Supporting Information.

Unexpected stereomutation dependence on the chemical structure of helical

vinyl glycopolymers

Jiaxi Cui, Jie Zhang, Xinhua Wan*
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of
Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Experimental Section

Material. 2-Iodo-5-bromo-toluene (97\%, Aldrich), N-bromosuccinimide (NBS, 99\%, Aldrich), triphenylphosphine $\left(\mathrm{PPh}_{3}, 99 \%\right.$, Acros), tetrachloromethane (CCl_{4}, AR, Beijing Chemical Co.), 2,3,4,6-tetra- O-acetyl- β-D-galactopyranosyl bromide (95%, Sigma), silver oxide (AR, Beijing Chemical Co.), and aqueous formaldehyde (40%, AR, Beijing Chemical Co.) were used as purchased. Azobisisobutyronitrile (AIBN, Wuhan Chemical Co., AR) was recrystallized from ethanol and dried under vacuum at room temperature. Tetrahydrofuran (THF, Beijing Chemical Co. AR) was refluxed with sodium and distilled out just before use. Dimethyl sulfoxide (DMSO, Beijing Chemical Co. AR) and N,N-dimethylformamide (DMF, Beijing Chemical Co. AR) were distilled out from calcium hydride. Quinoline (Beijing Chemical Co. AR) and methanol were purified by distillation. Tetrakis(triphenylphosphine)palladium $(0)\left(\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}\right)$ was prepared according to the literature procedure and kept in a refrigerator under argon (Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. D. Application of transition metal catalysis in organic synthesis, New York 1999. P5). 4-(Butoxy)phenylboronic acid and 4-(tetrahydro-2H-pyran-2-yloxy)phenylboronic acid were prepared according to the literature procedure (Cui, J.; Liu, A.; Zhi, J.; Zhu, Z.; Guan, Y.; Wan, X.; Zhou, Q. Macromolecules 2008, 41, 5245. Cui, J.; Zheng, J.; Qiao, W.; Wan, X. J. Colloids Interface. Sci. 2008, 326, 267). All other reagents and solvents were used as obtained unless otherwise specified.
Measurements. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Bruker ARX400 or Bruker ARX300 spectrometers. The chemical shifts were reported in ppm (δ) relative to tetramethylsilane. Elementary analysis was carried out on a GmbH Vario EL instrument. Mass spectrum was recorded on a Bruker Inc. BIFLEX Ш spectrometer. Infra-Red (IR) spectra were recorded on a Nicolet Magna-IR 750 fourier transform infrared spectrometer. The number-average molecular weight (Mn), weight-average molecular weight $(M w)$, and polydispersity $(M w / M n)$ of polymers were determined by a gel permeation chromatography (GPC) apparatus equipped with a Waters 2410 refractive-index detector and a Water 515 pump. Three Waters Styragel columns with a $10-\mathrm{mm}$ bead size were connected in series. Their effective molecular weight ranges were 100-10,000 for Styragel HT2, 500-30,000 for Styragel HT3, and 5000-600,000 for Styragel HT4, separately. The pore sizes were 50, 100, and 1000 nm for Styragel HT2, HT3, and HT4, respectively. THF was employed as the eluent at a flow rate of 1.0 $\mathrm{mL} / \mathrm{min}$ at $35{ }^{\circ} \mathrm{C}$. All GPC curves were calibrated against a series of monodispersed polystyrene standards. Optical rotations were estimated with a JASCO Model P-1030 digital polarimeter using a
water-jacketed 100 mm cell at $25^{\circ} \mathrm{C}$. The temperature of water bath was mediated with a PolyScience programmable temperature controller. UV-vis absorption measurements were run on a Varian Cary 1E UV-vis spectrometer. CD spectra were recorded on a JASCO J-810 spectrometer. The sample solution was thermostatted at $25^{\circ} \mathrm{C}$. The light pathlength of the quartz cell used was 10 mm . The concentration was $2 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ and the solvent was THF or DMSO.

Synthesis (Schemes 1 and 2)

2-(4'-Butoxyphenyl)-5-bromotoluene. To a degassed mixture of 2-iodo-5-bromo-toluene ($12.0 \mathrm{~g}, 40$ mmol), 4-(butoxy)phenylboronic acid ($7.8 \mathrm{~g}, 40 \mathrm{mmol}$), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.20 \mathrm{~g}, 0.18 \mathrm{mmol})$ were added into a solution containing benzene (80 mL), ethanol (40 mL) and aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($2 \mathrm{M}, 80$ mL) under a continuous stream of argon. The solution was vigorously stirred at reflux for 4 h . Afterwards, the organic layer was separated and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was taken away under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane/petroleum ether: $1 / 5(\mathrm{v} / \mathrm{v})$ as eluent) to give 9.4 g of product as a yellow liquid. Yield: 73%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): 0.96-1.01 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.47-1.54 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.77-1.81 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.97-4.01\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.91-6.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}), 7.05-7.08$ (d, 1H, Ar), 7.17-7.20 (d, 2H, Ar), 7.32-7.35 (d, 1H, Ar), $7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $158.3,140.5,137.7,132.9,132.8,131.4,130.0,128.7,120.6,114.1$ (12C, Ar), 20.4 (1C, ArCH3), 67.7, 31.3, 19.3, 13.9 (4C, butoxyl). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}$: C, 63.96; H, 6.00; Found: C, 63.92; H, 6.01 . MS: $m / e=318$ (100%) and 320 (97%) (calcd. 319).
2-(4'-Butoxyphenyl)-5-bromostyrene. A solution of 2-(4'-butoxyphenyl)-5-bromotoluene (9.41 g , $30 \mathrm{mmol})$, NBS $(5.34 \mathrm{~g}, 30 \mathrm{mmol})$, and $\mathrm{BPO}(0.11 \mathrm{~g}, 0.45 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(100 \mathrm{~mL})$ was refluxed for 3 h. After cooling to room temperature, the solids suspended on the surface of the reaction mixture were separated by filtration. After evaporation of solvent under vacuum, yellow solids were obtained and were directly mixed with $\mathrm{PPh}_{3}(7.73 \mathrm{~g}, 30 \mathrm{mmoL})$ and acetone $(100 \mathrm{~mL})$. The mixture was heated to reflux for 4 h . Afterwards, the solvent was evaporated out under reduced pressure and the residue was purified by column chromatography on silica gel using dichloromethane at first and then methanol as eluent. The methanol phase was collected. After the removal of methanol, the residue was dissolved in aqueous formaldehyde ($40 \mathrm{wt} \%, 120 \mathrm{~mL}$). With a rapid stirring, aqueous NaOH solution ($2.5 \mathrm{M}, 80$ mL) was dropped slowly at room temperature. The mixture was stirred for 24 h . After the reaction was completed, $3 \times 150 \mathrm{~mL}$ potions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were used to extract the mixture. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was taken away under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane/petroleum ether: $1 / 3$ (v / v) as eluent) to give 5.21 g of yellow solids. Yield: 53%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDC1}_{3}, \delta \mathrm{ppm}$): 0.97-1.02 (t, 3H, CH $)$, 1.48-1.58 (m, 2H, CH2), 1.75-1.85 (m, 2H, CH 2), 3.99-4.03 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 5.21-5.25 (d, 1H, vinyl), 5.70-5.73 (d, 1H, vinyl); 6.61-6.70 (dd, 1H, vinyl); 6.93-6.97 (d, 2H, Ar), 7.13-7.16 (d, 1H, Ar), 7.20-7.25 (d, 2H, Ar), 7.41-7.44 (d, 1H, Ar), 7.74-7.75 (d, 1H, Ar). ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl} 3, \mathrm{ppm}): 158.6,139.4,137.7,131.6,130.7,130.5,128.6,114.7$ (12C, Ar), 135.0, 115.7 (2C, vinyl), 67.7, 31.4, 19.3, 13.9 (4C, butoxyl). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrO}$: C, 65.27 ; H, 5.78; Found: C, 65.17; H, 5.80. MS: $m / e=330(100 \%)$ and 332 (97%) (calcd. 331).

2-(4'-Butoxyphenyl)-5-(4'-hydroxyphenyl)styrene. To a degassed mixture of 2-(4'-butoxyphenyl)-5-bromostyrene ($5.2 \mathrm{~g}, 16 \mathrm{mmol}$), 4-(tetrahydro-2 H -pyran-2-yloxy)phenylboronic acid $(5.0 \mathrm{~g}, 23 \mathrm{mmol})$, hydroquinone $(0.44 \mathrm{~g}, 4 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.20 \mathrm{~g}, 0.18 \mathrm{mmol})$ were added benzene (80 mL), ethanol (40 mL) and aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($2 \mathrm{~mol} / \mathrm{L}, 80 \mathrm{~mL}$) under a continuous stream of argon. The solution was vigorously stirred at reflux for 6 h under argon. Afterwards, the
organic layer was separated and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was dissolved in the mixture solvent of THF (50 mL), methanol (20 mL), and $\mathrm{HCl}(37 \mathrm{wt} \%, 10 \mathrm{~mL})$. The mixture was then stirred at room temperature for 4 hours. The solution was diluted with ethyl acetate (200 mL) and washed with aqueous NaHCO_{3} and water. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was taken away under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane as eluent) to give 4.8 g of yellow solids. Yield: 89%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDC1}_{3}, \delta \mathrm{ppm}$): 0.97-1.02 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.48-1.58 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75-1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.99-4.03\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.21-5.25(\mathrm{~d}, 1 \mathrm{H}$, vinyl), 5.73-5.79 (d, 1 H , vinyl); 6.75-6.85 (dd, 1H, vinyl); 6.92-76.98 (m, 4H, Ar), 7.29-7.32 (m, 3H, Ar), 7.47-7.51 (dd, 1H, Ar), 7.54-7.56 (d, 2H, Ar), 7.81-7.82 (d, 1H, Ar). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3, \mathrm{ppm}$): 158.3, 155.1, 139.5, $139.0,136.3,133.7,132.6,130.9,130.5,128.4,126.0,124.1,114.7,114.0$ (18C, Ar), 136.0, 115.7 (2C, vinyl), 67.7, 31.3, 19.3, 13.9 (4C, butoxyl). Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2}$: C, 83.69; H, 7.02; Found: C, 83.41; H, 7.12. MS: $m / e=344$ (calcd. 344.5).

2-(4'-Butoxyphenyl)-5-[4'-(2,3,4,6-tetra- \boldsymbol{O}-acetyl- $\boldsymbol{\beta}$-D-galactosyloxy)phenyl]styrene (1). A mixture of 2-(4'-butoxyphenyl)-5-(4'-hydroxyphenyl)styrene (3.78 $\quad \mathrm{g}$, 11.0 mmol), 2,3,4,6-tetra- O-acetyl $-\beta$-D-galactopyranosyl bromide ($4.86 \mathrm{~g}, 11.9 \mathrm{mmol}$), $\mathrm{Ag}_{2} \mathrm{O}(2.75 \mathrm{~g}, 11.9 \mathrm{mmol})$, and $\mathrm{CaSO}_{4}(1.64 \mathrm{~g}, 11.9 \mathrm{mmol})$ in ethyl acetate (40 mL) containing anhydrous quinoline (20 mL) was stirred at room temperature for 48 hours in a flask protected from light. Afterwards, the solution was diluted with ethyl acetate (100 mL). After filteration, the solution was washed with $10 \mathrm{wt} \% \mathrm{HCl}$, aqueous NaHCO_{3} and brine following by drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness. The product was purified further by column chromatography on silica gel (dichloromethane/ethyl acetate: $20 / 1(\mathrm{v} / \mathrm{v})$ as eluent) to give 2.4 g of product as yellow solid. Yield: $31 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right):$; 0.98-1.02 (t, 3H, CH3$), 1.48-1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.77-1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.202,2.097$, 2.042, $2.031\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{COCH}_{3}\right), 4.00-4.09\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.09-4.29(\mathrm{~m}, 3 \mathrm{H}$, sugar), 5.10-5.16 (m, 2 H , sugar), 5.48-5.49 (m, 1H, sugar), 5.51-5.56 (m, 1 H , sugar), 5.22-5.25 (d, 1H; vinyl), 5.73-5.78 (d, 1 H ; vinyl), 6.75-6.83 (dd, 1H, vinyl), 6.95-6.98 (d, 2H, Ar), 7.08-7.12 (d, 2H, Ar), 7.28-7.31 (d, 2H, Ar), 7.33-7.35 (d, 1H, Ar), 7.47-7.48 (dd, 1H, Ar), 7.57-7.60 (d, 2H, Ar), 7.72-7.78 (d, 1H, Ar). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3, \mathrm{ppm}$): 170.3, 170.2, 170.1, 169.4 (4C, $\mathrm{C}=\mathrm{O}$), 158.4, 156.4, 139.4, 139.2, 136.2, 132.4, 130.8, 130.6, 128.2, 126.1, 124.3, 117.2, 114.0 (18C, Ar), 136.0, 114.7 (2C, vinyl), 99.7, 71.0, $77.0,76.7,71.0,70.82,66.9,61.3,60.3$ (6C, sugar), 67.7, 31.3, 19.2, 13.8 (4C, butoxyl), 20.7, 20.6, $20.5\left(4 \mathrm{C}, \mathrm{COCH}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{O}_{11}$: C, $67.64 ; \mathrm{H}, 6.27$. Found: C, $67.58 ; \mathrm{H}, 6.24 .20$. MS: m / e $=697\left(\mathrm{MNa}^{+}\right)\left(\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{O}_{11}\right.$ calcd. 674.7). Specific optical rotation $[\alpha]_{365}{ }^{25}=90^{\circ}(\mathrm{c}: 2.0 \mathrm{mg} / \mathrm{mL}$, THF $)$
2-(4'-Butoxyphenyl)-5-[4'-($\boldsymbol{\beta}$-D-galactosyloxy)phenyl]styrene (2). A mixture of 1 ($1.35 \mathrm{~g}, 0.20$ $\mathrm{mmol})$ and freshly prepared $\mathrm{CH}_{3} \mathrm{ONa}$ in methanol $(0.1 \mathrm{mmol} / \mathrm{L}, 50 \mathrm{~mL})$ was stirred at room temperature for 12 h . The precipitated product was filtered and washed with methanol. After drying under vacuum, white powder of 0.98 g 2 was obtained. Yield: 97%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}, \mathrm{ppm}$):; 0.93-0.97 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.42-1.51 (m, 2H, CH2), 1.69-1.76 (m, 2H, CH2), 3.42-3.73 (m, 6H, sugar), 4.00-4.03 (t, $2 \mathrm{H}, \mathrm{OCH}_{2}$), 4.54-5.20 (4H, OH), 4.88-4.90 (d, 1 H , sugar- C_{1}), 5.26-5.29 (d, 1 H , vinyl), 5.91-5.95 (d, 1 H , vinyl), 6.65-6.72 (dd, 1H, vinyl), 7.01-7.23 (d, 2H, Ar), 7.14-7.16 (d, 2H, Ar), 7.25-7.27 (d, 2H, Ar), 7.31-7.33 (d, 1H, Ar), 7.59-7.61 (d, 1H, Ar), 7.69-7.71 (d, 2H, Ar), 7.87(s, 1H, Ar). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl} 3, \mathrm{ppm}): 158.0,157.3,138.6,138.5,135.4,133.2,131.8,130.6,130.5,127.7,125.8,123.5$, 116.7, 114.2 (18C, Ar), 135.3, 115.6 (2C, vinyl), 101.1, 75.6, 73.3, 70.3, 68.1, 60.4, (6C, sugar), 67.2, 30.8, 18.8, 13.7 (4C, butoxyl), Anal. Calc.: C, 71.13; H, 6.76. Found: C, 70.68; H, 6.80. Anal. Calc. for
$\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7}: \mathrm{C}, 67.64 ; \mathrm{H}, 6.27$. Found: C, 67.58; H, 6.24. MS: $529\left(\mathrm{MNa}^{+}\right)$(calcd. 506.6) Specific optical rotation $[\alpha]_{365}{ }^{25}=-64^{\circ}$ (c: $2.0 \mathrm{mg} / \mathrm{mL}$, DMSO).
2-(4'-Acetoxyphenyl)-5-bromotoluene. To a degass mixture of 2-(4'-butoxyphenyl)-5-bromotoluene ($12.55 \mathrm{~g}, 40 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ which was previously cooled to $-78{ }^{\circ} \mathrm{C}$, was added BBr_{3} ($26.5 \mathrm{~g}, 106 \mathrm{mmol}$) slowly. The solution was then stirred for 12 h . After addition of water (50 mL), the mixture was stirred for 0.5 hours and then was extracted with ethyl acetate ($3 \times 150 \mathrm{~mL}$). After evaporation of solvent under reduced pressure, the residue subsequent dried under vacuum to give a white powder. Acetic anhydride (30 mL) and $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ were added and the mixture was vigorously stirred at reflux for 4 h . After added into water (200 mL), the mixture was extracted by $3 \times 150 \mathrm{~mL}$ potions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was taken away under reduced pressure and the residue was purified by column chromatography on silica gel (dichloromethane/petroleum ether: $1 / 5(\mathrm{v} / \mathrm{v})$ as eluent) to give 10.35 g white solid. Yield: 84%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.06-7.17(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, 7.25-7.32 (m, 2H, Ar), 7.35-7.40 (m, 1H, Ar), 7.43 (s, $1 \mathrm{H}, \mathrm{Ar}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 169.6, $21.2\left(\mathrm{COCH}_{3}\right), 150.0,140.0,137.7,135.6,133.1,131.4,130.1,129.5,128.9,121.4$ (12C, Ar), $20.4\left(1 \mathrm{C}, \mathrm{ArCH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}_{2}: \mathrm{C}, 59.04$; H, 4.29; Found: C, 59.01 ; H, 4.33. MS: $m / e=$ 304 (100\%) and 306 (97\%) (calcd. 305.17).
2-(4'-Acetoxyphenyl)-5-(4'-butoxyphenyl)toluene. This compound was synthesized via the method used for 2-(4'-butoxyphenyl)-5-bromotoluene. Yield: 69%. 0.97-1.02 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.49-1.56 (m, 2H, CH_{2}), 1.78-1.83 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00-4.04\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.97-7.00 (m, 2H, Ar), 7.14-7.16 (d, 2H, Ar), 7.27-7.30 (d, 1H, Ar), 7.36-7.39 (d, 2H, Ar), 7.43-7.47 (m, $2 \mathrm{H}, \mathrm{Ar}), 7.55-7.58$ (d, 2H, Ar). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$, ppm): 169.5, $21.2\left(\mathrm{COCH}_{3}\right), 158.6,154.4$, $139.8,139.5,135.7,134.2,133.3,130.5,130.3,128.6,128.0,124.1,115.0,114.8$ (18C, Ar), 20.7 (ArCH3), 67.7, 31.4, 19.3, 13.9 (4C, butoxyl). Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3}$: C, 80.18; H, 7.02; Found: C, 80.21; H, 7.03. MS: $m / e=374$ (calcd. 374.5).

2-(4'-Hydroxyphenyl)-5-(4'-butoxyphenyl)styrene. Yield: 55%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDC1}_{3}, \delta$ ppm): 0.97-1.02 (t, 3H, CH3), 1.46-1.58 (m, 2H, CH2), 1.76-1.85 (m, 2H, CH2), 3.99-4.04 (t, $2 \mathrm{H}, \mathrm{CH}_{2}$), 5.21-5.25 (d, 1H, vinyl), 5.73-5.79 (d, 1H, vinyl), 6.74-6.83 (dd, 1H, vinyl), 6.88-6.91 (d, $2 \mathrm{H}, \mathrm{Ar}$), 6.98-7.02 (d, 2H, Ar), 7.25-7.33 (m, 3H, Ar), 7.48-7.52 (dd, 1H, Ar), 7.56-7.61 (d, 2H, Ar), 7.79-7.80 (d, 1H, Ar). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3, \mathrm{ppm}$): 158.7, 154.7, 139.7, 138.7, 136.2, 136.1, 133.1, 131.1, $130.5,128.1,126.0,124.1,114.9,114.8$ (18C, Ar), 133.2, 114.7 (2C, vinyl), 67.8, 31.3, 19.2, 13.9 (4C, butoxyl). Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2}$: C, 83.69; H, 7.02; Found: C, 83.33; H, 7.02. MS: $m / e=344$ (calcd. 344.5).

2-[4'-(2,3,4,6-Tetra-O-acetyl- $\boldsymbol{\beta}$-D-galactosyloxy)phenyl]-5-(4'-butoxyphenyl)styrene (3). Yield: $45 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$):; 0.98-1.02 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.51-1.53 (m, 2H, CH2), 1.78-1.82 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.03-2.20\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{COCH}_{3}\right), 4.00-4.03\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.08-4.29(\mathrm{~m}, 3 \mathrm{H}$, sugar), 5.10-5.16 (m, 2 H , sugar), $5.48-5.49$ (d, 1 H , sugar), $5.51-5.57(\mathrm{~m}, 1 \mathrm{H}$, sugar), $5.22-5.25(\mathrm{~d}, 1 \mathrm{H}$, vinyl), 5.73-5.78 (d, 1 H , vinyl), 6.75-6.83 (dd, 1 H , vinyl), 6.98-7.00 (d, 2H, Ar), 7.07-7.08 (d, 2H, Ar), 7.30-7.33 (m, 3H, Ar), 7.49-7.52 (dd, 1H, Ar), 7.56-7.58 (d, 2H, Ar), 7.79-7.80 (d, 1H, Ar). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 170.3,170.2,170.1,169.3(4 \mathrm{C}, \mathrm{C}=\mathrm{O}), 158.8,156.0,140.1,138.3,136.0,135.6,133.0$, $130.9,130.4,128.0,126.1,124.1,116.4,114.8$ (18C, Ar), 136.1, 114.9 (2C, vinyl), 99.5, 71.0, 70.8, 68.6, 66.9, 61.3 (6C, sugar), 67.7, 31.3, 19.2, 13.8 (4C, butoxyl), 20.7, 20.6, $20.5\left(4 \mathrm{C}, \mathrm{COCH}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{O}_{11}$: C, $67.64 ; \mathrm{H}, 6.27$. Found: C, $67.58 ; \mathrm{H}, 6.24$. 20. MS: $m / e=697\left(\mathrm{MNa}^{+}\right)\left(\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{O}_{11}\right.$ calcd. 674.7). Specific optical rotation $[\alpha]_{365}{ }^{25}=72^{\circ}$ (c: $2.0 \mathrm{mg} / \mathrm{mL}$, THF)

2-[4'-($\boldsymbol{\beta}$-D-Galactosyloxy)phenyl]-5-(4'-butoxyphenyl)styrene (4). Yield: 95\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$, ppm):; 0.93-0.97 (t, 3H, CH ${ }_{3}$), 1.43-1.49 (m, 2H, CH $)$, 1.69-1.74 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.42-3.73 $\left(\mathrm{m}, 6 \mathrm{H}\right.$, sugar), 4.00-4.03 (t, $2 \mathrm{H}, \mathrm{OCH}_{2}$), 4.54-4.90 $(4 \mathrm{H}, \mathrm{OH}), 4.88-4.90\left(\mathrm{~d}, 1 \mathrm{H}\right.$, sugar- $\left.\mathrm{C}_{1}\right), 5.27-5.30(\mathrm{~d}$, 1 H , vinyl), 5.90-5.94 (d, 1H, vinyl), 6.66-6.73 (dd, 1H, vinyl), 7.02-7.04 (d, 2H, Ar), 7.12-7.14 (d, 2H, Ar), 7.28-7.33 (d, 2H, Ar), 7.31-7.33 (d, 1H, Ar), 7.58-7.60 (d, 1H, Ar), 7.67-7.69 (d, 2H, Ar), 7.86 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3, \mathrm{ppm}$): 158.5, 156.9, 138.9, 138.3, 135.4, 133.2, 131.9, 130.5, $130.4,127.8,125.7,123.3,116.0,114.9$ (18C, Ar), 135.4, 115.7 (2C, vinyl), 101.1, 75.6, 73.3, 70.3, 68.2, 60.4, (6C, sugar), $67.2,30.8,18.8,13.7$ (4C, butoxyl), Anal. Calc.: C,71.13; H, 6.76. Found: C, 70.68; H, 6.80. Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7}$: C, 71.13; H, 6.76. Found: C, 70.91; H, 6.84. MS: $529\left(\mathrm{MNa}^{+}\right)$ (calcd. 506.6) Specific optical rotation $[\alpha]_{365}{ }^{25}=-51^{\circ}$ (c: $2.0 \mathrm{mg} / \mathrm{mL}$, DMSO).
Radical Polymerization. Take $\mathbf{1}$ for example. Into a reaction tube, $\mathbf{1}(0.203 \mathrm{~g}, 0.30 \mathrm{mmol})$, AIBN ($0.16 \mathrm{mg}, 0.001 \mathrm{mmol}$) and DMF (1.0 mL) were added. After three freeze-pump-thaw cycles, the tube was sealed under vacuum and put into an oil-bath thermostated at $90^{\circ} \mathrm{C}$ for 20 h . After being cooled to room temperature, the tube was opened and the solution was diluted with THF (10 mL). The mixture was dropped into cold methanol (200 mL). The precipitates were collected by filtration and washed by methanol. After drying under vacuum at room temperature for $24 \mathrm{~h}, 0.176 \mathrm{~g}$ white solids were obtained. Yield: 87%.
Deacetylation. Take P1 for example. A mixture of P1 (0.067 g) and freshly prepared $\mathrm{CH}_{3} \mathrm{ONa}$ in methanol ($0.1 \mathrm{~mol} / \mathrm{L}, 50 \mathrm{~mL}$) was stirred at room temperature for two days. The precipitated product was filtered and washed with methanol for three times and then dried under vacuum. 0.046 g white powder was obtained. Yield: 92\%.
Molecular simulation. The molecular modeling and molecular mechanics calculations were performed using the Compass Force Field as implemented in the Materials Studio software (version 5.0; Accerlys Software Inc.). First, the structures of repeated units were optimized using the Geometry Optimization of the Forcite module until the root-mean-square value became less than $0.1 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-1}$. The backbone dihedral angles of the repeat unit, hereafter named $\theta 1$ and $\theta 2$, were varied systematically in steps of 30°. The isotactic polymers with 20 -mer were then built up using Polymer Builder in the Material Studio, in which the dihedral angles were constrained to specific degrees. The structures without apparent steric contacts were subjected to energy minimization with the Smart Minimizer of the Discover module at first. Atomistic MD simulations were performed with the Dynamics of Discover module. A NVT ensemble at 298 K was selected. The total simulation time is 0.1 ns and time step is 1 fs . Energy deviation is $5000 \mathrm{kcal} / \mathrm{mol}$.

Scheme S1. Syntheses of 2-(4'-butoxyphenyl)-5-[4'-(2,3,4,6-tetra-O-acetyl- β-D-galactosyloxy)phenyl] styrene (1), 2-(4'-butoxyphenyl)-5-[4'-(β-D-galactosyloxy)phenyl]styrene (2), and the corresponding polymers P1 and P2

Scheme S2. Syntheses of 2-[4'-(2,3,4,6-tetra-O-acetyl- β-D-galactosyloxy)phenyl]-5-(4'-butoxyphenyl) styrene (3), 2-[4'-(β-D-galactosyloxy)phenyl]-5-(4'-butoxyphenyl)styrene (4), and the corresponding polymers P3 and P4

Figure S1. CD and UV-vis absorption spectra of 2, 4, P2, P4, and annealed $\mathbf{P 4}(\mathbf{a - P 4})$ in DMSO at a concentration of $2 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$

Figure S1 shows the CD and UV-vis absorption spectra of the deacetylated monomers and their polymers. Both monomers $\mathbf{2}$ and $\mathbf{4}$ exhibit negligible CD effects in the absorption region of p-terphenyl side groups. The polymer $\mathbf{P 2}$ displays a similar CD image to its precursor, suggesting the stereostructure of $\mathbf{P 1}$ was retained in P2. However, the CD spectrum of $\mathbf{P 4}$ is much different from that of P3, probably due to the rapid stereomutation. The CD spectrum of P4 after annealing in DMSO also shows a negative Cotton effect, opposite to the positive one before annealing, an indicative of a reversed helical sense. We speculate that the position of glycosyl does affect the stability of TCC of the helical polymers, that is, the glycosyl groups closer to the polymer backbone have stronger induction power at a high temperature.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{P 1}$ (a), $\mathbf{P 3}$ (b), $\mathbf{P 2}$ (c), and $\mathbf{P 4}$ (d). The solvent is CDCl_{3} for $\mathbf{P} 1$ and $\mathbf{P 3}$ but DMSO- ${ }_{6}$ for P2 and P4

Figure S3. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}$ (a), $\mathbf{3}$ (b), deacetylated product of $\mathbf{1}$ (c), and deacetylated product of $\mathbf{3}(\mathrm{d})$. The solvent is CDCl_{3} for $\mathbf{1}$ and $\mathbf{3}$ but $\mathrm{DMSO}-\mathrm{d}_{6}$ for the other two compounds.

Figure S4 FT-IR spectra of P1 and P2
Figure S4 displays the FT-IR spectra of $\mathbf{P 2}$ and $\mathbf{P 4}$. It is evident that the $\mathrm{C}=\mathrm{O}$ absorption peak of the acetyl group of $\mathbf{P} 1$ at $1754 \mathrm{~cm}^{-1}$ disappears after deacetylation and a broad absorption peak at $3417 \mathrm{~cm}^{-1}$ corresponding to hydroxyl groups. Thus it can be concluded that the O-protective acetyl groups were removed completely via this method. The formation of polymers was confirmed by ${ }^{1} \mathrm{H}$ NMR and FTIR spectra.

Figure S5. Computer simulated conformations of isotactic P2 and P4. The exterior groups have more freedom to rotate than the interior ones, which are restricted by each other within the chiral environments.

Figure S5 exhibits the most stable conformation of isotactic P2 and P4. Initially, the conformation of 2-[4'-(β-D-galactosyloxy)phenyl]-5-(4'-butoxyphenyl)ethylbenzene, a model of the repeating unit of P4, was examined by the geometry optimization. It was assumed that the repeating unit adopts the most stable conformation. In order to build sterically accessible helical model, the backbone dihedral angles of the repeating unit, hereafter named $\theta 1$ and $\theta 2$, were varied systematically in steps of 30° within an isotactic model system of P4 consisting of 20 repeating units, which were kept with identical conformation. 35 helical structures without apparent steric contacts in total were obtained. After energy minimization with the Compass forcefield followed by MD at 298 K in the absence of environment, the stable conformations were obtained (Table S1). The similar method was also used to search the stable conformation of P2. It was found that both polymers adopt pine-like helix in which side chains connected at given tilt angles occupy equably the space around the backbone. The column of the rigid chains can be divided into three parts: the twisting main-chain core, the aromatic region with high electron density, and the periphery. The glycosyl groups of $\mathbf{P 2}$ sit in the periphery of the polymer chain while those of P4 in the aromatic region. The exterior groups have more freedom to rotate, but those interior ones are restricted by each other to form chiral environment.

Fig. S6 The images of bead on the films of $\mathbf{P 1}, \mathbf{P 3}, \mathbf{P 2}$, and $\mathbf{P 4}$. The films on quartz glass were prepared via spin coating from DMSO solution of $1 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$.

Table S1. Energies of isotactic P4 after MD simulation

run	$\theta 1^{\text {a }}$	$\theta 2^{\text {a }}$	Total ${ }^{\text {b }}$	Pot ${ }^{\text {c }}$	Helix ${ }^{\text {d }}$
1	-180	120	5712	4471	L
2	-150	180	6210	4948	R
3	-150	-60	6177	4924	R
4	-150	-90	5878	4609	R
5	-120	180	5859	4581	R
6	-120	-150	5970	4751	R
7	-90	180	5754	4440	R
8	-90	150	5497	4236	R
9	-90	-60	5930	4647	R
10	-90	-90	5478	4217	R
11	-60	150	5376	4136	R
12	-60	-90	5746	4503	R
13	-60	-120	5399	4145	R
14	-60	-150	6136	4909	R
15	-30	180	5723	4462	R
16	-30	120	6420	5158	R
17	-30	-120	5524	4244	L
18	-30	-150	5862	4616	R
19	0	150	5978	4712	R
20	0	-120	5911	4664	R
21	0	-150	5679	4394	L
22	30	180	5897	4632	R
23	30	90	5889	4622	R
24	30	-150	5710	4415	L
25	60	180	6468	5193	L
26	60	150	5881	4601	L
27	60	120	5727	4466	R
28	60	90	5643	4346	R
39	90	90	5805	4525	R
30	90	60	5703	4439	L
31	120	120	5595	4316	L
32	120	90	6405	5139	R
33	120	60	5765	4465	L
34	120	30	5760	4463	R
35	150	150	5923	4656	L

a. The backbone dihedral angles of the repeat unit (below);
b. Total energy of polymer after MD;
c. potential energy;
d. The helical sense of mainbone.

P4

Table S2-1. Energies of syndiotactic P4 after MD simulation

run	$\theta 1^{\text {a }}$	$\theta 2^{\text {a }}$	Total ${ }^{\text {b }}$	Pot ${ }^{\text {c }}$	Helix ${ }^{\text {d }}$
1	-30	-60	5508.791	4258.804	L
2	-30	-150	5536.048	4247.372	L
3	-60	-30	5550. 880	4280.304	L
4	-150	-30	5612.796	5092.909	L
5	-90	-90	5697. 180	4454.837	L
6	-120	-120	5704. 231	4418.150	R
7	-60	-120	5706.347	4433.469	L
8	-120	-60	5709.714	4446.631	L
9	-120	30	5714.283	4434.679	L
10	30	-120	5718.745	4460.241	L
11	0	-120	5737.784	4487.928	L
12	-150	-60	5772.712	4638.187	R
13	120	120	5779.377	4540.921	L
14	-150	90	5784.442	4531.671	R
15	-150	30	5794.790	4542.701	R
16	-90	0	5795.959	4537.936	L
17	-60	-150	5806. 121	4557.032	L
18	-120	-150	5834.015	4597.402	L
19	-120	0	5857.032	4622.689	R
20	-120	60	5881.739	4644.552	L
21	-150	-120	5905.918	4616. 469	L
22	-150	60	5932. 189	4696.529	L
23	60	-150	5955. 777	4698.916	L
24	-30	-120	5956.947	4701.954	L
25	90	-150	5958.917	4720.170	L
26	-120	-30	5965.764	4692.570	L
27	60	180	5999.020	4733.938	Zigzag
28	-60	-90	6016.021	4752.473	L
29	-150	-90	6018.226	4750. 482	R
30	180	30	6019.760	4788.994	L
31	120	0	6031.406	4781.555	L
32	-90	-60	6058.663	4789.074	L
33	-90	-150	6099.461	4838.271	R
34	30	180	6112.957	4821.527	L
35	120	150	6135.607	4877.527	R

a. The backbone dihedral angles of the repeat unit;
b. Total energy of polymer after MD;
c. potential energy;
d. The helical sense of mainbone.

Table S2-2. Energies of syndiotactic P2 after MD simulation

run	$\theta 1^{\mathrm{a}}$	$\theta 2^{\mathrm{a}}$	Total $^{\mathrm{b}}$	Pot $^{\mathrm{c}}$	Helix $^{\text {d }}$
1	30	60	5416.726	4184.187	L
2	60	30	5494.510	4219.047	R
3	150	0	5518.702	4234.141	L
4	120	120	5568.595	4331.939	ZIGZAG
5	60	60	5591.528	4327.853	ZIGZAG
6	-120	-120	5604.787	4367.676	R
7	120	150	5619.651	4391.923	L
8	150	120	5638.912	4355.708	L
9	30	120	5645.031	4370.554	R
10	180	0	5669.633	4409.082	L
11	-30	120	5683.119	4410.359	L
12	60	90	5712.761	4466.673	R
13	90	30	5715.511	4411.062	L
14	90	150	5718.425	4493.451	L
15	90	60	5718.703	4447.738	R
16	150	30	5747.095	4482.674	R
17	120	30	5757.945	4459.487	R
18	30	150	5773.011	4445.754	R
19	120	-30	5773.592	4516.564	R
20	30	90	5806.244	4537.096	L
21	-90	-60	5836.991	4555.769	L
22	-60	120	5892.420	4611.291	R
23	150	-60	5897.569	4676.674	L
24	120	-60	5900.939	4662.081	L
25	-60	-90	5918.061	4696.107	L
26	-60	-120	5969.594	4718.360	L
27	-60	150	5978.965	4685.844	L
28	150	90	5998.607	4741.981	L
29	-120	-60	6029.714	4792.891	L
30	-120	180	6036.804	4760.190	R
31	90	0	6050.485	4751.142	L
32	180	-120	6061.991	4805.903	L
33	90	90	6070.649	4797.285	R
34	180	-30	6111.791	4862.230	L
35	-90	-90	6112.145	4826.030	ZIGZAG

a. The backbone dihedral angles of the repeat unit (below);
b. Total energy of polymer after MD;
c. potential energy;
d. The helical sense of mainbone.

Table S3-1. Energies of atactic P4 after MD simulation

run	$\theta 1^{\mathrm{a}}$	$\theta 2^{\mathrm{a}}$	Total $^{\mathrm{b}}$	Pot $^{\mathrm{c}}$	Helix
1	0	150	5665.918	4409.456	R
2	60	0	5790.218	4530.647	R
3	120	120	5832.541	4527.021	L
4	90	150	5921.565	4665.811	R
5	330	-90	5927.695	4672.713	L
6	240	-120	5937.87	4679.878	R
7	330	180	5949.361	4691.025	R
8	90	90	5970.817	5970.817	L
9	180	-30	6039.405	4780.924	R
10	150	60	6040.714	4781.823	L
11	210	-120	6056.528	4799.091	R
12	240	-60	6070.694	4811.827	L
13	60	150	6086.453	6086.453	R
14	300	180	6137.42	4916.858	L
15	180	60	6438.245	5180.067	R
16	90	60	7233.043	5977.108	R
17	330	120	7625.14	6366.341	R
18	60	30	7678.1	6420.793	R
19	30	120	7737.563	6481.533	R
20	330	90	7900.367	6643.2	R
21	0	90	8179.171	6922.476	R
22	330	-150	8190.858	6930.488	R
23	120	150	8334.736	7075.441	L
24	60	120	8383.651	7126.006	R
25	60	90	8687.813	7431.592	R
26	120	90	8741.075	7482.787	R
27	300	120	8760.037	7502.926	R
28	120	-60	8935.176	7676.008	R
39	150	90	8990.697	7732.654	R
30	330	150	9327.399	8069.921	R
31	90	30	9328.763	8069.559	R
32	120	0	9405.766	8148.792	R
33	30	60	9478.282	8220.023	R
34	120	30	9604.621	8345.312	R
35	300	-150	9695.96	8433.897	R

a. The backbone dihedral angles of the repeat unit (below);
b. Total energy of polymer after MD;
c. potential energy;
d. The helical sense of mainbone.

Table S3-2 Energies of atactic P2 after MD simulation

run	$\theta 1^{\text {a }}$	$\theta 2^{\text {a }}$	Total ${ }^{\text {b }}$	Pot ${ }^{\text {c }}$	Helix ${ }^{\text {d }}$
1	-150	180	5909	4649	R
2	-90	-150	5948	4690	R
3	30	-150	5974	4714	R
4	150	120	5995	4738	L
5	90	30	6020	4761	R
6	180	90	6058	4799	L
7	60	60	6087	4829	R
8	120	120	6088	4831	R
9	-30	-150	6103	4845	R
10	150	90	6106	4849	L
11	150	150	6113	4856	L
12	-60	150	6148	4888	R
13	-150	-90	6158	4892	R
14	150	-60	6176	4918	R
15	150	-90	6179	4920	R
16	90	150	6211	4954	R
17	180	180	6266	5005	R
18	-150	-150	6269	5010	R
19	-120	-150	6279	5022	R
20	-150	30	6285	5026	R
21	60	90	6309	5049	R
22	-60	-90	6324	5067	R
23	-150	-30	6404	5144	L
24	-120	-60	6680	5418	R
25	90	60	6707	5448	R
26	-90	-60	6770	5508	R
27	30	120	6910	5651	R
28	-90	-90	6948	5719	R
39	-90	180	7126	5866	R
30	-90	150	7156	5890	R
31	-120	150	7183	5922	R
32	180	-90	7207	5948	R
33	120	30	7216	5961	L
34	-120	-90	7246	5988	R
35	180	-30	7767	6509	L

a. The backbone dihedral angles of the repeat unit (below);
b. Total energy of polymer after MD;
c. potential energy;
d. The helical sense of mainbone.

Table S4 Polymerization results and optical properties of deacetylated glycopolymers ${ }^{\text {a }}$

Entry	Monomer	Polymer	Solvent	Yield (\%)	$[\alpha]_{365}{ }^{20}\left({ }^{\circ}\right)^{\mathbf{b}}$
1	$\mathbf{2}$	$\mathbf{P} 2-\mathbf{I}_{\mathbf{D M S O}}$	DMSO	67	1240
2	$\mathbf{2}$	$\mathbf{P} \mathbf{- I}_{\mathbf{D M F}}$	DMF	87	1329
3	$\mathbf{4}$	$\mathbf{P 4} \mathbf{- I}_{\mathbf{D M S O}}$	DMSO	72	-1566
4	$\mathbf{4}$	$\mathbf{P 4}-\mathbf{I}_{\mathbf{D M F}}$	DMF	91	-33
5	$\mathbf{P 2}^{\mathbf{c}}$			1344	
6		$\mathbf{P 4}^{\mathbf{c}}$		23	

${ }^{\text {a }}$ Polymerization temperature, $60{ }^{\circ} \mathrm{C}$; Initiator, AIBN; $[\mathrm{M}] /[\mathrm{I}]=200$. ${ }^{\mathrm{b}}$ Specific optical rotation in unit of degree was measured in a 1 dm cell at a concentration of ca. $2.0 \mathrm{mg} / \mathrm{mL}$ in DMSO at $25^{\circ} \mathrm{C}$. A mixture of 5 mg of sample and 10 mL DMSO in volumetric flask was exposed to ultrasonic sound for 30 seconds at $20^{\circ} \mathrm{C}$ to make the sample to dissolve completely. And the solution was transferred to a 1 dm cell and was measured instantly. ${ }^{\text {c }}$ Obtained from P1 and P3 (Table 1) via deacetylation.

The monomers 2 and 4 reveal specific optical rotations of -64° and -51°, respectively. The chiroptical properties of their polymers are collected in Table S2. Because all the glycopolymers except for $\mathbf{P 4} \mathbf{I}_{\mathbf{D M S O}}$ are ready to undergo stereomutation, it was difficult to estimate their original values of $[\alpha]_{365}{ }^{25}$. To get a $[\alpha]_{365}{ }^{25}$ value close to the original one, the optical rotations of $\mathbf{P} 2$ and $\mathbf{P} 4$ in solution were measured as soon as they were dissolved. It was found that $\mathbf{P} \mathbf{2}-\mathbf{I}_{\mathbf{D M S O}}, \mathbf{P} \mathbf{2}-\mathbf{I}_{\mathbf{D M F}}$, and $\mathbf{P} 2$ showed positive optical rotation of $1240^{\circ}, 1329^{\circ}$, and 1344°, respectively. In contrast, $\mathbf{P 4} 4 \mathbf{I}_{\text {DMso }}, \mathbf{P 4}-\mathbf{I}_{\text {DMF }}$, and $\mathbf{P 4}$ exhibit values of $-1566^{\circ},-33^{\circ}$, and 23°, separately. As indicated previously, DMF and methanol are not good solvents for the deacetylated polymers, i.e. P2 and P4. This nature has led to the trapped KCCs of PGPS obtained in DMF and the reservation of PTAGPS structure after deacetylation in methanol (Macromolecules, 2008, 41, 5245). The KCC of PGPS (specific optical rotation) is consistent with that of PTAGPS (specific optical rotation), both KCC and TCC of which are same, and evolves into low energy TCC in DMSO at elevated temperatures. The approximately same optical rotation values of $\mathbf{P} 2 \mathrm{~s}$ suggested that all these polymers adopted almost same stereostructures although they were obtained with different methods and the stereomutation rate of $\mathbf{P} \mathbf{2}-\mathbf{I}_{\mathbf{D M S O}}$ in DMSO would be very slow if it happened. Given the insolubility of $\mathbf{P 4}$ in DMF and methanol and similarity to $\mathbf{P} 2$, it is reasonable to consider that $\mathbf{P 4}$ - $\mathbf{I}_{\mathbf{D M F}}$ keeps its KCC, while P4-II keeps that of $\mathbf{P 3}$. The less remarkable differences in optical rotations between P4-I $\mathbf{I}_{\text {DMso }}$ with $\mathbf{P 4}-\mathbf{I}_{\text {DMF }}$ and P4-II, compared to PGPS, are attributed the drastically increased mutability. This will be discussed in more detail below.

