**Supporting Information** 

Lundrigan, T. *et al. CI*-BODIPYs

### Cl-BODIPYs: a BODIPY class enabling facile B-substitution

Travis Lundrigan, Sarah M. Crawford, T. Stanley Cameron, Alison Thompson\*

Department of Chemistry, Dalhousie University, 6274 Coburg Road, PO BOX 15000, Halifax, Nova Scotia, B3H 4R2, Canada

### **Supporting Information**

| 1.1 GENERAL EXPERIMENTAL                                                                                                                                                                                     | 1       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| <ul> <li>1.2 GENERAL PROCEDURE FOR ABSORPTION AND EMISSION<br/>MEASUREMENTS</li> <li>1.3 CHARACTERIZATION DATA</li> <li>1.4 REFERENCES</li> <li>1.5 <sup>11</sup>B AND <sup>13</sup>C NMR SPECTRA</li> </ul> | 2       |
|                                                                                                                                                                                                              | 2       |
|                                                                                                                                                                                                              | 9<br>10 |

#### **1.1 General Experimental**

All <sup>1</sup>H NMR (500 MHz), <sup>13</sup>C NMR (125 MHz) and <sup>11</sup>B NMR (160 MHz) spectra were recorded using a Bruker Avance AV-500 spectrometer. <sup>15</sup>N NMR (125 MHz) spectra were recorded using a Bruker Avance AV-300 spectrometer. Chemical shifts are expressed in parts per million (ppm) using the solvent signal [CDCl<sub>3</sub> (<sup>1</sup>H 7.26 ppm; <sup>13</sup>C 71.16 ppm); THF- $d_8$  (<sup>1</sup>H 1.73, 3.58 ppm; <sup>13</sup>C 67.57, 25.37 ppm); MeOD- $d_4$  (<sup>1</sup>H 3.31 ppm, <sup>13</sup>C 49.00 ppm); Acetone- $d_6$  (<sup>1</sup>H 2.05 ppm, <sup>13</sup>C 29.84 ppm)] as an internal reference for <sup>1</sup>H and <sup>13</sup>C and BF<sub>3</sub>•OEt<sub>2</sub> as an external reference for <sup>11</sup>B. Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. All coupling constants (*J*) are reported in Hertz (Hz). Mass spectra were obtained using ion trap (ESI) instruments operating in positive mode. Melting points are reported uncorrected. Column chromatography was performed using 230-400 mesh ultra pure silica or 150 mesh Brockmann III activated, basic alumina oxide, as indicated. Compounds **5a**<sup>[1]</sup> and **6**<sup>[1]</sup> have been previously reported in the literature.

**Supporting Information** 

Lundrigan, T. *et al. CI*-BODIPYs

#### **1.2 General Procedure for Absorption and Emission Measurements**

The absorbance measurements were performed using a CARY 100 Bio UV/Visible spectrophotometer. The fluorescence measurements were performed using a Shimadzu RF-5301PC Spectrofluorimeter. A 10 mm quartz cuvette was used in all measurements. For the fluorescence experiments, the slit width was 3 nm for both excitation and emission. Relative quantum efficiencies of derivatives were obtained by comparing the areas under the emission spectra of the samples with that of a solution of rhodamine 6G in ethanol ( $\Phi_F = 0.94$ )<sup>S[2]</sup> excited at the same wavelength. The excitation wavelength was 510 nm for **2a** and **2b** and 520 nm for **3a** and **3b**. Quantum yields were determined using Equation 1.<sup>S[3]</sup>

$$\phi_X = \phi_{st} \left( \frac{I_X}{I_{st}} \right) \left( \frac{A_{st}}{A_X} \right) \left( \frac{\eta_X^2}{\eta_{st}^2} \right) \qquad \dots \text{Equation 1}$$

Where  $\phi_{st}$  is the reported quantum yield of the standard, I is the area from the integrated emission spectra, A is the absorbance at the excitation wavelength and  $\eta$  is the refractive index of the solvent used. The X subscript denotes the unknown, and "st" denotes the standard.

### **1.3 Characterization Data**

# 1,3,5,7-Tetramethyl-2,6-diethyl-8-phenyl-4,4'-dichloro-bora-3a,4a-diaza-s-indacene (3a)



Boron trichloride (0.20 mL of a 1.0 M solution in hexanes, 0.20 mmol) was slowly added to a solution of **1a** (50 mg, 0.20 mmol) in anhydrous toluene (20 mL) under an N<sub>2</sub> atmosphere in a glovebox. The reaction mixture was stirred at room temperature for 1 h. The reaction mixture was then filtered over Celite, washed with anhydrous toluene and the filtrate was concentrated *in vacuo* to give **3a** as a red powder (64 mg, 98%). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>)  $\lambda_{max}$  (nm): 540,  $\varepsilon$  35 000

mol  $L^{-1}$  cm<sup>-1</sup>;  $\delta_{H}$  (500 MHz, THF-d<sub>8</sub>) 7.34 (1H, s), 2.69 (6H, s), 2.43 (4H, q, J = 7.6), 2.21 (6H, s),

 $1.07 (6H, t, J = 7.6); \delta_C (125 \text{ MHz}, \text{THF-d}_8) 157.0, 138.3, 133.7, 132.3, 120.3, 18.0, 14.6, 14.4, 14.4)$ 

9.1;  $\delta_B$  (160 MHz, THF-d<sub>8</sub>) 2.39 (s);  $\delta_N$  (30 MHz, THF-d<sub>8</sub>) 197.8 (s).

## 1,3,5,7-Tetramethyl-2,6-diethyl-8-phenyl-4,4'-dichloro-bora-3a,4a-diaza-s-indacene (3b)



Boron trichloride (0.15 mL of a 1.0 M solution in hexanes, 0.15 mmol) was slowly added to a solution of **1b** (50 mg, 0.15 mmol) in anhydrous toluene (20 mL) under an N<sub>2</sub> atmosphere in a glovebox. The reaction mixture was stirred at room temperature for 1 h. The reaction mixture was then filtered over Celite, washed with anhydrous toluene and the filtrate was concentrated *in vacuo* to give **3b** as a red powder (60 mg, 97%). UV/Vis (CH<sub>2</sub>Cl<sub>2</sub>)  $\lambda_{max}$  (nm): 533,  $\epsilon$  30 000 mol L<sup>-1</sup> cm<sup>-1</sup>;  $\delta_{H}$  (500 MHz, THF-d<sub>8</sub>) 7.55-7.51 (3H, m), 7.37-7.36 (2H, m), 2.74 (6H, s), 2.35 (4H, q, J = 7.5), 1.32 (6H, s), 0.98 (6H, t, J = 7.6);  $\delta_{C}$  (125 MHz, THF-d<sub>8</sub>) 156.4, 141.4, 139.6, 136.4, 135.1, 130.5, 130.1, 129.9, 129.3, 17.8, 14.8, 14.7, 12.0;  $\delta_{B}$  (160 MHz, THF-d<sub>8</sub>) 2.39 (s);  $\delta_{N}$  (30 MHz, THF-d<sub>8</sub>) 199.5 (s).

### $\kappa^2$ -(4,4'-Diethyl-3,3',5,5'-tetramethyldipyrrinato) boronium iodide (4aI)



4aI

#### **Supporting Information**

To a solution of 4,4'-diethyl-3,3',5,5'-tetramethyldipyrrin hydrochloride<sup>[4]</sup> (100 mg, 0.30 mmol) in anhydrous dichloromethane (15 mL) under nitrogen was added triethylamine (0.25 mL, 1.80 mmol) and the solution was stirred for 10 min. Solid BI<sub>3</sub> (1.04 g, 2.70 mmol) was added in parts, slowly, and the resulting solution was stirred for 18 h at room temperature. The reaction mixture was cooled to 0 °C and methanol (4 mL) was added dropwise. The reaction mixture was diluted with dichloromethane (25 mL) and distilled water (25 mL) and the layers were separated. The aqueous layer was extracted with dichloromethane (2 x 25 mL) and the combined organic fractions were dried over sodium sulfate and concentrated *in vacuo* to give a red solid. Purification over neutral alumina eluting with a gradient of dichloromethane:methanol (100:0 to 95:5) and removal of the solvent *in vacuo* gave **4aI** as a red solid (55 mg, 0.08 mmol, 56%). m.p. = > 300 °C;  $\delta_{\rm H}$ (500 MHz, CD<sub>3</sub>OD) 7.80 (2H, s), 2.40 (8H, q, *J*=7), 2.35 (12H, s), 1.75 (12H, s), 1.01 (12H, t, *J*=7); δ<sub>C</sub> (125 MHz, CD<sub>3</sub>OD) 157.5, 141.2, 136.5, 135.2, 122.4, 17.9, 14.9, 11.6, 9.6.  $\delta_{\rm B}$  (160 MHz, CD<sub>3</sub>OD) -2.79. UV/Vis (CH<sub>3</sub>CN)  $\lambda$  (nm),  $\varepsilon$  (mol L<sup>-1</sup> cm<sup>-1</sup>): 386 (15) 600), 531 (57 000). m/z ESI<sup>+</sup> found 521.3784 [M]<sup>+</sup> calculated for C<sub>34</sub>H<sub>46</sub>N<sub>4</sub>B 521.3810. A crystal suitable for x-ray crystallography was obtained from a slow evaporation of a solution of compound 4aI in a 1:1 solution of pentane to dichloromethane. Crystallographic data for **4aI** (CCDC 842813):  $C_{34}H_{46}N_4BI$ , M = 648.48 g, deep-red plate, 0.41 x 0.22 x 0.09 mm<sup>3</sup>, primitive monoclinic,  $P2_1/c$ , Z = 4, a = 10.9061(4) Å, b =14.5040(5) Å, c = 21.1718(7) Å,  $\beta = 100.216(2)^{\circ}$ , V = 3295.91(20) Å<sup>3</sup>, T = 173(1) K, 25370 reflections (9298 unique,  $R_{int} = 0.042$ ),  $R = 0.0361(3\sigma)$ ,  $Rw = 0.0414(3\sigma, 6538)$ reflections). These data may be accessed free-of-charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

 $\kappa^2$ -(4,4'-Diethyl-3,3',5,5'-tetramethyl-meso-phenyl-dipyrrinato) boronium iodide (4bI)

IΘ



To a solution of 4,4'-diethyl-3,3',5,5'-tetramethyl-8-phenyl-dipyrrin (100 mg, 0.30 mmol) in anhydrous dichloromethane (15 mL) under nitrogen was added triethylamine (0.25 mL, 1.80 mmol) and the solution was then stirred for 10 min. Solid BI<sub>3</sub> (1.04 g, 2.70 mmol) was added in parts, slowly, and the resulting solution was stirred for 18 h at room temperature. The reaction mixture was cooled to 0 °C and methanol (4 mL) was added dropwise. The reaction mixture was diluted with dichloromethane (25 mL) and distilled water (25 mL) and the layers were separated. The aqueous layer was extracted with dichloromethane (2 x 25 mL) and the combined organic fractions were dried over sodium sulfate and concentrated *in vacuo* to give a brown solid. The solid was suspended in methanol, stirred 30 min at room temperature and isolated using suction filtration to give **4bI** as a brown solid (72 mg, 0.09 mmol, 60%). m.p. = 256-257 °C;  $\delta_{\rm H}$  (500 MHz, acetone- $d_6$ ) 7.70-7.68 (6H, m), 7.50-7.48 (4H, m), 2.36 (8H, q, J=7), 2.06 (12H, s), 1.46 (12H, s), 0.93 (12H, t, J=7).  $\delta_{\rm C}$  (125 MHz, acetone- $d_6$ ) 156.9, 142.8, 141.6, 136.1, 135.4, 134.8, 130.61, 130.58, 128.9, 17.5, 14.9, 12.3, 11.8.  $\delta_{\rm B}$  (160 MHz, acetone- $d_6$ ) 2.41.

UV/Vis (CH<sub>3</sub>CN)  $\lambda$  (nm),  $\epsilon$  (mol L<sup>-1</sup> cm<sup>-1</sup>): 356 (15 200), 514 (63 400). *m/z* ESI<sup>+</sup> found

 $673.4411 \text{ [M]}^+$  calculated for C<sub>46</sub>H<sub>54</sub>BN<sub>4</sub> 673.4436.

# 1,3,5,7-Tetramethyl-2,6-diethyl-8-*H*-4,4'-dimethoxy-bora-3a,4a-diaza-s-indacene (5a)<sup>[1]</sup>



To a solution of **3a** (50 mg, 0.15 mmol) in anhydrous methanol (10 mL) was added solid sodium methoxide (52 mg, 0.95 mmol) and the reaction mixture was stirred at room temperature for 3 h in a glovebox. The reaction mixture was then removed from the glovebox, poured into water (20 mL) and extracted with ethyl acetate (20 mL). The organic layer was washed with water (2 x 20 mL) and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo* to give **5a** as an orange crystalline solid (48 mg, 98%).  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 6.90 (1H, s), 2.84 (6H, s), 2.47 (6H, s), 2.38 (4H, q, J=7.5), 2.17 (6H, s), 1.06 (6H, t, J=7.5);  $\delta_{\rm C}$  (125 MHz, CDCl<sub>3</sub>) 154.9, 134.6, 133.8, 131.2, 118.4, 49.3, 17.5, 14.9, 12.3, 9.5;  $\delta_{\rm B}$  (160 MHz, CDCl<sub>3</sub>) 2.66 (s); *m/z* ESI+ found 351.2214 [M+Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>29</sub>BN<sub>2</sub>O<sub>2</sub>Na 351.2220.

1,3,5,7-Tetramethyl-2,6-diethyl-8-phenyl-4,4'-dimethoxy-bora-3a,4a-diaza-s-indacene (5b)



To a solution of **3b** (50 mg, 0.12 mmol) in anhydrous methanol (10 mL) was added solid sodium methoxide (46 mg, 0.81 mmol) and the reaction mixture was stirred at room temperature for 3 h in a glovebox. The reaction mixture was then removed from the glovebox, poured into water (20 mL) and extracted with ethyl acetate (20 mL). The organic layer was washed with water (2 x 20 mL) and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo* to give **5b** as a red crystalline solid (48 mg, 99%).  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 7.48-7.45 (3H, m), 7.32-7.28 (2H, m), 2.94 (6H, s), 2.53 (6H, s), 2.32 (4H, q, *J*=7.5), 1.29 (6H, s), 1.00 (6H, t, *J*=7.5);  $\delta_{\rm C}$  (125 MHz, CDCl<sub>3</sub>) 154.0, 140.1, 136.6, 136.3, 132.3, 128.9 (2C), 128.6, 128.5, 49.2, 17.2, 14.8, 12.3, 11.8;  $\delta_{\rm B}$  (160 MHz, CDCl<sub>3</sub>) 2.46 (s); *m/z* ESI<sup>+</sup> found 427.2527 [M+Na]<sup>+</sup> calculated for C<sub>25</sub>H<sub>33</sub>BN<sub>2</sub>O<sub>2</sub>Na 427.2533.

1,3,5,7-Tetramethyl-2,6-diethyl-8-*H*-4,4'-diphenyl-bora-3a,4a-diaza-s-indacene (6a)<sup>[1]</sup>



Phenyl lithium (0.20 mL of a 1.8 M solution in di-*n*-butyl ether, 0.36 mmol) was slowly added to a round-bottom flask containing a solution of **3a** (61 mg, 0.18 mmol) in anhydrous THF (15 mL) at room temperature in a glovebox. The solution was allowed to stir for 1 h. The reaction mixture was then filtered through Celite and concentrated *in vacuo* to give a dark red-brown powder. The crude solid was purified over silica gel eluting with 4 % EtOAc in hexanes to give **6a** as a bright orange solid (38 mg, 50 %).  $\delta_{\rm H}$ (500 MHz, CDCl<sub>3</sub>) 7.29-7.16 (10H, m), 2.32 (4H, q, *J*=7.5), 2.21 (6H, s), 1.75 (6H, s), 0.98 (6H, t, *J*=7.5); δ<sub>C</sub> (125 MHz, CDCl<sub>3</sub>) 154.0, 134.1, 133.9, 133.8, 132.3, 131.6,

127.3, 125.7, 119.5, 17.7, 14.9, 14.4, 9.5; δ<sub>B</sub> (160 MHz, CDCl<sub>3</sub>) 0.19 (s).

1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4,4'-diethyl-bora-3a,4a-diaza-s-indacene (7a)



To a solution of **3a** (50 mg, 0.15 mmol) in anhydrous diethyl ether (15 mL) was added ethyl magnesium bromide (0.10 mL, 3.0 M, 0.30 mmol) and the reaction mixture was stirred at room temperature for 3 h in a glovebox. The reaction mixture was then removed from the glovebox, extracted with water (20 mL) and the layers were separated. The aqueous layer was extracted with diethyl ether (3 x 10 mL) and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo*. Purification over silica gel eluting with 17 % EtOAc in hexanes gave **7a** as a red crystalline solid (47 mg, 98%).  $\delta_{\rm H}$ (500 MHz, CDCl<sub>3</sub>) 6.99 (1H, s), 2.44-2.39 (10H, m, 2x(CH<sub>3</sub>+CH<sub>2</sub>)), 2.18 (6H, s), 1.06 (6H, t, *J*=7.6), 0.82 (4H, q, *J*=7.6), 0.31 (6H, t, *J*=7.6);  $\delta_{\rm C}$  (125 MHz, CDCl<sub>3</sub>) 151.1, 132.6, 131.8, 131.1, 119.4, 17.9, 15.0, 13.9, 9.43, 9.40 (one signal obscured);  $\delta_{\rm B}$  (160 MHz, CDCl<sub>3</sub>) 2.50 (s).

1,3,5,7-Tetramethyl-2,6-diethyl-8-phenyl-4,4'-diethyl-bora-3a,4a-diaza-s-indacene (7b)



#### **Supporting Information**

To a solution of **3b** (62 mg, 0.15 mmol) in anhydrous diethyl ether (15 mL) was added ethyl magnesium bromide (0.10 mL, 3.0 M, 0.30 mmol) and the reaction mixture was stirred at room temperature for 3 h in a glovebox. The reaction mixture was then removed from the glovebox, extracted with water (20 mL) and the layers were separated. The aqueous layer was extracted with diethyl ether (3 x 10 mL) and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo*. Purification over silica gel eluting with 17 % EtOAc in hexanes gave **7b** as a red crystalline solid (59 mg, 98%).  $\delta_{\rm H}$ (500 MHz, CDCl<sub>3</sub>) 7.44 (3H, br), 7.29-7.28 (2H, m), 2.44 (6H, s), 2.32 (4H, q, *J*=7.1), 1.25 (6H, s), 0.97 (6H, t, *J*=7.1), 0.87 (4H, q, *J*=7.3), 0.41 (6H, t, *J*=7.0);  $\delta_{\rm C}$  (125 MHz, CDCl<sub>3</sub>) 150.2, 140.9, 137.7, 133.4, 132.4, 131.1, 129.0, 128.8, 128.3, 29.9, 17.6, 15.0, 14.1, 12.0, 9.6;  $\delta_{\rm B}$  (160 MHz, CDCl<sub>3</sub>) 1.85 (s).

### 1.4 References

- [1] S. M. Crawford, A. Thompson, Org. Lett. 2010, 12, 1424.
- K. Rurack, in Standardization and Quality Assurance in Fluorescence Measurements I, Vol. 5 (Ed.: U. Resch-Genger), Springer Berlin Heidelberg, 2008, pp. 101.
- [3] A. T. R. Williams, S. A. Winfield, J. N. Miller, *Analyst* 1983, 108, 1067.
- [4] B. Tu, C. Wang, J. Ma, Org. Prep. Proced. Int. 1999, 31, 349.

### 1.5 <sup>11</sup>B and <sup>13</sup>C NMR Spectra

1,3,5,7-Tetramethyl-2,6-diethyl-8-*H*-4,4'-dichloro-bora-3a,4a-diaza-s-indacene (3a)

### <sup>13</sup>C NMR Spectrum in THF-*d*<sub>8</sub>



1,3,5,7-Tetramethyl-2,6-diethyl-8-phenyl-4,4'-dichloro-bora-3a,4a-diaza-s-indacene (3b) <sup>13</sup>C NMR Spectrum in THF-*d*<sub>8</sub>



Lundrigan, T. et al.

**Supporting Information** 

# CI-BODIPYs







```
1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4,4'-dimethoxy-bora-3a,4a-diaza-s-indacene
(5a)<sup>[1]</sup>
<sup>13</sup>C NMR Spectrum in CDCl<sub>3</sub>
```



<sup>11</sup>B NMR Spectrum in CDCl<sub>3</sub>



**Supporting Information** 

Lundrigan, T. *et al*. *CI*-BODIPYs

# 1,3,5,7-Tetramethyl-2,6-diethyl-8-phenyl-4,4'-dimethoxy-bora-3a,4a-diaza-s-indacene (5b)



1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4,4'-diphenyl-bora-3a,4a-diaza-s-indacene (6a)<sup>[1]</sup> <sup>13</sup>C NMR Spectrum in CDCl<sub>3</sub>



### 1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4,4'-diethyl-bora-3a,4a-diaza-s-indacene (7a) <sup>13</sup>C NMR Spectrum in CDCl<sub>3</sub>







ppm 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70