Supporting Information

Regioselective C-H bond functionalizations of acridines

using organozinc reagents

Isao Hyodo, Mamoru Tobisu* † and Naoto Chatani*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871,

Japan

[†]Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Contents

I.	General Information	S 2
II.	Materials	S 2
III.	Synthesis of the Starting Materials	S 2
IV.	Typical Procedures	S10
V.	Mechanistic Studies	S22
VI.	Copies of ¹ H NMR and ¹³ C NMR Spectra	S24

I. General Information

¹H NMR and ¹³C NMR spectra were recorded on a JEOL JMN-270, JEOL ECS-400 or JEOL ECP-400 spectrometer in CDCl₃ with tetramethylsilane as an internal standard. Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, br = broad and m = multiplet), coupling constant (Hz), integration, and interpretation. Peak assignments were made with the aid of DEPT and COSY method. Infrared spectra (IR) were obtained on a Horiba FT-720 spectrometer. Mass spectra were obtained on a Shimadzu GCMS-QP 5000 or GCMS-QP 2010 instrument with ionization voltages of 70 eV. Melting points were determined on a Yamato melting point apparatus and are uncorrected. Elemental analyses and high resolution mass spectra (HRMS) were performed by the Elemental Analysis Section of Osaka University. Flash column chromatography was performed with SiO₂ (Silicycle Silica Flash F60 (230-400 mesh)). All catalytic reactions were carried out in 10 mL sample vials with a Teflon-sealed screw cap in a glovebox filled with N₂.

II. Materials

Unless otherwise noted, all reagents were obtained from commercial suppliers and used as received. Ni(cod)₂ was purchased from Strem Chemicals. Toluene, Ph₂Zn (**2**), Cu(OTf)₂, Pd(OAc)₂, K₃[Fe(CN)₆], and ZnCl₂ were purchased from Wako Pure Chemical Industries. Acridine was purchased from Sigma-Aldrich and used after recrystallization. PCy₃, FeCl₃, ^{*i*}Pr₂Zn (1M toluene solution), and Grignard reagents used in this study were purchased from Sigma-Aldrich Co. InCl₃, P'Bu₃, P^{*i*}Pr₃, PMe₃, IMes·HCl, IPr·HCl, SIPr·HCl, and NaO^tBu were purchased from Tokyo Kasei Kogyo Co., Ltd. KOH was purchased from Nacalai Tesque. CH₂Cl₂ was purchased from Kishida Chemical Co.,Ltd. (2-Tolyl)₂Zn was prepared by a Charette's method.¹

III. Synthesis of Starting Materials

A general procedure for the preparation of 2,7-diarylacridine. To a oven-dried three-necked 100 mL flask, 2,6-dibromoacridine² (505.5 mg, 1.5 mmol), arylboronic acid (4.0 mmol), Pd(PPh₃)₄ (115.6 mg, 0.067 mmol) and Na₂CO₃ (635.9 mg, 6.0 mmol) were added. DME (40 mL) and H₂O (10 mL) were then added, and the mixture was refluxed for 15-20 h. The solution was diluted with CH_2Cl_2 (100 mL). The separated organic layer was washed with water (100 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The resultant reddish-brown solid was purified by chromatography on silica gel (hexane/EtOAc = 10:1 to 5:1) to furnish 2,7-diarylacridine as a yellow solid (70-90%).

¹ A. Cote', A. B. Charette, J. Am. Chem. Soc. 2008, 130, 2771.

² M. Vlassa, I. A. Silberg, R. Custelceanu, M. Culea, Synth. Commun. 1995, 3493.

2,7-Diphenylacridine. Rf 0.31 (hexane: EtOAc= 5:1). Pale yellow solid (mp = 184-185 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 7.40-7.44 (m, 2H), 7.50-7.54 (m, 4H), 7.77-7.79 (m, 4H), 8.06-8.09 (m, 2H), 8.17 (s, 2H), 8.31 (d, *J* = 9.2 Hz, 2H), 8.82 (s, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 125.32, 127.00, 127.35, 127.84, 129.00, 129.85, 130.52, 136.30, 138.30, 140.12, 148.42; IR (neat) 3433 w, 3051 w, 1564 w, 1498 w, 1477 w, 1450 m, 1408 w, 1157 w, 1076 w, 1036 w, 922 m, 833 s, 752 s, 694 s, 621 w; MS *m*/*z* (relative intensity, %) 332 (28), 331 (100), 330 (16), 166 (15). HRMS Calcd for C₂₅H₁₇N: 331.1360; Found: 331.1361.

2,7-Bis(4-butylphenyl)acridine. Rf 0.31 (hexane: EtOAc = 5:1). Greenish solid (mp = 169-170 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 0.95 (t, *J* = 7.6 Hz, 6H), 1.34-1.44 (m, 4H), 1.60-1.68 (m, 4H), 2.65 (t, *J* = 7.6 Hz, 4H), 7.27 (d, *J* = 8.0 Hz, 4H), 7.62 (d, *J* = 7.6 Hz, 4H), 7.97-8.03 (m, 4H), 8.24 (d, *J* = 9.2 Hz, 2H), 8.63 (s, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 13.94, 22.36, 33.54, 35.26, 124.68, 126.92, 127.06, 128.98, 129.65, 130.23, 135.83, 137.28, 137.96, 142.62, 148.18; IR (KBr) 3026 w, 2958 s, 2922 s, 2854 m, 1558 w, 1513 m, 1485 w, 1412 w, 1375 w, 1157 w, 920 m, 820 s, 775 m; MS *m*/*z* (relative intensity, %) 444 (36), 443 (100), 401 (14), 400 (42), 357 (20), 179 (18). HRMS Calcd for C₃₃H₃₃N: 443.2613; Found: 443.2610.

2,7-Bis(3,5-dimethylphenyl)acridine. Rf 0.31 (hexane: EtOAc = 5:1). Pale yellow solid (mp = 169-170 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 2.43 (s, 12H), 7.06 (s, 2H), 7.39 (s, 4H), 8.05 (dd, *J* = 2.0, 8.8 Hz, 2H), 8.14 (d, *J* = 2.0 Hz, 2H), 8.29 (d, *J* = 9.2 Hz, 2H), 8.79 (s, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 21.44, 125.14, 125.26, 126.99, 129.47, 129.56, 130.69, 136.18, 138.49, 138.52, 140.10, 148.26; IR (neat) 3016 m, 2914 s, 2858 m, 2185 w, 1631 w, 1599 s, 1570 s, 1508 m, 1442 s, 1375 m, 1345 m, 1155 m, 1038 m, 922 s, 854 m, 827 s, 800 m, 752 s, 696 s, 663 m, 640 s; MS *m/z* (relative intensity, %) 388 (31), 387 (100). HRMS Calcd for C₂₉H₂₅N: 387.1987; Found: 387.1985.

2,7-Bis(3-isopropoxyphenyl)acridine. Rf 0.26 (hexane: EtOAc = 5:1). Yellow solid (mp = 132-133 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 1.41 (d, *J* = 6.0 Hz, 12H), 4.68 (sept, *J* = 6.0 Hz, 2H), 6.95 (dd, *J* = 2.0, 7.6 Hz, 2H), 7.30-7.34 (m, 4H), 7.41 (t, *J* = 8.0 Hz, 2H), 8.05 (dd, *J* = 2.4, 9.2 Hz, 2H), 8.16 (d, *J* = 2.0 Hz, 2H), 8.29 (d, *J* = 8.8 Hz, 2H), 8.80 (s, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 22.10, 69.98, 114.98, 115.17, 119.62, 125.34, 126.95, 129.76, 129.99, 130.50, 136.29, 138.19, 141.62, 148.47, 158.38; IR (KBr) 3055 w, 2973 s, 2927 m, 1934 w, 1749 w, 1603 s, 1572 s, 1489 m, 1450 s, 1404 m, 1377 m, 1335 m, 1282 s, 1196 s, 1115 s, 1038 w, 997 m, 974 m, 926 m, 876 m, 833 s, 777 s, 696 m, 652 m, 617 w; MS *m/z* (relative intensity, %) 448 (20), 447 (59), 364 (27), 363 (100), 334 (15), 182 (19). HRMS Calcd for C16H16: 447.2198; Found: 447.2207.

2,7-Bis(4-(trifluoromethyl)phenyl)acridine. Rf 0.29 (hexane: EtOAc = 5:1). Greenish solid (mp = >200 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 7.78 (d, *J* = 8.4 Hz, 4H), 7.88 (d, *J* = 8.4 Hz, 4H), 8.07 (dd, *J* = 1.6, 9.2 Hz, 2H), 8.21 (d, *J* = 1.2 Hz, 2H), 8.35 (d, *J* = 9.2 Hz, 2H), 8.88 (s, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 125.96, 125.98 (d, *J* = 3.8 Hz), 126.17, 126.87, 127.66, 129.91 (q, *J* = 32.6 Hz), 130.24, 130.38, 136.83, 137.06, 143.54, 148.83; IR (neat) 3076 w, 1929 w, 1614 w, 1566 w, 1487 w, 1435 w, 1412 w, 1389 w, 1331 s, 1277 w, 1194 m, 1176 m, 1138 s, 1074 s, 1013 m, 920 w, 860 w, 825 s, 781 w, 741 w, 708 w, 644 w, 625 w; MS *m/z* (relative intensity, %) 468 (29), 467 (100), 466 (10), 233 (11). HRMS Calcd for C₂₇H₁₅F₆N: 467.1109; Found: 467.1106.

Isopropyl 3,3'-(acridine-2,7-diyl)dibenzoate. Rf 0.09 (hexane: EtOAc = 5:1) Yellow solid (mp = 129-130 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 1.43 (d, *J* = 6.4 Hz, 12H), 5.33 (sept, *J* = 6.4 Hz, 2H), 7.60 (t, *J* = 7.6 Hz, 2H), 7.97 (d, *J* = 6.4 Hz, 2H), 8.09-8.13 (m, 4H), 8.26 (s, 2H), 8.35 (d, *J* = 4.4 Hz, 2H), 8.46 (s, 2H), 8.91 (s, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 21.99, 68.70, 125.74, 126.96, 128.38, 128.85, 129.03, 130.13, 130.35, 131.49, 131.70, 136.59, 137.45, 140.29, 148.62, 165.93; IR (neat) 2976 s, 2935w, 1709 s, 1604 w, 1570 w, 1512 w, 1473 w, 1448 m, 1427 m, 1373 m, 1352 m, 1282 s, 1234 s, 1178 m, 1169 m, 1105 s, 1036 m, 916 m, 870 w, 839 m, 821 m, 781 w, 756 s, 688 w, 621 w; MS *m*/*z* (relative intensity, %) 504 (36), 503 (100), 461 (12), 444 (11), 420 (15), 419 (50), 328 (10). HRMS Calcd for C₃₃H₂₉NO₄: 503.2097; Found: 503.2100.

2,7-Bis(3,5-difluorophenyl)acridine. Rf 0.31 (hexane: EtOAc = 5:1). Pale yellow solid. (mp = 196-197 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 6.85-6.91 (m, 2H), 7.28-7.33 (m, 4H), 8.01 (dd, *J* = 1.6, 8.8 Hz, 2H), 8.18 (d, *J* = 1.2 Hz, 2H), 8.33 (d, *J* = 9.2 Hz, 2H), 8.87 (s, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 103.20 (t, *J* = 25.8 Hz), 110.237 (d, *J* = 11.7 Hz), 110.243 (d, *J* = 25.8 Hz), 126.4 (d, *J* = 77.6 Hz), 130.69 (d, *J* = 50.8 Hz), 136.25, 136.93, 143.32 (t, *J* = 9.6 Hz), 148.93, 162.22 (d, *J* = 12.5 Hz), 164.69 (d, *J* = 13.4 Hz); IR (neat) 3068 m, 2962 w, 1621 s, 1591 s, 1508 m, 1466 m, 1435 s, 1402 m, 1333 s, 1282 m, 1261 m, 1184 m, 1119 s, 1059 m, 1026 s, 987 s, 914 m, 845 s, 822 s, 805 s, 765 m, 744 s, 679 m, 638 m; MS *m*/*z* (relative intensity, %) 404 (27), 403 (100), 402 (15), 202 (13). HRMS Calcd for C₂₅H₁₃F₄N: 403.0984; Found: 403.0982.

2,7-Dimorpholinoacridine. To an oven-dried 10 mL vial, 2,7-dibromoacridine¹ (337 mg, 1.0 mmol), morpholine (261)mg, 3.0 mmol), $Pd(dba)_2$ (57.5)mg, 0.10 mmol), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (100 mg, 2.1 mmol), Cs₂CO₃ (488.7 mg, 1.5 mmol) and ^tBuOH (5 mL) were added under N₂. The reaction was stirred at 120 $^{\circ}$ C for 20 h under N₂. After cooling to rt, the reaction mixture was then filtered thrugh a Celite pad, and the filtrate was concentrated under reduced pressure to give a reddish-brown oil. Chromatography on silica gel (hexane/ EtOAc = 5:1 to 1:1) furnished 2,7-dimorpholylacridine as a greenish solid (227 mg, 65%). Rf 0.09 (hexane: EtOAc= 5:1). Dark-red solid (mp = 130-131 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 3.29-3.32 (m, 8H), 3.91-3.94 (m, 8H), 7.03-7.05 (m, 2H), 7.50-7.54 (m, 2H), 8.07 (d, J = 9.6 Hz, 2H), 8.33 (s, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 49.37, 66.78, 107.05, 123.57, 128.13, 129.98, 131.05, 144.14, 148.30; IR (KBr) 2960 m, 2854 m, 2825 m, 1612 s, 1576 m, 1493 w, 1452 m, 1377 m, 1265 m, 1220 s, 1119 s, 1068 w, 1045 m, 970 w, 908 m, 823 m, 754 w, 638 w; MS m/z (relative intensity, %) 350 (24), 349 (100), 291 (22), 233 (29), 177 (14), 116 (13). HRMS Calcd for C₂₁H₂₃N₂O₂: 349.1790; Found: 349.1793.

General procedure for the preparation of 9-arylacridines. To an oven-dried three-necked 100 mL flask, 9-chloroacridine (641.0 mg, 3.0 mmol), arylboronic acid (4.0 mmol), $Pd(OAc)_2$ (28 mg, 0.125 mmol), PCy_3 (70 mg, 0.25 mmol), K_3PO_4 (1.3 g, 6.0 mmol) were added. Toluene (40 mL) and H_2O (10 mL) were then added, and the reaction mixture was refluxed for 15-20 h. The solution was dissolved in 100 mL of CH_2Cl_2 . The separated organic layer was washed water (100 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The resultant solid was purified by chromatography on silica gel (hexane/ EtOAc = 20:1 to 10:1) to furnish 9-diarylacridine (90->99%).

9-Phenylacridine (3). Rf 0.31 (hexane: EtOAc= 5:1). White solid (mp = 160-161 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 7.39-7.44 (m 4H), 7.55-7.62 (m, 3H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.74-7.79 (m, 2H), 8.29 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 125.07, 125.56, 126.82, 128.31, 128.39, 129.46, 129.97, 130.38, 135.86, 147.25, 148.65; IR (KBr) 3055 m, 1623 m, 1606 m, 1554 m, 1539 m, 1510 s, 1476 m, 1437 m, 1412 s, 1356 m, 1174 m, 1155 m, 1134 m, 1070 m, 1011 m, 856 m, 758 s, 706 s, 648 m, 607 s; MS *m*/*z* (relative intensity, %) 256 (20), 255 (100), 254 (72), 253 (13), 127 (12), 126 (10). HRMS Calcd for C₁₉H₁₃N: 255.1048; Found: 255.1046.

9-(4-Butylphenyl)acridine. Rf 0.31 (hexane: EtOAc = 5:1). Pale yellow solid (mp = 139-140 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 1.01 (t, *J* = 7.6 Hz, 3H), 1.42-1.52 (m, 2H), 1.71-1.78 (m, 2H), 2.77 (t, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.39-7.43 (m, 4H), 7.74-7.78 (m, 4H), 8.29 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 14.01, 22.46, 33.58, 33.51, 125.23, 125.44, 126.99, 128.39, 129.32, 129.99, 130.30, 132.88, 143.14, 147.74, 148.56; IR (neat) 3033 m, 2956 m, 2923 s, 2848 m, 1625 w, 1608 w, 1554 m, 1540 m, 1512 m, 1458 m, 1435 m, 1412 m, 1358 w, 1182 w, 1112 w, 1014 m, 866 m, 823 m, 756 s, 655 m, 611 m; MS *m*/*z* (relative intensity, %) 312 (25), 311 (100), 269 (12), 268 (51), 267 (19), 266 (15), 254 (15). HRMS Calcd for C₂₃H₂₁N: 311.1674; Found: 311.1677.

9-(3,5-Dimethylphenyl)acridine. Rf 0.34 (hexane: EtOAc = 5:1). Yellow solid (mp = 182-183 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 2.42 (s, 6H), 7.04 (s, 2H), 7.19 (s, 1H), 7.39-7.43 (m, 2H), 7.74-7.77 (m, 4H), 8.30 (d, J = 9.6 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 21.31, 125.10, 125.40, 127.05, 128.05, 129.18, 129.86, 130.02, 135.62, 137.89, 148.04, 148.42; IR (KBr) 3051 m, 3001 m, 2943 m, 2914 m, 2857 m, 1929 w, 1815 w, 1716 w, 1626 w, 1601 m, 1556 m, 1541 m, 1512 m, 1481 m, 1460 m, 1433 m, 1412 m, 1365 m, 1259 m, 1132 m, 1038 m, 1009 m, 870 m, 839 m, 752 s, 706 s, 638 m, 617 m; MS *m*/*z* (relative intensity, %) 284 (23), 283 (100), 282 (15), 268 (44), 267 (14), 266 (13), 134 (20). HRMS Calcd for C₂₁H₁₇N: 283.1361; Found: 283.1363.

9-(Naphthalen-2-yl)acridine. Rf 0.26 (hexane: EtOAc = 5:1). Yellow solid (mp = >200 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 7.40 (m, 2H), 7.56 (dd, *J* = 1.6, 8.0 Hz, 1H), 7.59-7.66 (m, 2H), 7.73-7.82 (m, 4H), 7.91-7.95 (m, 2H), 8.01-8.03 (m, 1H), 8.08 (d, *J* = 8.8 Hz, 1H), 8.36 (d, *J* = 9.2 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 125.28, 125.79, 126.80, 126.84, 126.95 (two overlapping peaks), 127.92, 128.14 (three overlapping peaks), 129.21, 129.67, 130.31, 133.02, 133.24, 147.66, 148.34; IR (KBr)3055 w, 1603 w, 1543 m, 1512 m, 1483 w, 1460 w, 1435 m, 1414 m, 1350 w, 1159 m, 1120 m, 897 w, 868 m, 822 m, 754 s, 667 w, 644 w, 602 w; MS *m/z* (relative intensity, %) 306 (24), 305 (100), 304 (70), 303(16), 302 (12), 153 (13), 152 (21), 151 (14). HRMS Calcd for C₂₃H₁₅N: 305.1204; Found: 305.1200.

9-(4-Methoxyphenyl)acridine Rf 0.17 (hexane: EtOAc = 5:1). White solid (mp = 186-187 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 3.96 (s, 3H), 7.13-7.16 (m, 2H), 7.36-7.45 (m, 4H), 7.75-7.79 (m, 4H), 8.26-8.28 (m, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 55.40, 113.90, 125.46 (two overlapping peaks), 126.94, 127.90, 129.55, 129.92, 131.71, 147.19, 148.80, 159.65; IR (KBr)3053 w, 3024 w, 2960 w, 2931 w, 2904 w, 2835 w, 1604 m, 1564 w, 1541 w, 1512 s, 1460 m, 1438 m, 1414 m, 1356 w, 1288

m, 1246 s, 1173 m, 1140 w, 1103 m, 1022 m, 822 m, 760 s, 725 w, 661 w, 606 m; MS m/z (relative intensity, %) 286 (22), 285 (100), 242 (16), 241(33), 240 (19). HRMS Calcd for C₂₀H₁₅NO: 285.1154; Found: 285.1155.

9-(3-Methoxyphenyl)acridine. Rf 0.17 (hexane: EtOAc = 5:1). Yellow solid (mp = 183-184 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 3.85 (s, 3H), 6.98-7.03 (m, 2H), 7.10-7.12 (m, 1H), 7.40-7.44 (m, 2H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.73-7.79 (m, 4H), 8.29 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 55.31, 113.89, 115.86, 122.79, 124.99, 125.58, 126.86, 129.43, 129.50, 129.99, 137.21, 147.07, 148.61, 159.48; IR (KBr) 3047 m, 3006 m, 2958 m, 2931 m, 2906 m, 2883 m, 1936 w, 1747 w, 1626 w, 1593 s, 1554 m, 1541 m, 1514 m, 1458 s, 1423 s, 1356 m, 1321 m, 1282 m, 1254 s, 1174 m, 1153 m, 1136 m, 1082 w, 1036 s, 10121 m, 966 s, 899 m, 864 m, 788 s, 754 s, 704 s, 650 m; MS *m/z* (relative intensity, %) 286 (22), 285 (100), 270 (20), 254 (19), 242 (14), 241 (29), 240 (19), 121 (13). HRMS Calcd for C₂₀H₁₅NO: 285.1154; Found: 285.1152.

4-(**Acridin-9-yl**)-*N*,*N*-**dimethylaniline.** Rf 0.14 (hexane: EtOAc = 5:1). Pale orange solid (mp = >200 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 3.11 (s, 6H), 6.92-6.96 (m, 2H), 7.32-7.36 (m, 2H), 7.41-7.45 (m, 2H), 7.75-7.79 (m, 2H), 7.89 (d, *J* = 8.4 Hz, 2H), 8.29 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 40.45, 111.86, 122.95, 125.23, 125.62, 127.36, 129.16, 130.03, 131.60, 148.57 (2C), 150.33; IR (KBr) 2367 s, 1774 m, 1714 m, 1701 m, 1682 m, 1651 m, 1608 s, 1558 m, 1541 s, 1523 m, 1456 m, 1415 m, 1360 m, 1317 m, 1234 m, 1206 m, 1182 m, 1068 m, 813 m, 760 m; MS *m*/*z* (relative intensity, %) 299 (23), 298 (100), 297 (33), 149 (12). HRMS Calcd for C₂₁H₁₈N₂: 298.1470; Found: 298.1473.

3-(**Acridin-9-yl**)-*N*,*N*-**dimethylaniline.** Rf 0.14 (hexane: EtOAc = 5:1). Pale orange solid (mp = 152-153 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 2.97 (s, 6H), 6.76-6.78 (m, 2H), 6.90 (dd, *J* = 2.8, 8.0 Hz, 1H), 7.38-7.42 (m, 3H), 7.73-7.77 (m, 2H), 7.82 (d, *J* = 8.4 Hz, 2H), 8.29 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 40.41, 112.01, 114.21, 118.57, 125.12, 125.31, 127.21, 128.97, 129.20, 129.95, 136.56, 148.53, 148.58, 150.16.; IR (KBr) 3054 m, 2971 m, 2879 m, 2844 m, 2796 m, 1599 s, 1568 s, 1487 s, 1458 m, 1432 s, 1414 s, 1360 s, 1338 s, 1288 m, 1222 s, 1176 m, 1149 m, 1124 m, 1062 m, 1002 s, 931 m, 890 m, 864 m, 852 m, 775 s, 750 s, 703 s, 650 m; MS *m*/*z* (relative intensity, %) 299 (23), 298 (100), 297 (46), 254(26), 253 (12). HRMS Calcd for C₂₁H₁₈N₂: 298.1470; Found: 298.1471.

9-Butylacridine.³ To a oven-dried three-necked 100 mL flask, acridine (1.0 g, 5.6 mmol) was dissolved in THF (10 mL), and the solution was cooled to 0 °C. To the solution, ^{*n*}BuLi (1.6 M in hexane, 4.0 mL, 6.4 mmol) was added dropwise at 0 °C, then allowed to room temperature and stirred for 1 h. The reaction was quenched with MeOH (5 mL) and then the reaction was filtered through a Celite pad, and washed with Et₂O. The filtrate was concentrated under reduced pressure to afford a yellow oil. The yellow oil was dissolved in CH₂Cl₂ (50 mL) and H₂O (9 mL). K₃[Fe(CN)₆] (5.1 g, 16 mmol) and KOH (2.5 g, 45 mmol) were then added, and the mixture was stirred at room temperature for 20 h. Chromatography on silica gel (hexane/ EtOAc = 10:1 to 5:1) furnished 9-butylacridine as a yellow solid (745 mg, 57%)

Rf 0.31 (hexane: EtOAc = 5:1) Greenish yellow solid (mp = 143-144 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 0.98 (t, *J* = 7.2 Hz, 3H), 1.50-1.59 (m, 2H), 1.72-1.79 (m, 2H), 3.53 (t, *J* = 7.6 Hz, 2H), 7.48-7.52 (m, 2H), 7.71-7.75 (m, 2H), 8.18-8.23 (m, 4H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 13.87,

³ E. Hayashi, S. Ohsumi and T. Maeda, *Yakugaku Zasshi*, **1959**, **7**, 969.

23.24, 27.27, 33.35, 124.23, 124.72, 125.32, 129.57, 130.19, 147.05, 148.50; IR (KBr)3053 m, 2956 s, 2923 s, 2861 s, 1944 w, 1915 w, 1801 w, 1712 w, 1622 m, 1606 m, 1550 m, 1514 s, 1489 m, 1458 s, 1437 m, 1410 m, 1379 m, 1342 m, 1298 w, 1143 m, 1097 m, 1011 w, 951 w, 862 w, 839 w, 744 s, 642 m; MS m/z (relative intensity, %) 236 (17), 235 (88), 193 (28), 192 (100), 191 (21). HRMS Calcd for C₁₇H₁₇N: 2351361; Found: 235.1362.

IV. Typical Procedures

Typical procedure for the C-9 arylation reaction of acridines (Table 2). To an oven-dried 10 mL vial, $[RhCl(cod)]_2$ (12.4 mg, 0.025 mmol), PCy₃ (14.0 mg, 0.05 mmol), acridine (1, 44.8 mg, 0.25 mmol), Ph₂Zn (2, 219.6 mg, 1.0 mmol), toluene (2.0 mL) were added in a glove-box. The reaction was stirred at 160 °C for 20 h. After removing the volatiles *in vacuo*, chromatography on silica gel (hexane/EtOAc = 10:1 to 5:1) furnished 9-phenylacridine (3, 51.5 mg, 81%) as a white solid.

¹H NMR (CDCl₃, 399.78 MHz) δ 7.39-7.44 (m 4H), 7.55-7.62 (m, 3H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.74-7.79 (m, 2H), 8.29 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 125.07, 125.56, 126.82, 128.31, 128.39, 129.46, 129.97, 130.38, 135.86, 147.25, 148.65. HRMS Calcd for C₁₉H₁₃N: 255.1048; Found: 255.1046.

2,7,9-Triphenylacridine. Rf 0.26 (hexane: EtOAc = 5:1). Yellow solid (mp = >200 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 7.34-7.36 (m, 2H), 7.42-7.44 (m, 4H), 7.51-7.52 (m, 2H), 7.59-7.64 (m, 7H), 7.88 (d, *J* = 1.2 Hz, 2H), 8,06 (dd, *J* = 1.6, 6.0 Hz, 2H), 8.36 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 124.08, 125.52, 127.36, 127.65, 128.53, 128.61, 128.88, 130.05, 130.18, 130.47, 135.73, 138.19, 140.41, 147.51, 148.10; IR (KBr) 3051 m, 3030 m, 1597 w, 1537 m, 1477 m, 1448 m,1332 w, 1167 w, 1147 w, 1074 w, 1030 w, 962 w, 887 w, 833 m, 760 s, 702 s, 619 m; MS *m/z* (relative intensity, %) 408 (33), 407 (100), 406 (18), 330 (10). HRMS Calcd for C₃₁H₂₁N: 467.1674; Found: 407.1675.

2,7-Bis(4-butylphenyl)-9-phenylacridine. Rf 0.20 (hexane: EtOAc = 5:1). Yellow solid (mp =

145-146 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 0.93 (t, J = 7.2 Hz, 6H), 1.32-1.41 (m, 4H), 1.57-1.65 (m 4H), 2.62 (t, J = 7.2 Hz, 4H), 7.22-7.24 (m, 4H), 7.49-7.51 (m, 6H), 7.55-7.64 (m, 3H), 7.85 (d, J = 2.4 Hz, 2H), 8.03 (dd, J = 2.0, 8.8 Hz, 2H), 8.33 (d, J = 9.2 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 13.93, 22.34, 33.55, 35.24, 123.61, 125.55, 127.17, 128.40, 128.54, 128.94, 129.95, 130.06, 130.49, 135.87, 137.73, 138.06, 142.56, 147.11, 147.98; IR (KBr) 3053 w, 3022 w, 2952 s, 2925 s, 2858 m, 1907 w, 1608 w, 1539 w, 1512 m, 1481 w, 1446 m, 1373 w, 1332 w, 1184 w, 1145 w, 1116 w, 1072 w, 1020 w, 962 w, 887 w, 823 s, 788 m, 761 w, 609 m; MS *m*/*z* (relative intensity, %) 520 (43), 519 (100), 477 (12), 476(31), 433 (14), 217 (34). HRMS Calcd for C₃₉H₃₇N: 519.2926; Found: 519.2927

2,7-Bis(3,5-dimethylphenyl)-9-phenylacridine. Rf 0.31 (hexane: EtOAc = 5:1). Yellow solid (mp = >200 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 2.36 (s, 12H), 7.00 (s, 2H), 7.20 (s, 4H), 7.51-7.53 (m, 2H), 7.59-7.65 (m, 3H), 7.84 (s, 2H), 8.03 (dd, *J* = 1.6, 9.2 Hz, 2H), 8.33 (t, *J* = 9.2 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 21.39, 123.95, 125.34, 125.49, 128.43, 128.56, 129.29, 129.89, 130.41, 130.54, 135.85, 138.41, 138.49, 140.61, 147.26, 148.08; IR (KBr) 3055 w, 3024 w, 2916 m, 2857 w, 1599 m, 1537 m, 1444 m, 1377 w, 1335 w, 1147 w, 1074 w, 1036 w, 999 w, 852 w, 831 s, 793 w, 756 m, 702 m, 679 w, 621 w, 602 m; MS *m/z* (relative intensity, %) 463 (100). 462 (10) 358 (5) 232 (6). HRMS Calcd for C₃₅H₂₉N: 463.2300; Found: 463.2303.

2,7-Bis(3-isopropoxyphenyl)-9-phenylacridine. Rf 0.17 (hexane: EtOAc = 5:1). Yellow solid (mp = 117-118 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 1.35 (d, *J* = 6.0 Hz, 12H), 4.58 (sept, *J* = 6.0 Hz, 2H), 6.87-6.89 (m, 2H), 7.11-7.15 (m, 4H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.50-7.52 (m, 2H), 7.56-7.65 (m, 3H), 7.87 (d, *J* = 2.0 Hz, 2H), 8.02 (d, *J* = 2.4 Hz, 1H), 8.04 (d, *J* = 2.0 Hz, 1H), 8.34 (d, *J* = 9.2 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 22.01, 69.91, 114.75, 115.12, 119.66, 124.13, 128.51, 128.60, 129.86, 130.01, 130.18, 130.48, 131.37, 135.69, 138.12, 141.97, 147.47, 148.19, 158.22; IR (KBr) 3058 m, 2976 m, 2927 m, 1677 w, 1651 m, 1576 s, 1541 m, 1506 m, 1481 s, 1455 m, 1379 m,

1335 m, 1290 s, 1205 s, 1119 s, 999 w, 974 m, 950 m, 879 m, 835 m, 758 m, 700 s, 621 m; MS m/z (relative intensity, %) 524 (41), 523 (100), 440 (23), 439(68), 438 (15), 220 (19). HRMS Calcd for $C_{37}H_{33}NO_2$: 523.2511; Found: 523.2508.

4,4'-(9-Phenylacridine-2,7-diyl)dimorpholine. Rf 0.09 (hexane: EtOAc = 5:1). Dark orange solid (mp = >200 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 3.11-3.13 (m, 8H), 3.82-3.84 (m, 8H), 6.70 (d, *J* = 2.8 Hz, 2H), 7.42-7.44 (m, 2H), 7.50-7.64 (m, 5H), 8.14 (d, *J* = 9.6 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 49.06, 66.71, 105.74, 123.09, 126.51, 128.09, 128.70, 130.07, 130.18, 136.74, 141.91, 143.64, 148.14; IR (KBr) 2960 m, 2889 m, 2852 m, 2821 m, 2821 m, 1606 s, 1493 m, 1468 s, 1444 s, 1371 m, 1344 m, 1301 m, 1269 m, 1221 s, 1165 m, 1119 s, 1068 m, 1045 m, 999 m, 964 w, 912 s, 872 w, 825 s, 776 w, 717 m, 629 m; MS *m/z* (relative intensity, %) 425 (21), 350 (24), 303 (100), 291 (24), 233 (31), 117 (16), 116 (15). HRMS Calcd for C₂₇H₂₇N₃O₂: 425.2103; Found: 425.2101.

9-(2-Tolyl)acridine. $(2\text{-Tolyl})_2$ Zn prepapred from 2-TolMgBr and Zn(OMe)₂ was used in place of Ph₂Zn.¹ Thus, to an oven-dried 10 mL Schlenk tube, Zn(OMe)₂ (308.7 mg, 2.5 mmol) and Et₂O were added, and the mixture was cooled to 0 °C. To the mixture, 2-tolylMgBr (2.0 M Et₂O solution, 2.44 mL, 4.88 mmol) was added dropwise at 0 °C, and the mixture was stirred for 1 h. The resulting mixture was allowed to warm to room temperature and stirred for extra 15 h. The mixture was filtrated through a Celite pad under an N₂ atmosphere. The filtrate was concentrated in vacuo, affording (2-tolyl)₂Zn as a white solid.

To an oven-dried 10 mL vial, $[RhCl(cod)]_2$ (7.4 mg, 0.015 mmol), PCy₃ (8.4 mg, 0.03 mmol), acridine (26.9 mg, 0.15 mmol), (2-Tolyl)₂Zn (148.6 mg, 0.6 mmol), toluene (1.5 mL) were added in a glove-box. The reaction was stirred at 160 °C for 20 h. After removing the volatiles *in vacuo*, chromatography on silica gel (hexane/EtOAc = 10:1 to 5:1) furnished 9-(2-tolyl)acridine (22.0 mg, 54%) as a pale yellow solid. Rf 0.34 (hexane: EtOAc= 5:1). Yellow solid (mp = 157-158)

°C). ¹H NMR (CDCl₃, 399.78 MHz) δ 1.88 (s, 3H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.38-7.51 (m, 6H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.76-7.80 (m, 2H), 8.30 (d, *J* = 9.2 Hz, 2H); ¹³C NMR (CDCl₃, 150.83 MHz) δ 19.73, 125.10, 125.72, 125.83, 126.57, 1228.60, 129.66, 130.06, 130.19, 130.20, 135.48, 136.92, 147.02, 148.82; IR (KBr) 3045 w, 2910 w, 1649 w, 1614 w, 1554 m, 1541 m, 1512 s, 1479 m, 1458 m, 1435 m, 1412 m, 1313 w, 1132 w, 1110 w, 1014 w, 862 w, 820 m, 754 s, 723 m, 648 w, 606 m; MS *m*/*z* (relative intensity, %) 270 (21), 269 (100), 268 (63), 267 (24), 266 (13), 254 (18), 134 (15). HRMS Calcd for C₂₀H₁₅N: 269.1204; Found: 269.1201.

Typical procedure for the formal C-9 alkylation of acridine (Table 3). To an oven-dried 10 mL vial, acridine (44.8 mg, 0.25 mmol), ^{*i*}Pr₂Zn (**4**, 1.0 M in toluene, 0.5 mL, 0.5 mmol), toluene (0.5 mL) were added in a glove-box. The reaction was stirred at 70 $^{\circ}$ C for 20 h under N₂. The reaction was quenched by adding MeOH (1 mL), and the resulting solution was then filtered through a silica gel pad using EtOAc. The filtrate was concentrated *in vacuo* to afford crude 9-isopropyl-9,10-dihydroacridine (**5**). The crude mixture was dissolved in toluene (or CH₂Cl₂, 5 mL), and K₃[Fe(CN)₆] (231 mg, 0.7 mmol), KOH (115.5 mg, 2.1 mmol) and H₂O (0.4 mL) were added, and the solution was stirred at room temperature for 20 h under air. After MgSO₄ was added, and the reaction mixture was filtered using CH₂Cl₂. After removing the volatiles *in vacuo*, chromatography on silica gel (hexane/EtOAc = 10:1 to 5:1) furnished 9-isopropylacridine (**11**) as a yellow oil (53.1 mg, 96%).

9-Isopropyl-9,10-dihydroacridine. (5) Rf 0.66 (hexane: EtOAc = 5:1). White solid (mp = 143-144 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 0.77 (d, *J* = 6.8 Hz, 6H), 1.83 (septet, *J* = 6.8 Hz, 1H), 3.73 (d, *J* = 5.6 Hz, 1H), 5.94 (s, 1H), 6.69 (d, *J* = 8.0 Hz, 2H), 6.87-6.91 (m, 2H), 7.08-7.20 (m, 4H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 19.27, 37.37, 48.84, 113.26, 120.23, 122.79, 126.74, 129.58, 140.30; IR (KBr) 3379 s, 3041 w, 2956 s, 2921 m, 2870 m, 1604 m, 1579 m, 1483 s, 1456 s, 1417 m, 1381 m, 1365 m, 1306 s, 1296 s, 1159 w, 1130 m, 1034 w, 928 w, 867 m, 858 w, 752 s, 717 m, 677 w, 638 w. This compound was easily oxidized to 9-isopropylacridine under the conditions to measure GC/MS and HRMS. MS *m*/*z* (relative intensity, %) 223 (4), 181 (14), 180 (100). HRMS Calcd for C₁₆H₁₉N: 225.1517; Found: 223.1357.

2,7-Bis(4-butylphenyl)-9-isopropylacridine (6). Rf 0.31 (hexane: EtOAc = 5:1). Orange solid (mp = 121-122 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 0.96 (t, *J* = 7.2 Hz, 6H), 1.36-1.45 (m, 4H), 1.60-1.70 (m 4H), 1.82 (t, *J* = 7.2 Hz, 6H), 2.68 (t, *J* = 7.6 Hz, 4H), 4.62 (sept, *J* = 7.2 Hz, 1H), 7.33 (d, *J* = 8.4 Hz, 4H), 7.68 (d, *J* = 8.4 Hz, 4H), 8.01 (dd, *J* = 2.0, 9.2 Hz, 2H), 8.31 (d, *J* = 8.8 Hz, 2H), 8.58 (s, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 13.96, 22.37, 22.92, 28.44, 33.60, 35.29, 122.04, 124.88, 127.26, 129.07, 129.61, 130.96, 137.59, 138.17, 142.61, 148.00, 151.86; IR (KBr) 2960 m, 2927 s, 2854 m, 1606 w, 1543 w, 1512 m, 1483 m, 1454 m, 1406 w, 1375 w, 1331 w, 1184 w, 1159 w, 1095 w, 1016 w, 991 w, 955 w, 822 s, 788 m, 679 w, 619 w; MS *m*/*z* (relative intensity, %) 486 (38), 485 (100), 470 (15), 200 (21). HRMS Calcd for C₃₆H₃₉N: 485.3083; Found: 485.3085.

9-Isopropyl-2,7-bis(4-(trifluoromethyl)phenyl)acridine (**7**). Rf 0.14 (hexane: EtOAc = 5:1). Yellow solid (mp >200 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 1.85 (d, *J* = 7.2 Hz, 6H), 4.64 (sept, *J* = 7.2 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 4H), 7.88 (d, *J* = 8.4 Hz, 4H), 8.02 (dd, *J* = 2.0, 8.8 Hz, 2H), 8.35 (d, *J* = 9.2 Hz, 2H), 8.64 (s, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 23.11, 28.57, 122.85, 123.23, 124.79, 125.56, 125.99 (d, *J* = 3.8 Hz), 127.77, 129.34, 129.80 (q, *J* = 32.6 Hz), 131.76, 136.49, 144.37, 148.75, 152.80; IR (KBr) 2968 w, 2935 w, 1614 m, 1541 w, 1518 w, 1460 w, 1398 w, 1325 s, 1271 w, 1165 s, 1120 s, 1166 s, 1012 m, 953 w, 852 m, 829 s, 794 w, 609 w; MS *m/z* (relative intensity, %) 510 (33), 509 (100), 495 (23), 494 (71), 492 (12), 348 (11). HRMS Calcd for C₃₀H₂₁F₆N: 509.1578; Found: 509.1576.

Isopropyl 3,3'-(9-isopropylacridine-2,7-diyl)dibenzoate (8). Rf 0.11 (hexane: EtOAc = 5:1). Pale yellow solid (mp = 121-122 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 1.43 (d, *J* = 6.0 Hz, 12H), 1.87 (d, *J* = 7.2 Hz, 6H), 4.66 (septet, *J* = 7.2 Hz, 1H), 5.33 (septet, *J* = 6.0 Hz, 2H), 7.61 (t, *J* = 8.0 Hz), 7.61 (t, J = 8.0 Hz), 7.61

2H),7.95-7.97 (m, 2H), 8.06-8.12 (m, 4H), 8.36 (d, J = 8.8 Hz, 2H), 8.47 (t, J = 2.0 Hz, 2H), 8.66 (s, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 21.95, 23.03, 28.49, 68.66, 122.80, 124.82, 128.50, 128.68, 129.02, 129.47, 131.44, 131.59, 131.67, 136.87, 141.07, 148.45, 152.52, 165.91; IR (neat)2979 m, 2933 m, 2875 w, 1712 s, 1648 m, 1577 w, 1510 m, 1460 m, 1423 m, 1373 m, 1294 s, 1242 s, 1174 m, 1109 s, 1047 w, 924 w, 837 m, 818 m, 756 m, 696 w; MS *m*/*z* (relative intensity, %) 546 (39), 545 (100), 446 (19). HRMS Calcd for C₃₆H₃₅NO₄: 545.2566; Found: 545.2561.

2,7-Bis(3-isopropoxyphenyl)-9-isopropylacridine (**9**). Rf 0.11 (hexane: EtOAc = 5:1). Orange solid (mp= 87-88 °C). ¹H NMR (CDCl₃, 599.85 MHz) δ 1.41 (d, *J* = 6.0 Hz, 12H), 1.84 (d, *J* = 7.2 Hz, 6H), 4.60-4.70 (m, 3H), 6.95 (dd, *J* = 1.8, 7.2 Hz, 2H), 7.30-7.34 (m, 4H), 7.42 (t, *J* = 7.8 Hz, 2H), 8.02 (dd, *J* = 1.8, 9.0 Hz, 2H), 8.32 (d, *J* = 9.0 Hz, 2H), 8.61 (s, 2H); ¹³C NMR (CDCl₃, 150.83 MHz) δ 22.06, 22.97, 28.43, 69.95, 114.58, 115.41, 119.71, 122.17, 124.79, 129.63, 129.98, 131.06, 137.55, 142.41, 148.27, 152.18, 158.34; IR (KBr) 3062 m, 2974 s, 2929 m, 2873 m, 1600 s, 1576 s, 1541 m, 1479 m, 1454 s, 1377 m, 1329 m, 1286 s, 1200 s, 1115 s, 997 m, 966 m, 945 m, 872 m, 833 s, 779 s, 754 m, 698 m; MS *m*/*z* (relative intensity, %) 490 (37), 489 (100), 405 (15), 203 (11). HRMS Calcd for C₃₄H₃₅NO₂: 489.2668; Found: 489.2664.

2,7-Bis(3,5-difluorophenyl)-9-isopropylacridine (10). Rf 0.20 (hexane: EtOAc = 5:1). Pale yellow oil. ¹H NMR (CDCl₃, 399.78 MHz) δ 1.86 (d, *J* = 4.8 Hz, 6H), 4.62 (sept, *J* = 4.8 Hz, 1H), 6.87-6.90 (m, 2H), 7.27-7.7.30 (m, 4H), 7.96 (dd, *J* = 1.6, 6.4 Hz, 2H), 8.32 (d, *J* = 6.0 Hz, 2H), 8.59 (s, 2H); ¹³C NMR (CDCl₃, 150.85 MHz) δ 23.17, 28.58, 103.07 (t, *J* = 25.5 Hz), 110.33 (dd, *J* = 5.0, 20.5 Hz), 122.45, 124.70, 129.04, 131.84, 135.67, 144.15 (t, *J* = 9.5 Hz), 148.85, 153.00, 163.46 (dd, *J* = 13.3, 248.60 Hz); IR (neat) 3014 m, 2958 m, 2927 m, 2871 m, 1747 w, 1622 s, 1591 s, 1541 m, 1506 m, 1468 m, 1446 s, 1402 m, 1326 m, 1267 w, 1242 w, 1188 m, 1119 s, 1061 w, 989 s, 924 w, 877 m, 825 s, 785 w, 667 m, 613 w; MS *m*/*z* (relative intensity, %) 446 (30), 445 (100), 431 (22), 430 (73), 428 (15), 316 (13). HRMS Calcd for C₂₈H₁₉F₄N: 445.1454; Found: 445.1457.

9-Isopropylacridine (**11**). Rf 0.31 (hexane: EtOAc = 5:1). Yellow oil. ¹H NMR (CDCl₃, 399.78 MHz) δ 1.73 (d, *J* = 7.2 Hz, 6H), 4.50 (septet, *J* = 7.2 Hz, 1H), 7.49-7.51 (m, 2H), 7.71-7.75 (m, 2H), 8.26 (d, *J* = 8.4 Hz, 2H), 8.42 (d, *J* = 9.2 Hz, 2H); ¹³C NMR (CDCl₃, 100.53MHz) δ 22.68, 28.33, 124.44, 124.95 (two overlapping peaks), 129.38, 130.54, 148.76, 152.09; IR (neat) 3045 w, 2989 m, 2964 m, 2931 m, 2875 w, 1623 w, 1608 w, 1550 m, 1518 m, 1458 m, 1406 w, 1367 w, 1340 w, 1211 w, 1184 w, 1145 w, 1092 w, 1014 w, 989 w, 922 w, 866 w, 847 w, 758 s, 652 m, 614 w; MS *m/z* (relative intensity, %) 222 (13), 221 (77), 207 (16), 296 (100), 205 (17), 204 (46), 102 (22). HRMS Calcd for C₁₆H₁₅N: 221.1204; Found: 221.1206.

9-(But-3-en-2-yl)acridine (12). Rf 0.29 (hexane: EtOAc = 5:1). Orange solid (mp = 164-165 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 1.79 (d, *J* = 7.2 Hz, 3H), 5.00-5.07 (m, 1H), 5.24-5.29 (m, 2H), 6.38-6.45 (m, 1H), 7.48-7.53 (m, 2H), 7.73-7.77 (m, 2H), 8.25 (d, *J* = 9.2 Hz, 2H), 8.40 (d, *J* = 9.2 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 19.27, 36.10, 114.26, 124.61, 125.01, 125.21, 129.59, 130.46, 142.27, 148.85, 149.16; IR (neat) 3566 w, 3082 w, 3047 w, 2970 m, 2927 m, 2854 w, 2368 w, 1680 w, 1631 m, 1547 m, 1520 m, 1458 m, 1408 w, 1373 w, 1147 w, 1105 w, 1038 w, 1012 w, 914 w, 756 s, 646 w, 604 w; MS *m*/*z* (relative intensity, %) 234 (12), 233 (63), 232 (16), 219 (18), 218 (100), 217 (88), 216 (27), 204 (20), 109 (21). HRMS Calcd for C₁₇H₁₅N: 233.1204; Found: 233.1202.

9-Cyclopentylacridine (**13**). Rf 0.29 (hexane: EtOAc = 5:1). Brown solid (mp = 179-180 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 1.95-2.05 (m, 2H), 2.19-2.42 (m, 6H), 4.50-4.60 (m, 1H), 7.48-7.52 (m, 2H), 7.72-7.76 (m, 2H), 8.27 (d, *J* = 8.4 Hz, 2H), 8.34 (d, *J* = 8.6 Hz, 2H),; ¹³C NMR (CDCl₃, 100.53 MHz) δ 27.84, 34.31, 39.47, 124.68, 124.86, 124.96, 129.63, 130.33, 148.34, 151.02; IR

(KBr) 3095 m, 2989 m, 1866 w, 1752 m, 1700 w, 1633 s, 1599 s, 1556 s, 1529 s, 1473 s, 1344 m, 1261 m, 1182 m, 1159 m, 1024 m, 935 m, 818 m, 754 s, 707 w, 673 m, 629 w; MS m/z (relative intensity, %) 248 (14), 247 (70), 246 (19), 218 (24), 217 (30), 216 (14), 204 (30), 180 (26), 179 (100). HRMS Calcd for C₁₉H₁₉N: 247.1361; Found: 247.1358.

Typical procedure for the C-4 arylation reaction of acridines (Table 5). To an oven-dried 10 mL vial, Ni(cod)₂ (13.6 mg, 0.050 mmol), SIPr·HCl (42.7 mg, 0.10 mmol), NaO'Bu (48.1 mg, 0.50 mmol), and toluene (1 mL) were added, and the solution was then stirred for a few minutes until the color of the catalyst mixture changed to orange-dark brown. 9-Phenylacridine (63.8 mg, 0.25 mmol), Ph₂Zn (219.6 mg, 1.0 mmol), toluene (1.0 mL) were then added. All operations were conducted in a glove-box. The reaction was stirred at 160 °C for 20 h. After removing the volatiles *in vacuo*, chromatography on silica gel (hexane/EtOAc = 50:1) furnished 4,9-diphenylacridine as a white solid (56.3 mg, 68%).

4,9-Diphenylacridine (**15**). Rf 0.69 (hexane). White solid (mp = 173-174 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 7.38-7.42 (m, 1H), 7.45-7.49 (m, 4H), 7.53-7.71 (m, 8H), 7.79 (d, *J* = 6.8 Hz, 1H), 7.91 (d, *J* = 7.6 Hz, 2H), 7.91 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 124.78, 125.31, 125.45, 125.75, 126.55, 126.57, 127.27, 127.83, 128.23, 128.43, 129.34, 130.29, 130.48, 130.58, 131.13, 136.39, 139.80, 140.55, 146.68, 146.87, 148.44; IR (KBr) 3057 m, 3032 m, 1743 m, 1684 m, 1648 m, 1624 m, 1599 m, 1560 m, 1541 m, 1522 m, 1458 m, 1419 m, 1068 w, 1028 w, 864 w, 825 w, 758 s, 698 s, 669 w, 611 m.; MS *m*/*z* (relative intensity, %) 332 (15), 331 (57), 330 (100), 329 (10), 328 (29), 165 (11), 164 (12). HRMS Calcd for C₂₅H₁₇N: 331.1361; Found: 331.1360.

9-(4-Butylphenyl)-4-phenylacridine. Rf 0.66 (hexane: EtOAc = 5:1). Yellow solid (mp = 157-158 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 1.01 (t, *J* = 7.6 Hz, 3H), 1.43-1.52 (m, 2H), 1.71-1.79 (m, 2H),

2.78 (t, J = 7.2 Hz, 2H), 7.34-7.46 (m, 7H), 7.51-7.55 (m, 2H), 7.65-7.77 (m, 4H), 7.90 (d, J = 7.2 Hz, 2H), 8.20 (d, J = 8.4 Hz, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 14.04, 22.50, 33.62, 35.54, 124.91, 125.14, 125.58 (two overlapping peaks), 126.70 (two overlapping peaks), 133.43, 127.21, 127.79, 128.39, 129.28, 130.24, 130.38, 130.50, 131.11, 139.86, 140.46, 142.98, 146.67, 147.17, 148.44; IR (KBr) 3057 w, 3030 w, 2956 m, 2925 m, 2854 m, 1619 w, 1599 w, 1518 m, 1458 m, 1417 m, 1379 w, 1354 w, 1179 w, 1132 w, 1117 w, 1064 w, 1018 w, 869 w, 829 w, 754 s, 694 m, 671 w, 642 w, 613 m; MS *m*/*z* (relative intensity, %) 388 (19), 387 (72), 386 (100), 343 (25), 341 (13). HRMS Calcd for C₂₉H₂₅N: 387.1987; Found: 387.1981.

9-(3,5-Dimethylphenyl)-4-phenylacridine. Rf 0.63 (hexane: EtOAc = 5:1). Pale yellow solid (mp = 128-129 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 2.44 (s, 6H), 7.07 (s, 2H), 7.20 (s, 1H), 7.38-7.40 (m, 1H), 7.44-7.47 (m, 2H), 7.52-7.55 (m, 2H), 7.67-7.71 (m, 2H), 7.73 (dd, *J* = 0.9, 6.0 Hz, 1H), 7.78 (dd, *J* = 1.2, 4.8 Hz, 1H), 7.90-7.92 (m, 2H), 8.20 (d, *J* = 5.6 Hz, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 21.42, 124.85, 125.15, 125.53, 125.59, 126.82, 126.83, 127.26, 127.84, 128.24, 129.31, 129.80, 130.28, 130.54, 131.16, 136.26, 137.95, 139.88, 140.47, 146.69, 147.45, 148.47; IR (KBr) 3059 w, 3032 w, 3006 m, 2918 w, 2858 w, 1599 m, 1541 w, 1522 m, 1483 w, 1456 m, 1410 m, 1219 m, 1200 w, 1180 w, 1134 w, q032 w, 1016 w, 858 w, 841 w, 754 s, 700 s, 665 m, 631 m; MS *m/z* (relative intensity, %) 360 (14), 359 (62), 358 (100), 171(11), 164 (11). HRMS Calcd for C₂₇H₂₁N: 359.1674; Found: 359.1680.

9-(Naphthalen-2-yl)-4-phenylacridine. Rf 0.60 (hexane: EtOAc = 5:1). Yellow solid (mp =

188-189 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 7.36-7.40 (m, 1H), 7.42-7.49 (m, 2H), 7.54-7.63 (m, 5H), 7.68-7.73 (m, 3H), 7.80 (dd, J = 1.6, 7.2 Hz, 1H), 7.91-7.96 (m, 4H), 8.01-8.03 (m, 1H), 8.08 (d, J = 8.8 Hz, 1H), 8.23-8.25 (m, 1H); ¹³C NMR (CDCl₃, 150.85 MHz) δ 124.93, 125.41, 125.61, 125.84, 126.61, 126.63, 126.68, 126.76, 127.29, 127.84, 127.93, 128.08, 128.16, 128.35, 129.37, 129.69, 130.31, 130.63, 131.14, 132.98, 133.08, 133.86, 139.78, 140.59, 146.70, 146.74, 148.46; IR (neat) 3055 w, 2374 w, 2314 w, 1600 w, 1541 w, 1522 w, 1485 w, 1458 w, 1417 w, 1213 w, 1180 w, 1140 w, 901 w, 864 w, 823 w, 756 s, 698 m, 669 w, 640 w; MS *m*/*z* (relative intensity, %) 382 (18), 381 (70), 380 (100), 379 (14), 378 (32), 190 (15), 189 (19), 188 (11). HRMS Calcd for C₂₉H₁₉N: 381.1517; Found: 381.1521.

9-(4-Methoxyphenyl)-4-phenylacridine. Rf 0.57 (hexane: EtOAc = 5:1). White solid (mp = 159-160 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 3.93 (s, 3H), 7.11-7.14 (m, 2H), 7.36-7.40 (m, 3H), 7.43-7.47 (m, 2H), 7.51-7.55 (m, 2H), 7.65-7.78 (m, 4H), 7.89-7.91 (m, 2H), 8.19 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 55.38, 113.87, 125.08, 125.17, 125.62, 125.77, 126.62, 126.64, 127.22, 127.79, 128.33, 129.259, 130.23, 130.55, 131.11, 131.73, 139.83, 140.50, 146.69, 146.78, 148.46, 159.56; IR (KBr) 1604 m, 1540 w, 1513 m, 1458 m, 1419 m, 1288 w, 1245 m, 1174 m, 1103 w, 1028 m, 868 w, 831 m, 759 s, 700 m, 67 w.; MS *m/z* (relative intensity, %) 362 (15), 361 (67), 360 (100), 316 (24), 315 (13), 158 (12). HRMS Calcd for C₂₆H₁₉NO: 361.1467; Found: 361.1478.

9-(3-Methoxyphenyl)-4-phenylacridine. Rf 0.54 (hexane: EtOAc = 5:1). White solid (mp = 128-129 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 3.85 (s, 3H), 7.00-7.05 (m, 2H), 7.09-7.12 (m, 1H), 7.37-7.55 (m, 6H), 7.66-7.79 (m, 4H), 7.89-7.91 (m, 2H), 8.20 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 55.33, 113.87, 115.92, 122.89, 124.65, 125.31 (two overlapping peaks), 125.75, 126.54, 126.57, 127.24, 127.80, 129.32, 129.50, 130.27, 130.53, 131.10, 137.73, 139.78, 140.50, 146.64 (two overlapping peaks), 148.40, 159.53; IR (KBr) 3060 w, 2958 w, 2931 w, 2831 w, 1591 m, 1541 m, 1519 m, 1458 m, 1421 m, 1355 w, 1313 w, 1267 w, 1242 m, 1174 w, 1134 w, 1039 m, 910 w, 885 w, 862 w, 754 s, 700 s, 667 w; MS *m*/*z* (relative intensity, %) 362 (16), 361 (68), 360 (100), 344 (18), 316 (15), 315 (14), 158 (11). HRMS Calcd for C₂₆H₁₉NO: 361.1467; Found: 361.1466.

N,N-Dimethyl-4-(4-phenylacridin-9-yl)aniline. Rf 0.49 (hexane: EtOAc = 5:1). Greenish solid (mp = 196-197 °C). ¹H NMR (CDCl₃, 399.78 MHz) δ 3.09 (s, 6H), 6.92-6.95 (m, 2H), 7.33-7.41 (m, 3H), 7.43-7.47 (m, 2H), 7.52-7.56 (m, 2H), 7.65-7.69 (m, 1H), 7.77 (dd, *J* = 1.2. 6.8 Hz, 1H), 7.83 (d, *J* = 8.8 Hz, 1H), 7.87 (dd, *J* = 1.2, 8.8 Hz, 1H), 7.90 (s, 1H), 7.92 (d, *J* = 1.2 Hz, 1H), 8.19 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 40.47, 111.89, 123.57, 124.86, 125.29, 125.31, 125.98, 127.02 (two overlapping peaks), 127.14, 127.78, 129.16, 130.18, 130.51, 131.12, 131.58, 139.99, 140.40, 146.77, 147.78, 148.57, 150.21; IR (KBr) 2889 w, 2804 w, 1608 s, 1523 s, 1479 m, 1456 m, 1419 m, 1356 m, 1227 w, 1205 w, 1171 m, 1065 m, 818 m, 760 s, 731 m, 698 m, 671 w, 634 m, 611 m; MS *m*/*z* (relative intensity, %) 375 (18), 374 (72), 373 (100), 357 (29), 328 (13), 187 (11), 186 (24), 164 (13). HRMS Calcd for C₂₇H₂₂N₂: 374.1783; Found: 374.1779.

N,*N*-Dimethyl-3-(4-phenylacridin-9-yl)aniline. Rf 0.46 (hexane: EtOAc = 5:1). Yellow oil. ¹H NMR (CDCl₃,270.05 MHz) δ 2.99 (s, 6H), 6.79-6.82 (m, 2H), 6.92 (dd, J = 2.4, 8.4 Hz, 1H), 7.37-7.41 (m, 1H), 7.43-7.47 (m, 3H), 7.52-7.56 (m, 2H), 7.66-7.70 (m, 1H), 7.77-7.83 (m, 3H), 7.90-7.92 (m, 2H), 8.20 (d, J = 8.4 Hz, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 40.50, 111.96, 114.40, 118.74, 124.83, 125.05, 125.49 (two overlapping peaks), 126.97 (two overlapping peaks), 127.20, 127.80, 129.01, 129.29, 130.26, 130.41, 131.11, 137.14, 139.90, 140.38, 146.64, 148.07, 148.43, 150.25; IR (neat) 3057 w, 3030 w, 2850 w, 2802 w, 1682 w, 1599 s, 1574 m, 1541 m, 1522 m, 1491 m, 1458 m, 1427 m, 1362 m, 1342 w, 1228 w, 1178 w, 1134 w, 1061 w, 1005 m, 908 w, 874 w, 854 w, 760 s, 733 m, 700 s, 671 w, 644 w, 617 w; MS *m*/*z* (relative intensity, %) 375 (19), 374 (73), 373 (100), 357 (26), 328 (17), 187 (10), 186 (23), 164 (13). HRMS Calcd for C₂₇H₂₂N₂: 374.1783; Found: 374.1778.

9-Butyl-4-phenylacridine. Rf 0.60 (hexane: EtOAc = 5:1). Yellow-green oil. ¹H NMR (CDCl₃, 399.78 MHz) δ 1.03 (t, *J* = 7.6 Hz, 3H), 1.58-1.65 (m, 2H), 1.80-1.87 (m, 2H), 3.63 (t, *J* = 8.0 Hz, 2H), 7.42-7.45 (m, 1H), 7.49-7.54 (m, 3H), 7.57-7.61 (m, 1H), 7.66-7.70 (m, 1H), 7.78 (dd, *J* = 0.8, 6.8 Hz, 1H), 7.85-7.87 (m, 2H), 8.15 (d, *J* = 9.2 Hz, 1H), 8.24 (t, *J* = 9.6 Hz, 2H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 14.01, 23.41, 27.63, 33.51, 123.95, 124.07, 124.47, 125.15, 125.18, 125.63, 127.15, 127.73, 129.04, 130.06, 131.12, 131.38, 139.98, 141.23, 146.57, 146.60, 148.31; IR (KBr) 3059 w, 3030 w, 2954 m, 2925 m, 2862 m, 2362 w, 2339 w, 1620 w, 1601 w, 1549 w, 1523 m, 1491 m, 1460 m, 1418 w, 1292 w, 1180 w, 1140 w, 1103 w, 1072 w, 1020 w, 958 w, 904 w, 754 s, 698 m, 642 w, 600 w; MS *m*/*z* (relative intensity, %) 312 (16), 311 (66), 310 (100), 268 (30), 267 (44), 266 (12), 65 (10), 256 (21), 254 (12). HRMS Calcd for C₂₃H₂₁N: 311.1674; Found: 311.1667.

9-Phenyl-4-(2-tolyl)acridine. Rf 0.57 (hexane: EtOAc = 5:1). Yellow-green oil. ¹H NMR (CDCl₃, 399.78 MHz) δ 2.14 (s, 3H), 7.34-7.42 (m, 5H), 7.45-7.47 (m, 3H), 7.58-7.67 (m, 6H), 7.72 (dd, *J* = 1.2, 8.4 Hz, 1H), 8.12 (t, *J* = 9.0 Hz, 1H); ¹³C NMR (CDCl₃, 100.53 MHz) δ 20.80, 124.76, 125.13, 125.16, 125.31, 125.65, 126.52, 126.56, 127.35, 128.23, 128.41, 129.26, 129.59, 130.53 (two overlapping peaks), 130.60, 130.66, 136.38, 137.68, 140.48, 141.61, 146.82, 147.14, 148.52; IR (KBr) 3059 w, 3020 w, 2954 w, 2929 w, 1622 w, 1601 w, 1562 w, 1541 w, 1522 m, 1458 m, 1419 m, 1257 w, 1176 w, 1138 w, 1093 w, 1072 w, 1053 w, 1030 w, 908 m, 868 w, 827 w, 756 s, 733 s, 702 s, 671 w, 646 w, 615 m; MS *m*/*z* (relative intensity, %) 346 (20), 345 (82), 344 (100), 343 (13), 342 (13), 341 (11), 331 (17), 330 (61), 328 (19), 171 (11), 165 (15), 164 (18). HRMS Calcd for C₂₆H₁₉N: 345.1517; Found: 345.1519.

V. Mechanistic Studies

As shown in the paper, in the arylation of acridines, 9- or 4-arylated acridines were obtained as products, while in the alkylation 9-alkyl-9,10-dihydroacridines, not the aromatized product, were obtained. To collect information regarding these contrasting results, the following investigations were conducted.

S1 (64.3 mg, 0.25 mmol) or **S2** (55.8 mg, 0.25 mmol) in toluene (2 mL) were treated with 2 equivalents of **2** (109.8 mg, 0.5 mmol) in the absence of the catalyst, and each reaction vessels were stirred at 130 $^{\circ}$ C for 20 h. As a result, **S1** was aromatized to afford 9-phenylacridine in 87% yield,⁴ while **S2** was recovered quantitatively

⁴ Similar aromatization induced by Ph₂Zn was observed with 2-aryl-1,2-dihydroquinolines: M. Tobisu, I. Hyodo, N. Chatani, *J. Am. Chem. Soc.* **2009**, *131*, 12070.

This result shows that those contrasting results were due to the stability of S2 toward aromatization induced by organozinc reagents.

6.00

