Supporting Information

Oxygen Bridged Neutral Annulenes: A Novel Class of Materials for Organic Field-Effect Transistors

Kamaljit Singh,* Tarunpreet Singh Virk, Jing Zhang, Wei Xu and Daoben Zhu*

	Table of Contents
General Information	S1
Experimental Section	S2
Copies of ¹ H, ¹³ C NMR, IR and Mass Spectra	85
Theoretical Calculations	S29
UV-Visible Spectra	S53
Cyclic Voltamograms and TGA graphs	S56
X-Rays	S58
Experimental details for OFET Device fabrica	tion S61

Cif files of 12a and 12b

General Information

¹H (400 MHz), ¹³C (100 MHz) NMR spectra were recorded on a BRUKER AVANCE II 400 NMR Spectrometer and UNITY INOVA-400MHz NMR Spectrometer. Tetramethylsilane (TMS) served as the internal standard (0 ppm for ¹H and 77.0 ppm for ${}^{13}C$) and CDCl₃ was used as solvent. The following abbreviations were used to express the multiplicities: s = singlet; d =doublet; t = triplet; q = quartet; m = multiplet; br = broad. Data are reported as follows: chemical shifts in ppm (δ), integration, coupling constant J (Hz) and assignment. Mass spectra were recorded on Bruker Daltonics esquire3000 00037 mass spectrometer and an UPLC-Q-TOF instrument, having SYNAPT mass spectrometer and ACQUITY high performance liquid chromatography (WATERS) with a TDA detector. Elemental analyses were performed with a Thermoelectron FLASH EA1112 CHNS analyzer and were within $\pm 0.4\%$ of the theoretical values. IR spectrum was recorded on VARIAN 660-IR Fourier-Transform Spectrophotometer in range 400-4000 cm⁻¹ using KBr as medium. UV-Vis spectra were recorded on a SHIMADZU 1601 PC spectrophotometer, with a quartz cuvette (path length, 1 cm) and studies were performed in AR grade DCM. TGA were performed on a SDT Q600 TA instrument with a temp. rise of 10 C/minute under nitrogen atmosphere. Electrochemical studies were carried out on CHI 660C Electrochemical Workstation with a conventional three-electrode configuration consisting of platinum working electrode (2 mm diameter), counter electrode and Ag/AgCl as reference electrode. The experiments were carried out on 10⁻⁴ M solutions of samples in DCM containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) as supporting electrolyte at room temperature. Deoxygenation of the solutions was achieved by bubbling nitrogen for 30 min and the working electrode was cleaned after each run. The cyclic voltammograms were recorded with a scan rate of 100 mVs⁻¹. All reactions were monitored by thin-layer chromatography carried out on Merck precoated TLC plates (silica gel 60 F₂₅₄, 0.25 mm), visualization by using UV (254 nm). Melting points were determined in open capillaries and are uncorrected. Reactions that required anhydrous conditions were carried out under the blanket of deoxygenated (BASF catalyst) anhydrous nitrogen gas in oven/flame dried glassware. The products were purified by flash column chromatography on silica gel 60-120 mesh. All reagents and chemicals were purchased from Sigma-Aldrich. DMF, 1,2-DCE, TiCl₄, Pyridine and DCM were purchased locally, dried and distilled prior to use. POCl₃ was distilled at constant b.p. prior to use. THF and toluene were distilled from sodium/benzophenone (benzophenone ketyl). Anhydrous DCM was stored over fused CaCl₂ and distilled before use. Zinc dust was activated prior to use using standard (2M HCl and subsequent water washing) methods. DDQ and hydrazine hydrate were purchased from Sigma-Aldrich, and were used as received. All theoretical studies were performed with a GAUSSIAN 09 software package. Meso-substituted bisfuran-2-yl methanes were prepared according to literature procedure,^[1] but by taking the corresponding new aldehydes.

^[1] Tanaka, S.; Tomokuni, H.; J. Heterocyclic Chem., 1991, 28, 991-994.

Experimental Section

The *meso*-phenyl and *meso-p*-tolyl substituted bisfuran-2-ylmethane derivatives(9)s were synthesized according to the literature procedure¹.

General procedure for the synthesis of the dialdehydes 10a and 10b

 $POCl_3$ (4.9 g, 32 mmol) was added slowly to N,N'-dimethylformamide (2.6g, 35.6 mmol) maintained below 20°C. To this solution, *meso*-phenyl-2,2'-difurylmethane **9a** (3g, 13.4 mmol) in dry ethylene dichloride (30 ml) was added with stirring over 20 minutes, maintaining the temperature below 20°C. The mixture was left at r.t. for 3 hours, refluxed for 1 hour, cooled and added to a solution of sodium acetate (81 g) in water (120 ml). The mixture was refluxed for 15 minutes, cooled and extracted thoroughly with ethyl acetate. The combined ethyl acetate layers were washed with saturated aqueous sodium bicarbonate solution and then with water. The extract was dried over anhydrous sodium sulfate. The concentrated solution was then chromatographed on silica and the dialdehyde **10a** was isolated as thick red oil (1.6g, 43%). Dialdehyde **10b** was analogously prepared (42%) from *meso-p*-tolyl- 2,2'-difurylmethane **9b**.

The characteristic data for 9a, 9b, 10a and 10b is presented below.

Phenyl-di(furan-2yl)methane, 9a

(Yield = 15%), ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.29-7.35 (4H, m), 7.21-7.27 (3H, m), 6.30-6.31 (2H, m), 6.01-6.02 (2H, m), 5.44 (1H, s); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 154.4, 142.0, 139.4, 128.6, 128.4, 127.2, 110.3, 107.6, 45.0; Anal. Calcd. (%) for C₁₅H₁₂O₂: C, 80.35; H, 5.35; Found: C, 80.52; H, 5.42; *m*/*z* 247 (M⁺ + 23).

p-Tolyl-di(furan-2yl)methane, 9b

(Yield = 16%), ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.31-7.32 (2H, m), 7.08-7.13 (4H, m), 6.26-6.27 (2H, m), 5.99-6.00 (2H, m), 5.40 (1H, s), 2.29 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 154.7, 142.0, 136.9, 129.4, 128.3, 110.4, 107.5, 44.8, 21.2; Anal. Calcd. (%) for C₁₆H₁₄O₂: C, 80.67; H, 5.88; Found: C, 81.02; H, 6.11; *m/z* 262 (M⁺ + 23).

Phenyl-di(5-formylfuran-2yl)methane, 10a

(Yield = 43%), ¹H NMR (400 MHz, CDCl₃) 9.58 (2H, s), 7.32-7.39 (3H, m), 7.26-7.28 (2H, m), 7.20 (2H, d, J=3.6 Hz), 6.32 (2H, d, J=3.24 Hz), 5.61 (1H, s); ¹³C NMR (100 MHz, CDCl₃) 177.5, 159.2, 152.6, 136.5, 129.1, 128.8, 128.3, 128.2, 122.2, 111.3, 45.5; UPLC-Q-TOF MS 279 (M⁻, 100%).

p-Tolyl-di(5-formylfuran-2yl)methane, 10b

(Yield = 42%), ¹H NMR (400 MHz, CDCl₃) 9.57 (2H, s), 7.19 (2H, d, J=3.64 Hz), 7.16 (4H, s), 6.31 (2H, d, J=3.2Hz), 5.56 (1H, s), 2.34 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 177.5, 159.5, 152.6, 138, 133.5, 129.7, 128.2, 122.2, 111.2, 45.2, 21.1; UPLC-Q-TOF MS 293 (M⁻, 100%).

General procedure for the synthesis of the meso-substituted dihydrotetraoxa annulenes 11a and 11b

To a stirring suspension of zinc dust (2.4 g, 38 mmol) in 200 ml of THF maintained under nitrogen atmosphere, a solution of 19.6 ml of 1.0 M TiCl₄ (in CH₂Cl₂) was added over 20 minutes. The reaction mixture was refluxed for 1 hour, and treated with a solution of dialdehyde **10a** (0.5 g, 1.78 mmol) and pyridine (2.8 g, 35.6 mmol) dissolved in 200 ml of THF. The addition was made using a hypodermic syringe over 40 minutes to the gently refluxing suspension. After refluxing under nitrogen for 18 hours, the reaction was carefully quenched with a solution of aqueous K_2CO_3 (10%, 100 ml). The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure and the residue extracted with 300 ml methylene chloride. The extract was washed with water (2 x 50 ml) and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the residue was chromatographed (over silica) to isolate the **11a** (67 mg, 15%), m.p. >250°C.

Using dialdehyde **10b**, dihydrotetraoxaannulene **11b** was analogously prepared in 13% yield. The characteristic data for **11a** and **11b** is presented below.

Meso-Phenyldihydrotetraoxa[22]annulene[2,1,2,1] 11a, (Yield =15%), ¹H NMR (400 MHz, CDCl₃) 7.29-7.44 (10H, m), 7.07 (4H, s), 6.21 (4H, d, J=3.2 Hz), 5.97 (4H, d, J=3.2 Hz), 5.32 (2H, s); ¹³C NMR (100 MHz, CDCl₃) 153.1, 152.9, 138.3, 128.8, 128.6, 127.5, 116, 109, 106.4, 45; IR (KBr):724, 782, 960, 1014, 1274, 1447, 1500, 1586, 2854, 3021, 3117 cm⁻¹; UPLC-Q-TOF MS: 494, 495, 496.

*meso-p-***Tolyldihydrotetraoxa[22]annulene[2,1,2,1] 11b**, (Yield = 13%), ¹H NMR (400 MHz, CDCl₃) 7.27-7.31 (4H, m), 7.15-7.18 (4H, m), 7.05 (4H, d, J= 4.04 Hz), 6.20 (4H, d, J= 3.2 Hz), 6.03 (2H, d, J= 3.28 Hz), 5.96 (2H, d, J= 3 Hz), 5.28 (2H, d, J= 4.88 Hz), 2.36 (6H, s); ¹³C NMR (100 MHz, CDCl₃) 153.3, 153.2, 152.9, 152.8, 137.1, 129.3, 128.6, 128.3, 115.9, 108.9, 106.3, 44.6, 44.4, 21.1; IR (KBr):764, 953, 1012, 1275, 1450, 1500, 1571, 2917, 3010, 3100 cm⁻¹; UPLC-Q-TOF MS: 522, 523, 524.

General procedure for the synthesis of the meso-substituted tetraoxa[22]annulenes 12a and 12b:

To a solution of **11a** (0.1g, 0.2 mmol) in 5 ml toluene, was added under nitrogen with stirring, a solution of DDQ (0.114 g, 0.5 mmol) in 5 ml toluene. Shortly after mixing the two solutions, purple precipitates formed and the reaction mixture was stirred for additional 3 h. The purple precipitates were filtered and added to 3 ml of hydrazine hydrate (98%). After boiling for 10 minutes, the solid was filtered, washed with water, and dried. The resulting product was dissolved in methylene chloride and chromatographed on silica (DCM). Evaporation of the purple solution gave 0.06 g (60%) of shining metallic purple **12a** (m.pt. >280 °C).

Using the same procedure, **11b** was oxidized to corresponding **12b** in 42% yield. The characterisite data for **12a** and **12b** is presented below.

meso-Phenyltetraoxa[22]annulene[2,1,2,1] 12a, (Yield = 60%), ¹H NMR (400 MHz, CDCl₃) 10.47 (2H, d, J= 14.84 Hz), 9.72 (2H, d, J= 4.32 Hz), 9.12 (2H, d, J= 4.28 Hz), 9.09 (2H, d, J= 4.24 Hz), 9.01 (2H, d, J= 4.24 Hz), 8.39 (4H, d, J= 6.88 Hz), 7.84 (4H, t, J= 7.5 Hz), 7.75 (2H, t, J= 7.52 Hz), -5.42 (2H, d, J= 14.88 Hz); IR (KBr): 779, 1175, 1299, 1654, 3100 cm⁻¹; Anal. Calcd. (%) for C₃₄H₂₂O₄: C, 82.59; H, 4.45; Found: C, 82.29; H, 4.26; UPLC-Q-TOF MS: 494 (100%).

Meso-p-Tolyltetraoxa[22]annulene[2,1,2,1] 12b, (Yield = 42%), ¹H NMR (400 MHz, CDCl₃) 10.45 (2H, d, J= 15.0 Hz), 9.67 (2H, d, J= 5.0 Hz), 9.10 (4H, m), 8.98 (2H, d, J= 5.0 Hz), 8.27 (4H, d, J= 6.80 Hz), 7.64 (4H, d, J= 7.2 Hz), 2.69 (6H, s), -5.40 (2H, d, J= 15 Hz); IR (KBr): 779, 1176, 1301, 1645, 3100 cm⁻¹; Anal. Calcd. (%) for C₃₆H₂₆O₄: C, 82.76; H, 4.98; Found: C, 82.41; H, 4.99; UPLC-Q-TOF MS: 522 (100%).

Copies of ¹H, ¹³C NMR, IR and Mass Spectra

Figure S1 : ¹H NMR spectrum of **9a**.

Figure S2: ¹³C NMR spectrum of 9a.

Figure S3: ¹H NMR spectrum of 9b.

Figure S4: ¹³C NMR spectrum of 9b.

Figure S5 : ¹H NMR spectrum of 10a.

Figure S6: ¹³C NMR spectrum of 10a.

Figure S7: Mass spectrum of 10a.

Figure S8 : ¹H NMR spectrum of 10b.

Figure S9: ¹³C NMR spectrum of 10b.

Figure S10: Mass spectrum of 10b.

Figure S11 : ¹H NMR spectrum of **11a**.

Figure S12: ¹³C NMR spectrum of 11a.

Figure S13: Mass spectrum of 11a.

Figure S14: IR spectrum of 11a.

Figure S15 : ¹H NMR spectrum of 11b.

Figure S16: ¹³C NMR spectrum of 11b.

Figure S17: Mass spectrum of 11b.

Figure S18: IR spectrum of 11b.

S22

Figure S19 : ¹H NMR spectrum of 12a.

Figure S20: Mass spectrum of 12a.

Figure S21: IR spectrum of 12a.

Figure S22 : ¹H NMR spectrum of **12b** (Due to extremely low solubility of **12b** in most of the deutrated solvents, its ¹H NMR spectra was obtained with great difficulty).

Figure S23: Mass spectrum of 12b.

Figure S24: IR spectrum of 12b.

δ/ppm (j/Hz)	11a	11b	12a	12b
H2/H8	6.22	6.21	9.72/9.12	9.67/9.10
	(j _{2,3} 3.2)	(j _{2,3} 3.2)	(j _{2,3} 4.32)	(j _{2,3} 5.0)
H3/H7	5.97	5.96/6.02	9.01/9.09	9.10/8.98
	(j _{7,8} 3.2)	(j _{7,8} 3.2)	(j _{7,8} 4.24)	(j _{7,8} 5.0)
H10/H11	7.07 ^[a]	7.05/7.06 ^[a]	10.46/-5.42	10.42/-5.40
			(j _{10,11} 14.84)	(<i>j</i> _{10,11} 15.0)

Table S1. ¹H NMR (400 MHz) data of **11a/12a** and **11b/12b** (CDCl₃, TMS int.). Chemical shifts (δ) and coupling constants *J* [Hz] (*Scheme 1*).

[a] singlet

Theoretical Calculations

Computational methods

All the calculations were performed at the density functional theory (DFT) level with the B3LYP functional, the gradient correction of the exchange functional by Becke and the correlation functional by Lee, Yang and Parr. The 6-311G(d) split valence plus polarization basis set was used in Gaussian 09 program.^{[2],[3]} The results were analyzed and visualized on Gauss View 5.0.9.

^{[&}lt;sup>2</sup>] Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, W. H. G. E.; Robb, M. A.;Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M; Toyota, K.; Fukuda,R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta,Jr., J. E.; Ogliaro, F.;Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi,R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann,

R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J.V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.

^{[3}] Details including the references for the DFT method and basis set can be found online at the homepage of Gaussian,Inc.; http://www.gaussian.com/

Figure S25: Energy minimized structure of **12a** by DFT method at B3LYP/6-311G(d) level using the Gaussion09 program (Top and side views shown above).

Figure S26: The ghost (Bq) atoms were placed (0.5 Å interval) in the centre of the molecule (in purple). The -ve NICS values clearly indicate the aromaticity of **12a**. NICS is maximum at 0 Å and decreases as the distance of the ghost atom is increased in 0.5 Å intervals.

Figure S27: Calculation of NICS values for all individual rings in **12a**. The calculation was performed by placing ghost atoms at 1 Å intervals. The NICS vs. r (distance from centre in Å) graphs are shown on the next page (Figure S28).

Figure S28: As shown above, a set of two furan rings of **12a** (attached to one of the trans double bond) are showing a dip at 1Å in the calculated NICS values. The behavior of two furan rings is also different from an isolated furan ring (which shows no dip at 1 Å).^[4] This is also clear from the X-Ray structure. Further, phenyl rings are showing the normal behavior like benzene but with decreased NICS values.

^[4] A. Stanger, J. Org. Chem. 2006, 71, 883-893.

Figure S29: Energy minimized structure of **12b** by DFT method at B3LYP/6-311G(d) level using the Gaussion09 software package (Top and side views).

Figure S30: The ghost (Bq) atoms were placed at the centre of the molecule (in purple) at successive distances of 0.5 Å to probe the aromaticity. The -ve values of NICS clearly displays the aromaticity of **12b**. At centre NICS is maximum and it goes on decreasing as we move farther from the centre

Figure S31: When Ghost atoms were placed at the centre of all the individual rings of **12b** with interval of 1 Å, the resulting NICS vs. r (distance from centre in Å) graphs are shown on the next page (Figure S32).

Figure S32: Similar to **12a**, as shown above, the two of the furan rings of **12b** (neighboring to the trans double bond) are showing a dip in the NICS (aromaticity) value at 1Å, and remaining two are not showing. Also the behavior is different from the normal single furan ring alone (which shows no dip at 1 Å). The X-Ray structure corroborates this observation. *p*-Tolyl rings are showing the normal behavior like toluene but with decreased NICS values.

Figure S33: Shows the correlation between the ¹H experimental chemical shifts (ppm) and the calculated chemical shifts (using DFT method and B3LYP/6-311G(d) level) of **12a** (Upper) and **12b** (lower).

Figure S34: Optimized structure of **12a** with *cis, cis geometry at the two ethylenic links*. Top view (upper) and the side view (lower). The side view indicates the loss of planarity due to *cis* configuration of the two double bonds.

Figure S35: Energy minimized structure of antiaromatic dication **13a**. Upper (top view), lower (side view).

Figure S36: Placement of the ghost atoms (at 1 Å intervals) at the centre of all the individual rings as well as the main ring of **13a** (anti aromatic). The +ve NICS values (NICS 1 = 19.59) indicates the antiaromatic behaviour of the dication **13a**. The resulting NICS vs. r (distance from centre in Å) graph is also shown for the main centre of the **13a**. The graphs for the four furan rings are shown (Figure S37). The phenyl groups were showing almost the normal behavior like benzene, so there graphs are not shown.

Figure S37: Here two furan rings are showing a dip in the +ve (antiaromatic) NICS values at a distance of 1Å from the centre, compared to the other two furan rings. The latter two furan rings are also slightly non-equivalent as indicated by their NICS vs. r graphs. Normal furan is aromatic (-ve NICS), but antiaromatic ring current of **13a** made the NICS values of the furan rings as +ve.

Figure S38: HOMO-LUMO and their neighbouring energy levels for **12a** are shown along with their energies (left) in a.u.. HOMO- LUMO levels are showing high degree of delocalisation on the $[22\pi]$ annulene ring periphery. The energy of HOMO = -0.16523 a.u. and that of LUMO = -0.08962 a.u.

Figure S39: HOMO-LUMO and their neighbouring energy levels for **12b** are shown along with their energies (left) in a.u.. HOMO- LUMO levels are showing high degree of delocalisation on the $[22\pi]$ annulene ring periphery. The energy of HOMO = -0.16302 and that of LUMO = -0.08771

Cartesian coordinates

Table S2: Cartesian coordinates of 12a

SCF Done:

E(RB3LYP) = -1610.02038082 A.U. after

16 cycles

Center	Atomic	Atomic	Со	ordinates (Angstro	oms)	
Number	Number	Туре	Х	Y	Ζ	
1	8	0	2.438434	-1.518581	0.025317	
2	8	0	2.158495	0.996299	-0.085623	
3	6	0	2.138711	-2.848425	-0.099328	
4	6	0	0.777373	-3.194926	-0.098275	
5	1	0	0.522511	-4.243348	-0.214006	
6	6	0	3.345356	-3.548389	-0.245659	
7	1	0	3.439082	-4.617494	-0.370613	
8	6	0	4.376148	-2.614806	-0.223015	
9	1	0	5.431843	-2.807876	-0.333945	
10	6	0	3.792332	-1.342068	-0.058220	
11	6	0	4.321883	-0.039498	-0.009936	
12	6	0	5.800766	0.127811	0.002880	
13	6	0	6.586573	-0.482782	0.991756	
14	1	0	6.102421	-1.067850	1.766469	
15	6	0	7.970148	-0.327109	1.002022	
16	1	0	8.558480	-0.802817	1.780452	
17	6	0	8.597114	0.445198	0.026029	
18	1	0	9.675430	0.567589	0.035094	
19	6	0	7.829287	1.058784	-0.961803	
20	1	0	8.308680	1.655524	-1.731508	
21	6	0	6.446137	0.900124	-0.974557	
22	1	0	5.856248	1.362560	-1.758798	
23	6	0	3.512820	1.113054	0.025094	
24	6	0	3.808952	2.482636	0.200145	
25	1	0	4.797415	2.895155	0.331332	
26	6	0	2.606590	3.176933	0.201043	
27	1	0	2.473847	4.241659	0.326725	
28	6	0	1.576124	2.238939	0.029677	
29	6	0	0.180582	2.204704	-0.015807	
30	1	0	-0.203733	1.198024	-0.137220	
31	8	0	-2.438434	1.518581	-0.025319	
32	8	0	-2.158495	-0.996299	0.085621	
33	6	0	-2.138712	2.848425	0.099326	
34	6	0	-0.777373	3.194926	0.098272	

S45

35	1	0	-0.522510	4.243352	0.214006
36	6	0	-3.345356	3.548389	0.245656
37	1	0	-3.439083	4.617494	0.370610
38	6	0	-4.376148	2.614806	0.223013
39	1	0	-5.431846	2.807877	0.333941
40	6	0	-3.792333	1.342069	0.058218
41	6	0	-4.321883	0.039498	0.009936
42	6	0	-5.800766	-0.127812	-0.002878
43	6	0	-6.586574	0.482783	-0.991754
44	1	0	-6.102425	1.067850	-1.766463
45	6	0	-7.970148	0.327110	-1.002019
46	1	0	-8.558481	0.802820	-1.780448
47	6	0	-8.597115	-0.445199	-0.026026
48	1	0	-9.675424	-0.567589	-0.035091
49	6	0	-7.829286	-1.058787	0.961804
50	1	0	-8.308675	-1.655524	1.731504
51	6	0	-6.446136	-0.900126	0.974558
52	1	0	-5.856247	-1.362564	1.758797
53	6	0	-3.512820	-1.113054	-0.025092
54	6	0	-3.808951	-2.482637	-0.200141
55	1	0	-4.797412	-2.895155	-0.331324
56	6	0	-2.606590	-3.176932	-0.201041
57	1	0	-2.473847	-4.241658	-0.326720
58	6	0	-1.576124	-2.238938	-0.029678
59	6	0	-0.180581	-2.204703	0.015805
60	1	0	0.203734	-1.198023	0.137216

Table S3: Cartesian coordinates of 12b

SCF Done:	E (RB3LYP) = -1688.67114151	A.U.	after	17 cycles.
-----------	-----------------------------	------	-------	------------

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	8	0	2.414409	-1.557390	0.027290	
2	8	0	2.174728	0.961509	-0.092596	
3	6	0	2.092811	-2.881945	-0.098366	
4	6	0	3.287505	-3.601093	-0.249496	
5	1	0	3.363467	-4.671338	-0.376416	
6	6	0	4.333321	-2.684205	-0.229116	
7	1	0	5.385331	-2.893757	-0.344116	
8	6	0	3.770846	-1.402405	-0.060957	
9	6	0	4.321963	-0.108601	-0.012886	
10	6	0	3.530594	1.056366	0.022474	
11	6	0	3.847749	2.420654	0.201333	
12	1	0	4.842236	2.816839	0.336665	
13	6	0	2.656494	3.133991	0.200737	
14	1	0	2.540217	4.200296	0.329019	
15	6	0	1.611775	2.212827	0.024594	
16	6	0	0.215820	2.200979	-0.022012	
17	1	0	-0.184695	1.200873	-0.145841	
18	6	0	-0.725959	3.206263	0.095088	
19	1	0	-0.453898	4.250190	0.212762	
20	6	0	5.802576	0.034824	-0.000009	
21	6	0	6.584292	-0.593342	0.978133	
22	1	0	6.098044	-1.178124	1.751930	
23	6	0	7.970072	-0.456637	0.986183	
24	1	0	8.546876	-0.949818	1.763755	
25	6	0	8.629292	0.311964	0.023572	
26	6	0	10.131920	0.451417	0.020428	
27	1	0	10.575077	0.044189	0.931646	
28	1	0	10.438301	1.498536	-0.059491	
29	1	0	10.579110	-0.078606	-0.827305	
30	6	0	7.847993	0.941856	-0.952189	
31	1	0	8.330968	1.541889	-1.719039	
32	6	0	6.464829	0.805908	-0.967673	
33	1	0	5.886118	1.288513	-1.748286	
34	8	0	-2.414409	1.557393	-0.027304	
35	8	0	-2.174727	-0.961505	0.092582	

S47

36	6	0	-2.092812	2.881948	0.098350	
37	6	0	-3.287506	3.601096	0.249479	
38	1	0	-3.363468	4.671341	0.376397	
39	6	0	-4.333322	2.684207	0.229100	
40	1	0	-5.385332	2.893760	0.344099	
41	6	0	-3.770846	1.402408	0.060945	
42	6	0	-4.321963	0.108603	0.012880	
43	6	0	-3.530594	-1.056364	-0.022477	
44	6	0	-3.847751	-2.420653	-0.201323	
45	1	0	-4.842239	-2.816839	-0.336643	
46	6	0	-2.656496	-3.133990	-0.200731	
47	1	0	-2.540220	-4.200295	-0.329004	
48	6	0	-1.611775	-2.212824	-0.024603	
49	6	0	-0.215821	-2.200976	0.021996	
50	1	0	0.184695	-1.200869	0.145819	
51	6	0	0.725959	-3.206260	-0.095102	
52	1	0	0.453897	-4.250188	-0.212772	
53	6	0	-5.802576	-0.034822	0.000012	
54	6	0	-6.584296	0.593325	-0.978135	
55	1	0	-6.098053	1.178096	-1.751944	
56	6	0	-7.970077	0.456619	-0.986177	
57	1	0	-8.546886	0.949786	-1.763753	
58	6	0	-8.629291	-0.311966	-0.023548	
59	6	0	-10.131917	-0.451445	-0.020406	
60	1	0	-10.575105	-0.043938	-0.931483	
61	1	0	-10.438275	-1.498597	0.059188	
62	1	0	-10.579094	0.078295	0.827509	
63	6	0	-7.847986	-0.941835	0.952223	
64	1	0	-8.330957	-1.541851	1.719090	
65	6	0	-6.464823	-0.805887	0.967697	
66	1	0	-5.886107	-1.288474	1.748317	

Table S4: Cartesian coordinates of 12a (Cis configuration):

SCF Done:	E(RB3LYP) = -1609.97021900	A.U.
-----------	----------------------------	------

Center	Atomic	Atomic	Coordin	ates (Angstroms))	
Number	Number	Туре	Х	Y	Ζ	
1	6	0	0.560190	3.759211	-0.371480	
2	6	0	1.527620	2.833502	-0.763689	
3	6	0	2.658224	3.134540	-1.543579	
4	1	0	2.796620	4.051692	-2.097524	
5	6	0	3.539219	2.083637	-1.422047	
6	1	0	4.515320	1.984555	-1.869319	
7	6	0	2.942518	1.131842	-0.573509	
8	6	0	3.547597	0.003568	-0.003047	
9	6	0	5.045856	0.001987	-0.016204	
10	6	0	5.758108	-1.032540	-0.640515	
11	1	0	5.209932	-1.833090	-1.125580	
12	6	0	7.150287	-1.033108	-0.657005	
13	1	0	7.682466	-1.837246	-1.155547	
14	6	0	7.858559	-0.002279	-0.041641	
15	1	0	8.943903	-0.003882	-0.051465	
16	1	0	0.842763	4.756850	-0.700039	
17	6	0	0.569206	-3.753207	0.432655	
18	6	0	1.539048	-2.822255	0.806052	
19	6	0	2.679398	-3.115680	1.574577	
20	1	0	2.824773	-4.027276	2.135844	
21	6	0	3.559726	-2.067147	1.429390	
22	1	0	4.542099	-1.964194	1.861844	
23	6	0	2.951469	-1.122959	0.580862	
24	6	0	5.772361	1.034240	0.595325	
25	1	0	5.235573	1.836380	1.090384	
26	6	0	7.164623	1.030590	0.586526	
27	1	0	7.708184	1.833029	1.075437	
28	1	0	0.853048	-4.745939	0.774614	
29	6	0	-0.560194	-3.759207	-0.371509	
30	6	0	-1.527623	-2.833492	-0.763709	
31	6	0	-2.658232	-3.134522	-1.543595	
32	1	0	-2.796631	-4.051668	-2.097549	
33	6	0	-3.539227	-2.083622	-1.422044	
34	1	0	-4.515333	-1.984536	-1.869306	
35	6	0	-2.942520	-1.131834	-0.573503	

S49

36	6	0	-3.547596	-0.003567	-0.003023
37	6	0	-5.045855	-0.001989	-0.016164
38	6	0	-5.772351	-1.034242	0.595375
39	1	0	-5.235554	-1.836379	1.090430
40	6	0	-7.164612	-1.030596	0.586592
41	1	0	-7.708165	-1.833035	1.075512
42	6	0	-7.858558	0.002270	-0.041569
43	1	0	-8.943902	0.003870	-0.051381
44	1	0	-0.842773	-4.756845	-0.700066
45	6	0	-0.569207	3.753207	0.432688
46	6	0	-1.539045	2.822251	0.806086
47	6	0	-2.679391	3.115669	1.574620
48	1	0	-2.824763	4.027260	2.135896
49	6	0	-3.559720	2.067138	1.429428
50	1	0	-4.542091	1.964182	1.861885
51	6	0	-2.951467	1.122956	0.580890
52	6	0	-5.758117	1.032535	-0.640469
53	1	0	-5.209948	1.833086	-1.125542
54	6	0	-7.150296	1.033099	-0.656944
55	1	0	-7.682482	1.837235	-1.155481
56	1	0	-0.853052	4.745938	0.774646
57	8	0	-1.680346	-1.573512	-0.233431
58	8	0	1.685025	-1.567674	0.261377
59	8	0	1.680346	1.573517	-0.233424
60	8	0	-1.685024	1.567674	0.261402

Table S5: Cartesian coordinates of 13a:

SCF Done: E(RB3LYP) = -1609.49784641 A.U.

after 17 cycles

Center	Atomic	Atomic	Coor	dinates (Angstr	oms)	
Number	Number	Туре	Х	Y	Z	
1	8	0	-2.450962	-1.489983	-0.141256	
2	8	0	-2.198629	1.008503	0.261604	
3	6	0	-2.135339	-2.786123	0.067461	
4	6	0	-0.736611	-3.125623	0.036868	
5	1	0	-0.473410	-4.150639	0.272862	
6	6	0	-3.286072	-3.502770	0.376005	
7	1	0	-3.341225	-4.556883	0.601999	
8	6	0	-4.340959	-2.581761	0.375340	
9	1	0	-5.371973	-2.779633	0.623924	
10	6	0	-3.800008	-1.331947	0.056851	
11	6	0	-4.358690	-0.028991	0.022419	
12	6	0	-5.810786	0.121763	-0.005751	
13	6	0	-6.600084	-0.697366	-0.844246	
14	1	0	-6.122265	-1.406532	-1.510147	
15	6	0	-7.977265	-0.541473	-0.879124	
16	1	0	-8.571946	-1.152525	-1.548344	
17	6	0	-8.595872	0.409298	-0.063973	
18	1	0	-9.674135	0.520758	-0.086320	
19	6	0	-7.829963	1.217021	0.780410	
20	1	0	-8.314551	1.939030	1.427535	
21	6	0	-6.449814	1.088285	0.803164	
22	1	0	-5.864894	1.687415	1.491335	
23	6	0	-3.540446	1.131564	0.015836	
24	6	0	-3.801922	2.469165	-0.301908	
25	1	0	-4.761162	2.876929	-0.580843	
26	6	0	-2.584045	3.156108	-0.252363	
27	1	0	-2.422370	4.202163	-0.463262	
28	6	0	-1.614126	2.218299	0.086125	
29	6	0	-0.186149	2.163336	0.198938	
30	1	0	0.177403	1.171500	0.442341	
31	8	0	2.450920	1.489965	0.140936	
32	8	0	2.198649	-1.008511	-0.261905	
33	6	0	2.135352	2.786140	-0.067646	
34	6	0	0.736561	3.125681	-0.037077	
35	1	0	0.473465	4.150734	-0.272892	
36	6	0	3.286140	3.502799	-0.375962	
37	1	0	3.341346	4.556935	-0.601837	
38	6	0	4.340999	2.581752	-0.375261	
39	1	0	5.372130	2.779666	-0.623701	
40	6	0	3.800004	1.331951	-0.056951	
41	6	0	4.358713	0.028951	-0.022469	
42	6	0	5.810798	-0.121785	0.005970	
43	6	0	6.599968	0.697465	0.844462	
44	1	0	6.122045	1.406722	1.510220	
45	6	0	7.977145	0.541603	0.879551	
46	1	0	8.571722	1.152746	1.548778	
47	6	0	8.595881	-0.409249	0.064593	
48	1	0	9.674147	-0.520685	0.087094	
49	6	0	7.830094	-1.217083	-0.779795	
50	1	0	8.314775	-1.939155	-1.426780	
51	6	0	6.449947	-1.088381	-0.802731	
52	1	0	5.865132	-1.687615	-1.490903	
53	6	0	3.540450	-1.131610	-0.016054	
54	6	0	3.801867	-2.469233 \$51	0.301661	

Figure S40: UV-Vis. spectra of 13a in H₂SO₄ and HClO₄.

Figure S41: Partial auto-oxidation of 11a to 12a (UV-Vis. spectra is showing the presence of both the 11a as well as traces of 12a)

Figure S42a: UV-Vis. spectra of 11b (DCM), 12b (DCM) and 13b (HClO₄).

Figure S42b: Normalized UV-vis absorption spectra of thin films of 12a and 12b at room temperature.

Figure S43: UV-Vis. spectra of 13b in H₂SO₄ and HClO₄.

Figure S44: Partial auto-oxidation of 11b to 12b (UV-Vis. spectra is showing the presence of both the 11b as well as traces of 12b)

Figure S45: Cyclic voltammogram (CV) for **12b** (DCM, electrolye TBAPF₆; working electrode: Pt; ref. electrode: Ag/AgCl; Scan rate 100 mV s⁻¹.

Figure S46: TGA Analysis of **12a** under N_2 with temperature rise of 10 C per minute. Thus **12a** is highly stable as it is having a high thermal decomposition temp. of about 374 C.

Figure S47: TGA Analysis of **12b** under N_2 with temperature rise of 10°C per minute. Thus **12b** is highly stable as it is having a high onset thermal decomposition temp. of about 380°C.

X-Ray Diffraction Analysis of 12a:

Single crystals of **12a** suitable for an X-Ray crystal structure determination were grown in a dark, quiet and undisturbed place from dry DCM with a toluene layer upon it (2 weeks).

Table S6: The crystallographic data for 12a.

Empirical formula	$C_{34} H_{22} O_4$
Formula weight	494.52
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	$a = 13.091(3) \text{ A} alpha = 90 \text{ deg.} \\b = 9.1718(12) \text{ A} beta = 107.03(2) \text{ deg.} \\c = 10.744(2) \text{ A} gamma = 90 \text{ deg.}$
Volume	1233.5(4) A^3
Z, Calculated density	2, 1.331 Mg/m^3
Absorption coefficient	0.087 mm^-1
F(000)	516
Crystal size	0.34 x 0.32 x 0.28 mm
Theta range for data collection	3.66 to 25.00 deg.
Limiting indices	-15<=h<=11, -10<=k<=10, -12<=l<=12
Reflections collected / unique	8079 / 2158 [R(int) = 0.0495]
Completeness to theta $= 25.00$	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9761 and 0.9711
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2158 / 0 / 172
Goodness-of-fit on F^2	0.852
Final R indices [I>2sigma(I)]	R1 = 0.0356, $wR2 = 0.0723$
R indices (all data)	R1 = 0.0641, wR2 = 0.0781
Largest diff. peak and hole	0.100 and -0.149 e.A^-3

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 825048). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data_request/cif.

X-Ray Diffraction Analysis of 12b:

Single crystals of **12b** suitable for an X-Ray crystal structure determination were grown in a dark, quiet and undisturbed place from o-dichlorobenzene (10 days).

B)

Figure S48: Crystal structure of **12b** (a) molecular structure showing distances between oxygen atoms in the crystal. (b) Side view .

Table S7: The crystallographic data for 12b.

Empirical formula	C ₃₆ H ₂₆ O ₄
Formula weight	522.57
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P b c a
Unit cell dimensions	a = 34.541(2) A alpha = 90 deg. b = 9.5379(7) A beta = 90 deg. c = 7.8246(6) A gamma = 90 deg.
Volume	2577.8(3) A^3
Z, Calculated density	4, 1.347 Mg/m^3
Absorption coefficient	0.087 mm^-1
F(000)	1096
Crystal size	0.21 x 0.17 x 0.13 mm
Theta range for data collection	3.42 to 25.00 deg.
Limiting indices	-41<=h<=41, -10<=k<=11, -9<=l<=9
Reflections collected / unique	17815 / 2270 [R(int) = 0.0975]
Completeness to theta $= 25.00$	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9888 and 0.9820
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2270 / 0 / 182
Goodness-of-fit on F^2	0.813
Final R indices [I>2 sigma(I)]	R1 = 0.0418, wR2 = 0.0776
R indices (all data)	R1 = 0.1091, $wR2 = 0.0872$
Largest diff. peak and hole	0.149 and -0.122 e.A^-3

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 825049). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data_request/cif.

Thin film transistors of compounds 12a and 12b.

Experimental details

OFET devices were fabricated in the top-contact device configuration. The substrate was heavily doped, n-type Si gate electrode with a 500 nm thick SiO₂ layer as the gate dielectric. The gate dielectric was treated with octadecyltrichlorosilane (OTS) or PMMA (Polymethyl methacrylate) by vapour deposition method. Subsequently, organic semiconductors were deposited on the substrate by thermal evaporation under a pressure of 8×10^{-4} Pa at a deposition rate gradually increased from 0.1 Å s⁻¹ to 0.4 Å s⁻¹ at the first 20 nm and then maintained 0.5 Å s⁻¹ until the thickness of the film was 50 nm. The deposition rate and film thickness were monitored by a quartz crystal microbalance (ULVAC CRTM-6000). Finally, 20 nm thick gold source and drain electrode were deposited through a shadow mask. The channel length (L) and width (W) were 0.11 mm and 5.30 mm, respectively. The FET characteristics were measured at room temperature in air using Keithley 4200 SCS. Atomic force microscopy (AFM) measurements were carried out with a Nanoscope IIIa instrument (Digital Instruments) operating in tapping mode. UV-Vis spectra were recorded on a JASCO V-570 spectrometer.

FET characteristics

Top contact OFETs based on the thin films were fabricated. The results are summarized in Table 1 of the manuscript. Here, the mobilities (μ) were calculated in the saturation regime by the following equation: $I_D = \mu C_i (W/2L) (V_G - V_T)^2$, where I_D is the drain current, μ is the field-effect mobility, C_i is the gate dielectric capacitance, W and L are the channel width and length, respectively, V_T is the threshold voltage. **12a** deposited at 60 °C exhibited the best OFET performance (0.4 cm² V⁻¹ s⁻¹). The FET characteristics of **12a** and **12b** are shown below.

Figure S49. Transfer and output characteristics of devices based on 12a (a and b, respectively) and 12b (c and d, respectively) with OTS treated SiO₂/Si ($T_s = 60$ °C) substrate.

CIF Files : data_12a _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C34 H22 O4' chemical formula weight 494.52 loop atom type symbol _atom_type_description atom type scat dispersion real _atom_type_scat_dispersion_imag atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting 'Monoclinic' _symmetry_space_group_name_H-M 'P 21/c' loop _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' cell length a 13.091(3) cell length b 9.1718(12) 10.744(2) _cell_length_c 90.00 _cell_angle_alpha _cell_angle_beta 107.03(2) _cell_angle_gamma 90.00 _cell_volume 1233.5(4) _cell_formula_units_Z 2 _cell_measurement_temperature 293(2) _cell_measurement_refins_used 2044 _cell_measurement_theta_min 3.6558 _cell_measurement_theta_max 33.1495 _exptl_crystal_description block _exptl_crystal_colour black _exptl_crystal_size_max 0.34 0.32 _exptl_crystal_size_mid 0.28 _exptl_crystal_size_min _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.331 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 516 _exptl_absorpt_coefficient_mu 0.087 _exptl_absorpt_correction_T_min 0.9711

_exptl_absorpt_correction_T_max 0.9761 _exptl_absorpt_correction_type 'multi-scan' _exptl_absorpt_process_details CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.31.7 (release 18-10-2006 CrysAlis171 .NET) (compiled Oct 18 2006,16:28:17) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. _diffrn_ambient_temperature 293(2) 0.71073 diffrn radiation wavelength diffrn radiation type MoK\a 'Enhance (Mo) X-ray Source' diffrn radiation source diffrn radiation monochromator graphite diffrn measurement device type 'OXFORD DIFFRACTION XCALIBUR-S' diffrn measurement method '\w/q-scan' diffrn detector area resol mean 15.9948 diffrn standards number _diffrn_standards_interval_count ? diffrn standards interval time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 8079 _diffrn_refIns_av_R_equivalents 0.0495 _diffrn_refIns_av_sigmal/netl 0.0441 _diffrn_refIns_limit_h_min -15 diffrn reflns limit h max 11 _diffrn_refIns_limit_k_min -10 _diffrn_reflns_limit_k_max 10 _diffrn_refIns_limit_l_min -12 _diffrn_refIns_limit_l_max 12 _diffrn_reflns_theta_min 3.66 diffrn reflns theta max 25.00 _refins_number_total 2158 _refins_number_gt 1340 refins threshold expression >2sigma(l) computing data collection 'CrysAlis CCD, Oxford Diffraction Ltd.,' 'CrysAlis RED, Oxford Diffraction Ltd.,' computing cell refinement _computing_data_reduction 'CrysAlis RED, Oxford Diffraction Ltd.,' 'SHELXS-97 (Sheldrick, 1997)' _computing_structure_solution 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_refinement _computing_molecular_graphics 'Ortep3' 'Shelx97' _computing_publication_material _refine_special_details Refinement of F^2[^] against ALL reflections. The weighted R-factor wR and

remement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger.

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0419P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3'

```
_atom_sites_solution_primary
                                  direct
_atom_sites_solution_secondary
                                   difmap
_atom_sites_solution_hydrogens
                                    geom
refine is hydrogen treatment
                                  constr
refine Is extinction method
                                 none
                               ?
_refine_ls_extinction_coef
refine Is number refins
                               2158
_refine_ls_number_parameters
                                   172
_refine_ls_number_restraints
                                 0
_refine_ls_R_factor_all
                              0.0641
_refine_ls_R_factor_gt
                              0.0356
_refine_ls_wR_factor_ref
                               0.0781
                               0.0723
_refine_ls_wR_factor_gt
_refine_ls_goodness_of_fit_ref 0.852
_refine_ls_restrained_S_all
                               0.852
refine Is shift/su max
                              0.000
refine Is shift/su mean
                               0.000
loop
_atom_site_label
_atom_site_type_symbol
 _atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
atom site symmetry multiplicity
 atom site calc flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
 atom_site_disorder_group
O1 O 0.09037(8) 0.20527(9) 0.36170(9) 0.0481(3) Uani 1 1 d . . .
O2 O 0.15311(8) -0.04427(10) 0.43687(9) 0.0494(3) Uani 1 1 d . . .
C1 C 0.03594(12) 0.33457(14) 0.35094(13) 0.0464(4) Uani 1 1 d . . .
C2 C -0.04897(12) 0.33542(15) 0.40343(13) 0.0483(4) Uani 1 1 d . . .
H2 H -0.0889 0.4200 0.3997 0.058 Uiso 1 1 calc R .
C3 C 0.08395(12) 0.43158(17) 0.28747(14) 0.0551(4) Uani 1 1 d . . .
H3 H 0.0634 0.5279 0.2673 0.066 Uiso 1 1 calc R .
C4 C 0.16742(13) 0.36160(16) 0.25903(15) 0.0548(4) Uani 1 1 d . . .
H4 H 0.2128 0.4018 0.2159 0.066 Uiso 1 1 calc R .
C5 C 0.17167(12) 0.22004(15) 0.30633(13) 0.0457(4) Uani 1 1 d . . .
C6 C 0.24034(12) 0.10144(15) 0.31372(13) 0.0456(4) Uani 1 1 d . . .
C7 C 0.32814(12) 0.11179(15) 0.25308(14) 0.0480(4) Uani 1 1 d . . .
C8 C 0.30834(13) 0.14103(16) 0.12205(15) 0.0565(4) Uani 1 1 d . . .
H8 H 0.2390 0.1609 0.0713 0.068 Uiso 1 1 calc R .
C9 C 0.39034(15) 0.14107(18) 0.06590(17) 0.0674(5) Uani 1 1 d . . .
H9 H 0.3759 0.1613 -0.0224 0.081 Uiso 1 1 calc R .
C10 C 0.49226(16) 0.11184(19) 0.1382(2) 0.0732(6) Uani 1 1 d . . .
H10 H 0.5468 0.1096 0.0990 0.088 Uiso 1 1 calc R . .
C11 C 0.51459(15) 0.0857(2) 0.26905(19) 0.0796(6) Uani 1 1 d . . .
H11 H 0.5844 0.0679 0.3193 0.096 Uiso 1 1 calc R . .
C12 C 0.43263(13) 0.0859(2) 0.32548(16) 0.0694(5) Uani 1 1 d . . .
H12 H 0.4480 0.0683 0.4143 0.083 Uiso 1 1 calc R . .
C13 C 0.23009(12) -0.02991(15) 0.37493(13) 0.0452(4) Uani 1 1 d . . .
C14 C 0.28154(13) -0.16322(16) 0.38370(16) 0.0592(4) Uani 1 1 d . . .
H14 H 0.3379 -0.1845 0.3504 0.071 Uiso 1 1 calc R .
C15 C 0.23553(13) -0.25823(17) 0.44942(16) 0.0599(5) Uani 1 1 d . . .
H15 H 0.2554 -0.3548 0.4690 0.072 Uiso 1 1 calc R .
C16 C 0.15435(12) -0.18545(15) 0.48168(13) 0.0483(4) Uani 1 1 d . . .
C17 C 0.07457(12) -0.21311(15) 0.53929(13) 0.0484(4) Uani 1 1 d . . .
H17 H 0.0302 -0.1339 0.5390 0.058 Uiso 1 1 calc R . .
```

loop_ _atom_site_aniso_label atom site aniso U 11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 atom site aniso U 13 atom_site_aniso_U_12 O1 0.0512(7) 0.0355(5) 0.0594(6) 0.0055(5) 0.0190(5) 0.0057(5) O2 0.0559(7) 0.0372(6) 0.0587(6) 0.0072(5) 0.0224(5) 0.0099(5) C1 0.0510(10) 0.0330(7) 0.0502(9) 0.0041(7) 0.0071(8) 0.0079(7) C2 0.0537(10) 0.0362(8) 0.0523(9) 0.0056(7) 0.0112(8) 0.0107(7) C3 0.0602(11) 0.0401(8) 0.0624(10) 0.0109(8) 0.0138(9) 0.0059(8) C4 0.0572(11) 0.0493(9) 0.0569(9) 0.0103(8) 0.0155(8) -0.0012(8) C5 0.0466(10) 0.0459(9) 0.0431(8) 0.0028(7) 0.0111(7) 0.0001(7) C6 0.0448(9) 0.0466(8) 0.0436(8) 0.0000(7) 0.0098(7) 0.0010(7) C7 0.0458(10) 0.0466(8) 0.0504(9) -0.0017(7) 0.0120(7) -0.0004(7) C8 0.0520(10) 0.0631(10) 0.0535(10) 0.0051(8) 0.0140(8) -0.0030(8) C9 0.0705(14) 0.0747(12) 0.0610(11) 0.0027(9) 0.0254(10) -0.0099(10) C10 0.0650(14) 0.0770(12) 0.0884(15) -0.0142(11) 0.0395(12) -0.0167(10) C11 0.0460(11) 0.1065(16) 0.0839(14) -0.0066(12) 0.0153(10) 0.0010(11) C12 0.0523(12) 0.0951(13) 0.0577(10) 0.0020(10) 0.0111(9) 0.0059(10) C13 0.0437(9) 0.0470(8) 0.0456(9) -0.0003(7) 0.0140(7) 0.0052(7) C14 0.0566(11) 0.0522(9) 0.0740(11) 0.0054(8) 0.0274(9) 0.0147(8) C15 0.0623(12) 0.0441(8) 0.0759(12) 0.0077(8) 0.0241(9) 0.0157(9) C16 0.0547(11) 0.0368(8) 0.0517(9) 0.0056(7) 0.0128(8) 0.0090(7) C17 0.0523(10) 0.0396(8) 0.0531(9) 0.0028(7) 0.0149(8) 0.0102(7)

_geom_special_details

All esds (except the esd in the dihedral angle between two I.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving I.s. planes.

loop _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag O1 C5 1.3695(16) . ? O1 C1 1.3709(16) . ? O2 C13 1.3669(16) . ? O2 C16 1.3799(16) . ? C1 C3 1.379(2) . ? C1 C2 1.3859(19) . ? C2 C17 1.3676(18) 3_556 ? C2 H2 0.9300 . ? C3 C4 1.376(2) . ? C3 H3 0.9300 . ? C4 C5 1.3895(19) . ? C4 H4 0.9300 . ? C5 C6 1.3986(19) . ? C6 C13 1.3976(18) . ? C6 C7 1.481(2) . ? C7 C8 1.381(2).? C7 C12 1.382(2) . ?

C8 C9 1.377(2).? C8 H8 0.9300 . ? C9 C10 1.360(2) . ? C9 H9 0.9300 . ? C10 C11 1.370(2) . ? C10 H10 0.9300 . ? C11 C12 1.378(2) . ? C11 H11 0.9300 . ? C12 H12 0.9300 . ? C13 C14 1.3858(19).? C14 C15 1.367(2) . ? C14 H14 0.9300 . ? C15 C16 1.382(2) . ? C15 H15 0.9300 . ? C16 C17 1.3846(19) . ? C17 C2 1.3676(18) 3 556 ? C17 H17 0.9300 . ? loop _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C5 O1 C1 109.19(10) . . ? C13 O2 C16 108.98(10) . . ? O1 C1 C3 107.38(13) . . ? O1 C1 C2 115.44(12) . . ? C3 C1 C2 137.17(13) . . ? C17 C2 C1 120.66(13) 3_556 . ? C17 C2 H2 119.7 3_556 . ? C1 C2 H2 119.7 . . ? C4 C3 C1 108.38(13) . . ? C4 C3 H3 125.8 . . ? C1 C3 H3 125.8 . . ? C3 C4 C5 107.69(14) . . ? C3 C4 H4 126.2 . . ? C5 C4 H4 126.2 . . ? O1 C5 C4 107.36(13) . . ? O1 C5 C6 117.82(12) . . ? C4 C5 C6 134.74(15) . . ? C13 C6 C5 123.26(13) . . ? C13 C6 C7 117.14(12) . . ? C5 C6 C7 119.60(13) . . ? C8 C7 C12 117.81(15) . . ? C8 C7 C6 121.51(14) . . ? C12 C7 C6 120.61(14) . . ? C9 C8 C7 120.59(16) . . ? C9 C8 H8 119.7 . . ? C7 C8 H8 119.7 . . ? C10 C9 C8 120.67(17) . . ? C10 C9 H9 119.7 . . ? C8 C9 H9 119.7 . . ? C9 C10 C11 119.98(17) . . ? C9 C10 H10 120.0 . . ? C11 C10 H10 120.0 . . ? C10 C11 C12 119.42(18) . . ? C10 C11 H11 120.3 . . ? C12 C11 H11 120.3 . . ? C11 C12 C7 121.49(16) . . ?

C11 C12 H12 119.3 . . ? C7 C12 H12 119.3 . . ? O2 C13 C14 107.15(13) . . ? O2 C13 C6 119.88(12) . . ? C14 C13 C6 132.90(14) . . ? C15 C14 C13 108.58(14) . . ? C15 C14 H14 125.7 . . ? C13 C14 H14 125.7 . . ? C14 C15 C16 108.00(13) . . ? C14 C15 H15 126.0 . . ? C16 C15 H15 126.0 . . ? O2 C16 C15 107.28(12) . . ? O2 C16 C17 113.24(12) . . ? C15 C16 C17 139.43(14) . . ? C2 C17 C16 131.90(14) 3_556 . ? C2 C17 H17 114.0 3 556 . ? C16 C17 H17 114.0 . . ? loop _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry 2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 geom_torsion_publ_flag C5 O1 C1 C3 0.15(15) ? C5 O1 C1 C2 -179.91(12)? O1 C1 C2 C17 -0.3(2) ... 3_556 ? C3 C1 C2 C17 179.61(17) ... 3_556 ? O1 C1 C3 C4 0.20(16) . . . ? C2 C1 C3 C4 -179.72(17) ? C1 C3 C4 C5 -0.46(17) . . . ? C1 O1 C5 C4 -0.43(15) ? C1 O1 C5 C6 176.67(12) . . . ? C3 C4 C5 O1 0.55(16)? C3 C4 C5 C6 -175.84(16) ? O1 C5 C6 C13 -0.3(2) ? C4 C5 C6 C13 175.84(15) . . . ? O1 C5 C6 C7 178.91(12) . . . ? C4 C5 C6 C7 -5.0(2) . . . ? C13 C6 C7 C8 121.23(15) . . . ? C5 C6 C7 C8 -58.00(19)? C13 C6 C7 C12 -55.9(2)? C5 C6 C7 C12 124.88(16)? C12 C7 C8 C9 1.3(2) . . . ? C6 C7 C8 C9 -175.86(14)? C7 C8 C9 C10 0.2(2)? C8 C9 C10 C11 -1.7(3)? C9 C10 C11 C12 1.5(3)? C10 C11 C12 C7 0.1(3)? C8 C7 C12 C11 -1.5(3) . . . ? C6 C7 C12 C11 175.73(16)? C16 O2 C13 C14 -1.27(15) ? C16 O2 C13 C6 176.07(12)? C5 C6 C13 O2 -3.2(2) . . . ? C7 C6 C13 O2 177.57(12)? C5 C6 C13 C14 173.29(16) . . . ? C7 C6 C13 C14 -5.9(2)?

```
\begin{array}{c} 02\ C13\ C14\ C15\ 0.54(18)\ \dots\ ?\\ C6\ C13\ C14\ C15\ -176.30(16)\ \dots\ ?\\ C13\ C14\ C15\ C16\ 0.38(19)\ \dots\ ?\\ C13\ 02\ C16\ C15\ 1.50(16)\ \dots\ ?\\ C13\ 02\ C16\ C17\ -176.36(12)\ \dots\ ?\\ C14\ C15\ C16\ O2\ -1.15(18)\ \dots\ ?\\ C14\ C15\ C16\ C17\ 175.84(18)\ \dots\ ?\\ O2\ C16\ C17\ C2\ -179.02(14)\ \dots\ 3\_556\ ?\\ C15\ C16\ C17\ C2\ 4.1(3)\ \dots\ 3\_556\ ?\\ \end{array}
```

_diffrn_measured_fraction_theta_max 0.998 _diffrn_refIns_theta_full 25.00 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 0.100 _refine_diff_density_min -0.149 _refine_diff_density_rms 0.032

CIF Files : data_12b _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C36 H26 O4' chemical formula weight 522.57 loop atom type symbol _atom_type_description atom type scat dispersion real _atom_type_scat_dispersion_imag atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting 'Orthorhombic' _symmetry_space_group_name_H-M 'P b c a' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' '-x-1/2, y-1/2, z' 'x, -y-1/2, z-1/2' 34.541(2) _cell_length_a _cell_length_b 9.5379(7) _cell_length_c 7.8246(6) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 2577.8(3) _cell_formula_units Z 4 _cell_measurement_temperature 293(2) _cell_measurement_refins_used 2737 _cell_measurement_theta_min 3.3609 _cell_measurement_theta_max 32.7152 _exptl_crystal_description plate _exptl_crystal_colour black _exptl_crystal_size_max 0.21 _exptl_crystal_size_mid 0.17 0.13 _exptl_crystal_size_min ? _exptl_crystal_density_meas 1.347 _exptl_crystal_density_diffrn

```
Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2011
```

```
exptl crystal density method
                                'not measured'
_exptl_crystal_F_000
                            1096
_exptl_absorpt_coefficient_mu
                                0.087
_exptl_absorpt_correction_T_min 0.9820
_exptl_absorpt_correction_T_max 0.9888
_exptl_absorpt_correction_type
                                     'multi-scan'
exptl absorpt process details
CrysAlis RED, Oxford Diffraction Ltd.,
Version 1.171.31.7 (release 18-10-2006 CrysAlis171 .NET)
(compiled Oct 18 2006,16:28:17)
Empirical absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm.
diffrn ambient temperature
                               293(2)
diffrn radiation wavelength
                               0.71073
diffrn radiation type
                            MoK\a
diffrn radiation source
                             'Enhance (Mo) X-ray Source'
diffrn radiation monochromator graphite
_diffrn_measurement_device_type
                                  'OXFORD DIFFRACTION XCALIBUR-S'
diffrn measurement method
                                 '\w/q-scan'
_diffrn_detector_area_resol_mean 15.9948
_diffrn_standards_number
diffrn standards interval count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_%
                                ?
diffrn reflns number
                            17815
_diffrn_reflns_av_R_equivalents 0.0975
_diffrn_reflns_av_sigmal/netl
                             0.0929
_diffrn_refIns_limit_h_min
                             -41
_diffrn_reflns_limit_h_max
                              41
_diffrn_refIns_limit_k_min
                             -10
diffrn reflns limit k max
                              11
_diffrn_refIns_limit_l_min
                             -9
_diffrn_refIns_limit_l_max
                             9
diffrn reflns theta min
                             3.42
diffrn reflns theta max
                             25.00
refins number total
                            2270
_refins_number at
                           1088
_reflns_threshold_expression
                                >2sigma(l)
```

_computing_data_collection'CrysAlis CCD, Oxford Diffraction Ltd.,'_computing_cell_refinement'CrysAlis RED, Oxford Diffraction Ltd.,'_computing_data_reduction'CrysAlis RED, Oxford Diffraction Ltd.,'_computing_structure_solution'SHELXS-97 (Sheldrick, 1997)'_computing_molecular_graphics'Ortep3'_computing_publication_material'Shelx97'

_refine_special_details

Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger.

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0337P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct atom sites solution secondary difmap atom sites solution hydrogens geom _refine_ls_hydrogen_treatment riding _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_refins 2270 _refine_ls_number_parameters 182 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.1091 refine Is R factor gt 0.0418 refine Is wR factor ref 0.0872 refine Is wR factor qt 0.0776 refine Is goodness of fit ref 0.813 refine Is restrained S all 0.813 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity atom site calc flag _atom_site_refinement_flags _atom_site_disorder_assembly atom site disorder group O1 O 0.55805(5) 1.19579(16) 0.60512(19) 0.0472(4) Uani 1 1 d . . . O2 O 0.56452(4) 0.93715(16) 0.56863(19) 0.0452(4) Uani 1 1 d . . . C1 C 0.54105(7) 1.3250(3) 0.6311(3) 0.0425(6) Uani 1 1 d . . . C2 C 0.56909(8) 1.4146(3) 0.6917(3) 0.0488(7) Uani 1 1 d . . . H2 H 0.5655 1.5084 0.7203 0.059 Uiso 1 1 calc R . . C3 C 0.60330(8) 1.3413(3) 0.7026(3) 0.0481(7) Uani 1 1 d . . . H3 H 0.6269 1.3773 0.7392 0.058 Uiso 1 1 calc R . . C4 C 0.59657(7) 1.2043(3) 0.6498(3) 0.0417(6) Uani 1 1 d . . . C5 C 0.61897(7) 1.0840(3) 0.6348(3) 0.0392(6) Uani 1 1 d . . . C6 C 0.60398(7) 0.9531(3) 0.5831(3) 0.0401(6) Uani 1 1 d . . . C7 C 0.62073(7) 0.8280(3) 0.5285(3) 0.0468(7) Uani 1 1 d . . . H7 H 0.6471 0.8082 0.5262 0.056 Uiso 1 1 calc R . . C8 C 0.59161(8) 0.7389(3) 0.4786(3) 0.0474(7) Uani 1 1 d . . . H8 H 0.5949 0.6487 0.4359 0.057 Uiso 1 1 calc R . . C9 C 0.55670(7) 0.8053(2) 0.5024(3) 0.0403(6) Uani 1 1 d . . . C10 C 0.51764(7) 0.7842(2) 0.4691(3) 0.0430(6) Uani 1 1 d . . . H10 H 0.5017 0.8598 0.4958 0.052 Uiso 1 1 calc R . . C11 C 0.49879(7) 0.6704(3) 0.4034(3) 0.0453(7) Uani 1 1 d . . . H11 H 0.5126 0.5887 0.3812 0.054 Uiso 1 1 calc R . C12 C 0.66108(7) 1.0917(2) 0.6696(3) 0.0396(6) Uani 1 1 d . . . C13 C 0.68432(7) 1.1960(3) 0.5995(3) 0.0440(7) Uani 1 1 d . . . H13 H 0.6733 1.2637 0.5291 0.053 Uiso 1 1 calc R . . C14 C 0.72361(7) 1.2002(3) 0.6331(3) 0.0450(7) Uani 1 1 d . . . H14 H 0.7384 1.2720 0.5861 0.054 Uiso 1 1 calc R . . C15 C 0.74151(7) 1.1012(3) 0.7345(3) 0.0444(7) Uani 1 1 d . . .
C16 C 0.78453(7) 1.1033(3) 0.7683(3) 0.0606(8) Uani 1 1 d . . . H16A H 0.7960 1.1817 0.7103 0.091 Uiso 1 1 calc R ... H16B H 0.7959 1.0179 0.7271 0.091 Uiso 1 1 calc R ... H16C H 0.7890 1.1116 0.8890 0.091 Uiso 1 1 calc R . . C17 C 0.71837(7) 0.9986(3) 0.8052(3) 0.0475(7) Uani 1 1 d . . . H17 H 0.7295 0.9307 0.8750 0.057 Uiso 1 1 calc R . . C18 C 0.67905(7) 0.9945(3) 0.7746(3) 0.0481(7) Uani 1 1 d . . . H18 H 0.6642 0.9247 0.8257 0.058 Uiso 1 1 calc R . . loop _atom_site_aniso_label _atom_site_aniso_U_11 atom site aniso U 22 atom site aniso U 33 _atom_site_aniso_U_23 atom site aniso U 13 atom site aniso U 12 O1 0.0391(11) 0.0381(10) 0.0643(11) -0.0070(9) -0.0056(9) 0.0020(9) O2 0.0355(11) 0.0410(11) 0.0593(11) -0.0025(8) -0.0017(8) -0.0006(8) C1 0.0440(17) 0.0349(16) 0.0486(15) -0.0047(12) 0.0015(13) -0.0012(14) C2 0.0550(19) 0.0391(16) 0.0522(16) -0.0062(13) -0.0007(14) -0.0034(15) C3 0.0434(17) 0.0485(18) 0.0524(16) -0.0070(13) -0.0020(13) -0.0064(14) C4 0.0328(16) 0.0448(17) 0.0474(16) 0.0022(14) -0.0049(12) -0.0004(14) C5 0.0355(16) 0.0427(17) 0.0395(15) 0.0023(12) -0.0018(12) -0.0022(14) C6 0.0318(16) 0.0432(17) 0.0454(15) 0.0043(13) 0.0010(12) 0.0019(13) C7 0.0358(15) 0.0517(18) 0.0528(16) -0.0041(13) 0.0020(13) 0.0027(14) C8 0.0497(19) 0.0401(16) 0.0524(17) -0.0066(13) 0.0064(14) 0.0039(14) C9 0.0393(16) 0.0329(15) 0.0487(15) -0.0012(13) 0.0038(12) -0.0030(13) C10 0.0415(17) 0.0372(16) 0.0502(16) -0.0043(13) 0.0038(13) 0.0019(12) C11 0.0456(17) 0.0354(16) 0.0549(16) 0.0003(13) 0.0040(13) 0.0029(14) C12 0.0381(16) 0.0426(17) 0.0380(15) -0.0009(12) 0.0005(12) 0.0011(13) C13 0.0424(17) 0.0479(17) 0.0417(15) 0.0033(13) -0.0024(12) 0.0007(14) C14 0.0387(17) 0.0465(17) 0.0499(16) 0.0019(13) 0.0031(12) -0.0059(14) C15 0.0370(17) 0.0469(18) 0.0491(17) -0.0070(13) -0.0024(13) -0.0024(14) C16 0.0412(18) 0.068(2) 0.073(2) -0.0073(15) -0.0065(14) -0.0018(14) C17 0.0429(18) 0.0516(18) 0.0480(15) 0.0055(14) -0.0079(13) 0.0028(14) C18 0.0427(18) 0.0507(17) 0.0509(16) 0.0077(14) -0.0011(13) -0.0024(14)

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag O1 C4 1.378(3) . ? O1 C1 1.380(3) . ? O2 C6 1.376(2) . ? O2 C9 1.387(2) . ? C1 C2 1.376(3) . ? C1 C11 1.403(3) 5_676 ? C2 C3 1.376(3) . ? C2 H2 0.9300 . ?

```
C3 C4 1.390(3) . ?
C3 H3 0.9300 . ?
C4 C5 1.389(3) . ?
C5 C6 1.411(3).?
C5 C12 1.482(3) . ?
C6 C7 1.393(3) . ?
C7 C8 1.373(3).?
C7 H7 0.9300 . ?
C8 C9 1.375(3) . ?
C8 H8 0.9300 . ?
C9 C10 1.389(3) . ?
C10 C11 1.366(3) . ?
C10 H10 0.9300 . ?
C11 C1 1.403(3) 5_676 ?
C11 H11 0.9300 . ?
C12 C18 1.386(3) . ?
C12 C13 1.391(3) . ?
C13 C14 1.383(3) . ?
C13 H13 0.9300 . ?
C14 C15 1.380(3) . ?
C14 H14 0.9300 . ?
C15 C17 1.379(3) . ?
C15 C16 1.509(3) . ?
C16 H16A 0.9600 . ?
C16 H16B 0.9600 . ?
C16 H16C 0.9600 . ?
C17 C18 1.379(3) . ?
C17 H17 0.9300 . ?
C18 H18 0.9300 . ?
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
 geom_angle_publ_flag
C4 O1 C1 108.70(19) . . ?
C6 O2 C9 108.90(18) . . ?
C2 C1 O1 107.8(2) . . ?
C2 C1 C11 137.5(3) . 5_676 ?
O1 C1 C11 114.6(2) . 5_676 ?
C1 C2 C3 108.1(2) . . ?
C1 C2 H2 126.0 . . ?
C3 C2 H2 126.0 . . ?
C2 C3 C4 108.4(2) . . ?
C2 C3 H3 125.8 . . ?
C4 C3 H3 125.8 . . ?
O1 C4 C5 117.9(2) . . ?
O1 C4 C3 107.0(2) . . ?
C5 C4 C3 135.1(2) . . ?
C4 C5 C6 123.4(2) ...?
C4 C5 C12 119.4(2) ...?
C6 C5 C12 117.2(2) . . ?
O2 C6 C7 106.9(2) . . ?
O2 C6 C5 119.0(2) . . ?
C7 C6 C5 133.9(2) . . ?
C8 C7 C6 108.2(2) . . ?
C8 C7 H7 125.9 . . ?
C6 C7 H7 125.9 . . ?
C7 C8 C9 108.6(2) . . ?
```

C7 C8 H8 125.7 . . ? C9 C8 H8 125.7 . . ? C8 C9 O2 107.3(2) . . ? C8 C9 C10 139.5(2) . . ? O2 C9 C10 113.0(2) . . ? C11 C10 C9 130.5(2) . . ? C11 C10 H10 114.8 . . ? C9 C10 H10 114.8 . . ? C10 C11 C1 121.0(2) . 5_676 ? C10 C11 H11 119.5 . . ? C1 C11 H11 119.5 5_676 . ? C18 C12 C13 117.0(2) . . ? C18 C12 C5 121.0(2) . . ? C13 C12 C5 122.0(2) . . ? C14 C13 C12 120.8(2) . . ? C14 C13 H13 119.6 . . ? C12 C13 H13 119.6 . . ? C15 C14 C13 121.9(2) . . ? C15 C14 H14 119.0 . . ? C13 C14 H14 119.0 . . ? C17 C15 C14 117.2(2) . . ? C17 C15 C16 120.6(2) . . ? C14 C15 C16 122.2(2) . . ? C15 C16 H16A 109.5 . . ? C15 C16 H16B 109.5 . . ? H16A C16 H16B 109.5 . . ? C15 C16 H16C 109.5 . . ? H16A C16 H16C 109.5 . . ? H16B C16 H16C 109.5 . . ? C15 C17 C18 121.4(2) . . ? C15 C17 H17 119.3 . . ? C18 C17 H17 119.3 . . ? C17 C18 C12 121.6(2) . . ? C17 C18 H18 119.2 . . ? C12 C18 H18 119.2 . . ? loop _geom_torsion_atom_site_label 1 _geom_torsion_atom_site_label 2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C4 O1 C1 C2 0.2(2) ? C4 O1 C1 C11 -177.6(2) ... 5_676 ? O1 C1 C2 C3 0.2(3) . . . ? C11 C1 C2 C3 177.3(3) 5_676 ...? C1 C2 C3 C4 -0.5(3)? C1 O1 C4 C5 179.32(19) . . . ? C1 O1 C4 C3 -0.5(2) ? C2 C3 C4 O1 0.6(3) . . . ? C2 C3 C4 C5 -179.1(2)? O1 C4 C5 C6 -2.7(3) ? C3 C4 C5 C6 177.1(3) ? O1 C4 C5 C12 175.59(19) ? C3 C4 C5 C12 -4.7(4) ? C9 O2 C6 C7 -1.3(3) . . . ? C9 O2 C6 C5 174.87(19) . . . ?

C4 C5 C6 O2 -9.2(3)? C12 C5 C6 O2 172.5(2) . . . ? C4 C5 C6 C7 165.8(2) ? C12 C5 C6 C7 -12.5(4) ? O2 C6 C7 C8 1.2(3) . . . ? C5 C6 C7 C8 -174.2(2) ? C6 C7 C8 C9 -0.6(3) . . . ? C7 C8 C9 O2 -0.2(3) ? C7 C8 C9 C10 173.6(3) ? C6 O2 C9 C8 1.0(2)? C6 O2 C9 C10 -174.66(18)? C8 C9 C10 C11 5.9(5)? O2 C9 C10 C11 179.5(2)? C9 C10 C11 C1 -175.5(2) ... 5_676 ? C4 C5 C12 C18 132.0(2)? C6 C5 C12 C18 -49.6(3) . . . ? C4 C5 C12 C13 -47.9(3) . . . ? C6 C5 C12 C13 130.4(2)? C18 C12 C13 C14 0.5(3)? C5 C12 C13 C14 -179.6(2)? C12 C13 C14 C15 1.0(4) ? C13 C14 C15 C17 -1.5(3)? C13 C14 C15 C16 178.5(2)? C14 C15 C17 C18 0.6(4) ? C16 C15 C17 C18 -179.5(2) . . . ? C15 C17 C18 C12 1.0(4)? C13 C12 C18 C17 -1.5(4) ? C5 C12 C18 C17 178.6(2)? _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 25.00

_diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 0.149 _refine_diff_density_min -0.122 _refine_diff_density_rms 0.032