(31 \mathrm{mg}, 21 \mu \mathrm{~mol}), \mathrm{Cy} 5-\mathrm{bisCO}{ }_{2} \mathrm{H}(5 \mathrm{mg}, 9.3 \mu \mathrm{~mol}), \mathrm{EDCI} \cdot \mathrm{HCl}(5 \mathrm{mg}, 26$ $\mu \mathrm{mol})$, $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mg}, 26 \mu \mathrm{~mol})$ and DIEA $(6 \mu \mathrm{~L}, 37 \mu \mathrm{~mol})$ in dry DMF $(2 \mathrm{~mL})$ was stirred for 22 h at rt . After removal of the solvent by evaporation, the residue was diluted with AcOEt. The organic layer was washed with $2.5 \% \mathrm{NH}_{3} \mathrm{aq}$ and brine followed by drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by evaporation. The residue was purified by RP-HPLC (column: YMC-pack ODS-A, $250 \times 25 \mathrm{~mm}$, mobile phase; $\mathrm{CH}_{3} \mathrm{CN}$ (containing $0.1 \% \mathrm{TFA}$) : $\mathrm{H}_{2} \mathrm{O}$ (containing $0.1 \% \mathrm{TFA})=50: 50(0 \mathrm{~min}) \rightarrow 90: 10(40 \mathrm{~min})$, flow rate; $10 \mathrm{~mL} / \mathrm{min}$, detection; UV $(220 \mathrm{~nm})$) to give $\mathbf{2 2}(20 \mathrm{mg})$ as a deep blue powder.

A solution of $22(20 \mathrm{mg}, 5.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}) / \mathrm{TFA}(1 \mathrm{~mL})$ was stirred for 6 h at rt. After removal of the solvent in vacuo, the crude residue was purified by RP-HPLC (column: YMC-pack ODS-A, $250 \times 25 \mathrm{~mm}$, mobile phase; $\mathrm{CH}_{3} \mathrm{CN}$ (containing $0.1 \% \mathrm{TFA}$) : $\mathrm{H}_{2} \mathrm{O}($ containing $0.1 \% \mathrm{TFA})=20: 80(0 \mathrm{~min}) \rightarrow 40: 60(40 \mathrm{~min})$, flow rate; $10 \mathrm{~mL} / \mathrm{min}$, detection; UV (220 nm)) to give $\mathbf{2 3}$ ($5.1 \mathrm{mg}, 21 \%$ in 2 steps) as a deep blue powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.22(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 4 \mathrm{H}), 7.16(\mathrm{~s}, 4 \mathrm{H}), 6.58(\mathrm{t}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-4.34(\mathrm{~m}, 10 \mathrm{H}), 4.20-4.25(\mathrm{~m}, 20 \mathrm{H}), 3.79(\mathrm{~s}$, $32 \mathrm{H}), 3.41(\mathrm{q}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.65(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.42(\mathrm{q}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.35(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.12-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 12 \mathrm{H})$. HR-MALDI-TOF MS m/e calcd for $[\mathrm{M}]^{+} 2479.9500$, found 2479.9553 .

Compound 6
$\left.3 \quad \mathrm{H}_{2} \mathrm{O}\right)$ to give a stock solution of $\mathbf{6}(1.0 \mathrm{mM})$, which was stored in a refrigerator $\left(-30^{\circ} \mathrm{C}\right)$ and 4 thawed before use.

Synthesis of 28

Compound 24
A solution of di-tert-butyl iminodiacetate ($587 \mathrm{mg}, 2.39 \mathrm{mmol}$), 3-bromopropyl phthalimide ($706 \mathrm{mg}, 2.63 \mathrm{mmol}$), potassium carbonate $(363 \mathrm{mg}, 2.63 \mathrm{mmol})$ and potassium iodide ($159 \mathrm{mg}, 0.956 \mathrm{mmol}$) in dry DMF $(10 \mathrm{~mL})$ was stirred overnight at $50{ }^{\circ} \mathrm{C}$. After removal of the solvent by evaporation, the residue was diluted with CHCl_{3}. The organic layer was washed with sat. NaHCO_{3} and brine followed by drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent by evaporation, the residue was purified by flash column chromatography on SiO_{2} (Hexane : AcOEt $=4: 1$) to give $24(347 \mathrm{mg}, 34 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}, J=5.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=5.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.44(\mathrm{~s}, 4 \mathrm{H}), 2.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H})$.

A solution of $24(347 \mathrm{mg}, 0.802 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}) / \mathrm{TFA}(2 \mathrm{~mL})$ was stirred for 13 h at rt . After removal of the solvent by evaporation, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$. The aqueous solution was neutralized with 25% aqueous NH_{3} and washed with AcOEt, then acidified with 1 N aqueous HCl to precipitate the white solid. The solid was filtered and dried in vacuo to give 25 (142 mg, 50\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 7.80-7.85(\mathrm{~m}$, $4 \mathrm{H}), 3.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.

Compound 26

A solution of $\mathbf{2 5}(100 \mathrm{mg}, 280 \mu \mathrm{~mol}), \mathbf{1 1}(375 \mathrm{mg}, 589 \mu \mathrm{~mol}), \mathrm{EDCI} \cdot \mathrm{HCl}(152 \mathrm{mg}, 793$ $\mu \mathrm{mol}), \mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(121 \mathrm{mg}, 793 \mu \mathrm{~mol})$ and DIEA $(189 \mu \mathrm{~L}, 1.12 \mathrm{mmol})$ in dry DMF $(5 \mathrm{~mL})$ was stirred for 3 h at $50{ }^{\circ} \mathrm{C}$. After removal of the solvent by evaporation, the residue was dissolved in CHCl_{3}. The organic layer was washed with sat. NaHCO_{3} and brine followed by drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent by evaporation, the residue was purified by flash column chromatography on SiO_{2} (Hexane : $\mathrm{AcOEt}=1: 1 \rightarrow 1: 2$) to give $26(250 \mathrm{mg}$, 57%) as a white amorphous powder. $\quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.53(\mathrm{~s}, 2 \mathrm{H}), 7.79$ (dd, $J=5.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=5.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 4 \mathrm{H})$, $4.32(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 8 \mathrm{H}), 3.65(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 16 \mathrm{H}), 3.28(\mathrm{~s}, 4 \mathrm{H}), 2.73$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 72 \mathrm{H})$.

Compound 27

A solution of $26(58 \mathrm{mg}, 37 \mu \mathrm{~mol})$ in TFA (3 mL) was stirred for 13 h at rt . After removal of the solvent by evaporation, the residue was washed with di-isopropylether, then filtered and dried in vacuo to give $28(35 \mathrm{mg}, 55 \%)$ as a pale-purple solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.79-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~s}, 4 \mathrm{H}), 4.31(\mathrm{~s}, 4 \mathrm{H}), 4.29(\mathrm{~s}, 8 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H}), 3.82(\mathrm{~s}$, $16 \mathrm{H}), 3.70(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$. to afford $2.8 \times 10^{6} \mathrm{M}^{-1}$ (data not shown).

Syntheses of Ac-WA(H) $)_{\mathrm{n}}-\mathrm{NH}_{2}(\mathrm{n}=6$ (His6) or $10($ His10)) peptide

For the synthesis of His6 peptide, the solid-phase synthesis was carried out using Rink Amide resin (Novabiochem). The coupling reactions (0.1 mmol scale) were performed with a mixture of the corresponding carboxylic acid (3 eq.), HBTU (3 eq.), $\mathrm{HOB} \cdot{ }^{\circ} \mathrm{H}_{2} \mathrm{O}$ (3 eq.), and DIEA (6 eq.) in N-methylmorpholine (NMP). Fmoc deprotection was performed with 20% piperidine in NMP. All coupling and deprotection steps were monitored by Kaiser test. The cleavage from the resin was performed with TFA containing 2.5% TIS and $2.5 \% \mathrm{H}_{2} \mathrm{O}$. The crude peptide product was purified by RP-HPLC to give His6 peptide ($9 \mathrm{mg}, 8 \%$) as hygroscopic viscous oil. MALDI-TOF MS m/e calcd for $[\mathrm{M}+\mathrm{H}]^{+}$1139.51, found 1140.59.

His10 peptide was synthesized by the same procedure described above. The crude peptide was purified by RP-HPLC to give His10 peptide ($5 \mathrm{mg}, 3 \%$) as hygroscopic viscous oil. MALDI-TOF MS m / e calcd for $[\mathrm{M}+\mathrm{H}]^{+} 1687.75$, found 1687.31 .

General materials and methods for biochemical/biological experiments

Unless otherwise noted, all proteins/enzymes and biochemical reagents were obtained from commercial suppliers (Sigma, Aldrich, Tokyo Chemical Industry (TCI), Wako Pure Chemical Industries, Pierce Biotechnology, or Calbiochem) and used without further purification. UV-visible spectra and fluorescence spectra were recorded on a UV-2550 spectrophotometer (Shimadzu) and LS55 (Perkin Elmer), respectively. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out using a Bio-Rad Mini-Protean III electrophoresis apparatus. Cell imaging was performed using a confocal laser scanning microscope (CLSM, Olympus, FV1000, IX81) equipped with a $60 \times$ objective lens. Fluorescence images were acquired using the 488 nm line of an argon laser for excitation of EGFP (emission, $500-530 \mathrm{~nm}$) and the 633 nm line of a HeNe Red laser for excitation of Cy5 (emission, 645-745 nm).

Construction of GPCR expression plasmids

His10-EGFP-B2R plasmid

The oligo DNA fragments coding His10 tag were inserted into Hind III-BamH I site of pBluescript II SK(-) (pBS, Stratagene) coding N-terminal of $\alpha 7$ nicotinic acetylcholine receptor $(\alpha 7)$-B2R to yield $\mathrm{pBS}-\alpha 7$-His10-B2R. The sequences of the 5'-phosphorylated DNA fragments were as follows: 5^{\prime}-AGC TTG CAT CAC CAT CAC CAT CAC CAT CAC CAT CAC GCT AGG GGC TCT GGC TCG-3'(forward) and 5'-GAT CCG AGC CAG AGC CCC TAG CGT GAT GGT GAT GGT GAT GGT GAT GGT GAT GCA-3'(backward).

The dsDNA fragment coding BamH I-EGFP-BamH I was inserted into BamH I site of pBS- $\alpha 7$-His10-B2R to yield pBS- $\alpha 7$-His10-EGFP-B2R.

An oligo DNA fragments coding a mock tag (GSGS) were inserted into Hind III-BamH I site to yield pBS- $\alpha 7$-GSGS-B2R. The sequences of the 5 '-phosphorylated DNA fragments were as follows: 5^{\prime} '-AGC TCA GGC TCT GGC TCG- $\mathbf{3}^{\prime}$ (forward) and 5^{\prime} '-GAT CCG AGC CAG AGC CTG-3' (backward).

The dsDNA fragment coding BamH I-EGFP-BamH I was inserted into BamH I site of pBS- $\alpha 7$-GSGS-B2R to yield pBS- $\alpha 7$-GSGS-EGFP-B2R. This plasmid was placed into pCI-neo and purified by Qiagen Plasmid Maxi kit (Qiagen) to give pCI-neo- $\alpha 7$-GSGS-EGFP-B2R.

His10-EGFP-m1AchR plasmid

The dsDNA fragment coding BamH I-m1AchR-EcoR I obtained from pCI-neo-D4x3-m1AchR ${ }^{\text {S5 }}$ was inserted into BamH I-EcoR I site of pBS- $\alpha 7$-His10-B2R to yield pBS- $\alpha 7$-His10-m1AchR.

The dsDNA fragment coding BamH I-EGFP-BamH I was inserted into BamH I site of pBS- $\alpha 7$-His10-m1AchR to yield pBS- $\alpha 7$-His10-EGFP-m1AchR. This plasmid was placed into pCI-neo and purified by by Qiagen Plasmid Maxi kit (Qiagen) to give pCI-neo- $\alpha 7$-His10-EGFP-m1 AchR.

GSGS-EGFP-m1AchR plasmid

The oligo DNA fragments coding a mock tag (GSGS) were inserted into Hind III-BamH I site of $\mathrm{pBS}-\alpha 7$-His10-m1AchR to yield $\mathrm{pBS}-\alpha 7$-GSGS-m1AchR.

The dsDNA fragment coding BamH I-EGFP-BamH I was inserted into BamH I site to yield pBS- $\alpha 7$-GSGS-EGFP-m1AchR. This plasmid was placed into pCI-neo and purified by the same procedure to give pCI-neo- $\alpha 7$-GSGS-EGFP-m1AchR.

Plasmid construction and protein expression of EGFP

Construction of His10-thrombin-EGFP plasmid

The oligo DNA fragments coding His10-thrombin (-HHHHHHHHHHSSGLVPRGS-) were inserted into Nco I-Nde I site of pET28a(+) vector (Novagen) subcloned with EGFP to yield $\mathrm{pET} 28 \mathrm{a}(+)$-His 10 -thrombin-EGFP. The sequences of the 5 '-phosphorylated DNA fragments were as follows: 5^{\prime} '-CAT GGG CAG CAG CCA TCA TCA TCA TCA TCA TCA TCA TCA TCA TAG CAG CGG CCT GGT GCC GCG CGG CAG CGG-3' (forward) and 5’-TAC CGC TGC CGC GCG GCA CCA GGC CGC TGC TAT GAT GAT GAT GAT GAT GAT GAT GAT GAT GGC TGC TGC C-3' (backward).

Expression of His10-EGFP and EGFP lacking His-tag

pET28a(+)-His10-thrombin-EGFP vector was transformed into E. coli BL21(DE3) pLysS. The cells were grown in 500 mL of LB medium at $37^{\circ} \mathrm{C}$ until an optical density (OD) at 600 nm increased to 0.6 , and further grown at $16^{\circ} \mathrm{C}$ overnight with IPTG induction (0.3 mM). The cells were spun down for 10 min at 3500 rpm , and re-suspended in 25 mL HEPES buffer ($50 \mathrm{mM}, \mathrm{pH} 7.2$). The collected cells were re-suspended in 25 mL HEPES buffer and lysed by sonication (10 shots x 20 times). Insoluble materials were removed by centrifugation ($12,000 \mathrm{rpm}, 10 \mathrm{~min} \times 2$) to collect the soluble fraction containing the EGFP fused with

His10-tag. The soluble fraction was passed through a plastic column filled with 2 mL of TALON resin (1 mL , Clontech). After washing with the HEPES buffer, the resin-bound protein was eluted with HEPES buffer ($50 \mathrm{mM}, \mathrm{pH} 7.2$) containing 150 mM imidazole. The fractions containing His10-EGFP (confirmed by SDS-PAGE) was dialyzed twice against HEPES buffer ($50 \mathrm{mM}, \mathrm{pH} 7.2,100 \mathrm{mM} \mathrm{NaCl}$) to remove the excess imidazole to give His10-EGFP solution ($32 \mu \mathrm{M}, 3 \mathrm{~mL}$).

A solution of His10-EGFP in HEPES buffer ($15 \mu \mathrm{M}, 1 \mathrm{~mL}$) was mixed with thrombin (5 U), and the mixture was incubated for 16 h at $22^{\circ} \mathrm{C}$. After removal of the thrombin by incubation with benzamidine sepharose 6B, elute was dialyzed twice against HEPES buffer (50 $\mathrm{mM}, \mathrm{pH} 7.2,100 \mathrm{mM} \mathrm{NaCl}$) to remove His10 peptide fragment to give EGFP lacking His-tag $(12 \mu \mathrm{M}, 1 \mathrm{~mL})$. The cleavage of the His-tag site by thrombin was confirmed by SDS-PAGE.

Isothermal titration calorimetry (ITC) measurement

ITC titration was performed with Isothermal Titration Calorimeter (MicroCal Inc). All measurements were conducted at 298 K . A solution of metal complex in a buffer solution (50 mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.2$) was injected stepwise ($10 \mu \mathrm{~L} \times 24$ times) to a solution of the His6 or His 10 peptide in the same solvent system. The measured heat flow was recorded as function of time and converted into enthalpies (ΔH) by integration of the appropriate reaction peaks. Dilution effects were corrected by subtracting the result of a control experiment with an injection of the metal complexes into the blank HEPES buffer under identical experimental conditions. The binding parameters ($K_{\text {app }}, \Delta H, \Delta S, n$) were evaluated by applying one site model using the software Origin (MicroCal Inc).

References

S1. The apparent binding constant obtained by the competitive titration was $2.8 \times 10^{7} \mathrm{M}^{-1}$.
The value was further analyzed based on the competitive binding equation described in our previous work; A. Ojida, S. Fujishima, K. Honda, H. Nonaka, S. Uchinomiya and I. Hamachi, Chem. Asian J., 2010, 5, 877-886.

S2. A. Johansson, M. Abrahamsson, A. Magnuson, P. Huang, J. Mårtensson, S. Styring, L. Hammarström, L. Sun and B. Åkermark, Inorg. Chem., 2003, 42, 7502-7511.

S3. M. A. Brun, K.-T. Tan, E. Nakata, M. J. Hinner and K. Johnsson, J. Am. Chem. Soc., 2009, 131, 5873-5884.

S4. W. M. Hussein, B. P. Ross, M. J. Landsberg, D. Lévy, B. Hankamer and R. P. McGeary, J. Org. Chem., 2009, 74, 1473-1479.

S5. A. Ojida, K. Honda, D. Shinmi, S. Kiyonaka, Y. Mori and I. Hamachi, J. Am. Chem. Soc., 2006, 128, 10452-10459

