Chemical communication: conductors and insulators of screw-sense preference between helical oligo(aminoisobutyric acid) domains

Thomas Boddaert, Jordi Solà, Madeleine Helliwell and Jonathan Clayden School of Chemistry, University of Manchester, Oxford Rd, Manchester M13 9PL, UK

Supporting Information

1.	General Experimental	. 2
2.	Supplementary methods: Detailed synthetic procedures	. 3
3.	Supplementary figures: ¹ H and ¹³ C NMR spectra	17
4.	Supplementary figures: Expanded ¹ H NMR CH ₂ (GlyNH ₂) region for peptides 1	40
5.	Supplementary figures: Circular Dichroism spectra for peptides 1	44

1. General Experimental

Nuclear Magnetic Resonance (NMR) spectra were recorded on a Brucker Ultrashield 400 or 500 spectrometer. ¹H and ¹³C spectra were referenced relative to the solvent residual peaks and the chiemical shits (δ) reported in ppm downfield of trimethylsilane (δ_{H} : CDCl₃ 7.26 ppm; δ_{C} CDCl₃ 77.0 ppm; δ_{H} : CD₃OD 3.31 ppm; δ_{C} CD₃OD 49.05 ppm). Coupling constants (*J*) are reported in hertz and rounded to 0.5 Hz. Splitting patters are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (br) apparent (ap) or a combination of these. Carbon multiplicities have been assigned by gradient heteronuclear single quantum correlation (gHSQC) or by distortionless enhancement by polarization transfer (DEPT) experiments.

Low and high resolution mass spectra were recorded by staff in the University of Manchester. Electrospray (ES) spectra were recorded on a Waters Platform II and high resolution mass spectra (HRMS) were recorded on a Thermo Finnigan MAT95XP and accurate to ± 0.001. Infrared spectra were recorded as on an Ati Mason Genesis Series FTIR spectrometer as film on a sodium chloride plate or as a soli deposit. Melting points were determined on a GallenKamp apparatus and are uncorrected. Circular dicroism spectra (CD) were recorded on a Jasco J-815 spectrometer using 1 mm cell length at 20 °C. Optical rotation measurements were taken on a AA-100 polarimeter at 20 °C with the solvent and concentration stated.

Thin layer chromatography (TLC) was performed using commercially available pre-coated plates (Macherey-Nagel alugram. Sil G/UV_{254}) and visualised with UV light at 254 nm; paranisaldehyde, ninhydrin or phosphomolibdic acid dips were used to reveal the products. Flash column chromatography was carried out using Fluorochem Davisil 40-63u 60Å.

All reactions were conducted under a nitrogen atmosphere unless otherwise stated and oven flamed glassware was used. THF was distilled under nitrogen from sodium using a benzophenone indicator. CH_2CI_2 and toluene were obtained by distillation over calcium hydride under a nitrogen atmosphere. Anhydrous acetonitrile and dimethylformamide were purchased from Sigma-Aldrich. Acetonitrile was further dried over 4 Å oven-activated molecular sieves for 1h previous use. Triethylamine was distilled over calcium hydride under nitrogen atmosphere. Petrol refers to the fraction of light petroleum ether boiling between 40 and 65 $^{\circ}$ C. All other solvents and commercially available reagents were used as received.

The procedures for the synthesis of $HAib_4OtBu$, N_3Aib_4OH , $HAib_4GlyNH_2$, $Cbz-L-PheAib_4OH$, and $Cbz-L-PheAib_8OH$ have been described previously.¹

2. Supplementary methods: Detailed synthetic procedures

General procedure A for the coupling reaction between the Cbz-linkerOH Cbz-2 and HAib₄GlyNH₂ 5 using EDC in the presence of HOBt.

A round-bottomed flask was charged with a solution of 1.5 equiv of Cbz-linkerOH **Cbz-2** and 2.25 equiv of HOBt in dry CH_2Cl_2 (10 mL/mmol). This mixture was cooled down to 0 °C and 2.25 equiv of EDC were added dropwise. After completed dissolution or at least 1 h, 1.0 equiv of HAib₄GlyNH₂ **5** was added and the mixture was allowed to warm up to room temperature. After 2 days, the reaction was concentrated under reduced pressure to give a crude product Cbz-linker-Aib₄GlyNH₂ **8** that was purified by column chromatography using the appropriate mixture of eluents.

General procedure B for the coupling reaction between the Cbz-linkerOH 2 and HAib₄GlyNH₂ 5 using HBTU in the presence of HOBt.

A round-bottomed flask was charged with a solution of 1.0 equiv of Cbz-linkerOH **Cbz-2** in dry CH_2Cl_2 (10 mL/mmol). This mixture was cooled down to 0 °C, then 1.0 equiv of HBTU, 1.0 equiv of HOBt and 2.0 equiv of DIPEA were added dropwise. After 1 h at 0 °C, 1.0 equiv of HAib₄GlyNH₂ **5** was added and the mixture was allowed to warm up to room temperature. After 4 days, the reaction was concentrated under reduced pressure to give a crude product Cbz-linker-Aib₄GlyNH₂ **8** that was purified by column chromatography using the appropriate mixture of eluents.²

General procedure C for the coupling reaction between the Cbz-linkerOH Cbz-2 and HAib₄GlyNH₂ 5 *via* the acyl fluoride.

A round-bottomed flask was charged with a solution of 1.0 equiv of Cbz-linkerOH **Cbz-2** in dry CH_2Cl_2 (5 mL/mmol). This mixture was cooled down to 0 °C, 2.0 or 10.0 equiv of cyanuric fluoride and 1.0 or 2.0 equiv of pyridine were added. The mixture was stirred at 0 °C for 1 h, allowed to warm up to room temperature and stirred for additional 1 h. The mixture was then diluted with CH_2Cl_2 (80 mL/mmol) and the mixture was washed with cold water (3 times, 20 mL/mmol), dried over Na_2SO_4 , filtered and concentrated under reduced pressure to give the corresponding acyl fluoride that required no further purification and directly engaged to the following step.

A round-bottomed flask was charged with a solution of 3.0 or 2.0 equiv of Cbz-linker-F and 1 equiv of $HAib_4GlyNH_2$ **5** in dry acetonitrile (10 mL/mmol). Then 1.1 equiv of DIPEA was added and the mixture was stirred at room temperature for 4 days. The mixture was then diluted with EtOAc (70 mL/mmol) and the mixture was washed with 5% solution of KHSO₄ (2 times, 5 mL/mmol), saturated solution of NaHCO₃ (2 times, 5 mL/mmol) and brine (1 time, 5 mL/mmol). The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure to give a crude product Cbz-linker-Aib₄GlyNH₂ **8** that was purified by column chromatography using the appropriate mixture of eluents.³

Synthesis of CbzAc5cAib4GlyNH2 8b

From a solution of Cbz-Ac₅cOH⁴ (95 mg, 0.36 mmol), HOBt (73 mg, 0.54 mmol), EDC (0.10 mL, 84 mg, 0.54 mmol) and HAib₄GlyNH₂ **5** (100 mg, 0.24 mmol) in CH₂Cl₂ (2 mL) following the general procedure A and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-Ac₅cAib₄GlyNH₂ **8b** was obtained as a white solid (110 mg, 70 %).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.20. **mp**: 235-237 °C. **IR**: (solid): ν_{max} = 3285, 2983, 2938, 1655, 1650, 1643, 1536, 1530, 1519, 1382, 1360, 1262, 1227 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.32 (s, 6H), 1.35 (s, 6H), 1.46 (s, 6H), 1.50 (s, 6H), 1.69-1.86 (m, 6H), 2.13-2.25 (m, 2H), 3.82 (brs, 1H), 5.14 (s, 1H), 7.29-7.43 (m, 5H), 7.61 (brs, 1H), 7.88 (brs, 1H), 8.02 (brs, 1H), 8.04 (brs, 1H), 8.10 (brs, 1H). ¹³**C-NMR** (125 MHz, CD₃OD): δ 25.1 (2CH₃), 25.3 (2CH₃), 25.3 (2CH₂), 25.4 (2CH₃), 25.7 (2CH₃), 37.6 (2CH₂), 43.8 (CH₂), 57.7 (C), 58.0 (C), 58.2 (C), 58.3 (C), 67.7 (CH₂), 68.1 (C), 128.5 (2CH), 129.1 (CH), 129.7 (2CH), 138.8 (C), 158.3 (CO), 175.4 (CO), 176.8 (CO), 177.0 (CO), 178.0 (CO), 178.1 (CO), 178.2 (CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 682 ([M +Na]⁺, 100%). **HRMS** (ES⁺, MeOH): Calcd for C₃₂H₄₉N₇O₈+Na: 682.3535, found 682.3545.

Synthesis of CbzAc₆cAib₄GlyNH₂ 8c

From a solution of Cbz-Ac₆cOH⁴ (100 mg, 0.36 mmol), HOBt (73 mg, 0.54 mmol), EDC (0.10 mL, 84 mg, 0.54 mmol) and HAib₄GlyNH₂ **5** (100 mg, 0.24 mmol) in CH₂Cl₂ (2 mL) following the general procedure A and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-Ac₆cAib₄GlyNH₂ **8c** was obtained as a white solid (124 mg, 77 %).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.27. **mp**: 223-225 °C. **IR**: (solid): ν_{max} = 3292, 2983, 2935, 1654, 1529, 1453, 1382, 1359, 1247, 1226 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.31 (s, 6H), 1.34 (s, 6H), 1.46 (s, 6H), 1.50 (s, 6H), 1.50-1.70 (m, 6H), 1.83-1.89 (m, 4H), 3.83 (brs, 1H), 5.15 (s, 1H), 7.29-7.43 (m, 5H), 7.61 (brs, 1H), 7.96 (brs, 1H), 8.01 (brs, 1H), 8.10 (brs, 1H). ¹³**C-NMR** (125 MHz, CD₃OD): δ 22.5 (2CH₂), 25.2 (2CH₃), 25.2 (2CH₃), 25.4 (2CH₃), 25.7 (2CH₃), 26.4 (CH₂), 33.4 (2CH₂), 43.8 (CH₂), 57.5 (C), 57.9 (C), 58.2 (C), 58.3 (C), 60.3 (C), 67.7 (CH₂), 128.5 (2CH), 129.1 (CH), 129.7 (2CH), 138.8 (C), 157.8 (CO), 175.4 (CO), 177.0 (CO), 177.5 (CO), 178.1 (2CO), 178.3 (CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 696 ([M +Na]⁺, 100%). **HRMS** (ES⁺, MeOH): Calcd for C₃₃H₅₁N₇O₈+Na: 696.3691, found 696.3692.

Synthesis of CbzThpOH Cbz-2d

A round-bottomed flask was charged with a solution of 4-pyrone (2.86 g, 28.6 mmol), KCN (3.72 g, 57.2 mmol), $(NH_4)_2CO_3$ (11.0 g, 114.4 mmol) in a 1:1 mixture of water/ethanol (34 mL/34 mL). The mixture was heated under reflux (60 °C) for 6 h. The solvents were removed under reduced pressure and the residue was

stirred in cold water, filtered and dried under high vaccum to give the hydantoin (2.86 g, 59 %), as a white solid that required no further purification.⁵

A round-bottomed flask was charged with the resulting hydantoin (2.76 g, 16.2 mmol), KOH (13.6 g, 243.6 mmol) in water (135 mL). The mixture was heated under reflux (130 °C) for 16 h. The mixture was cooled down to 0 °C and diluted with acetone (110 mL), then a solution of Cbz-Cl (11.6 mL, 13.85 g, 81.2 mmol) in acetone (36 mL) was added dropwise in 1 h. The mixture was stirred at room temperature for 6 h, an additional solution of Cbz-Cl (5.8 mL, 6.9 g, 40.6 mmol) in acetone (18 mL) was added dropwise. The mixture was stirred at room temperature for 3 days. Acetone was removed under reduced pressure, the unreacted Cbz-Cl was extracted with EtOAc (2 times, 50 mL). The aqueous phase was acidified to pH=1 with HCl (6N) and the product was extracted with EtOAc (4 times, 50 mL). The combined organic extracts were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the expected product Cbz-Thp **Cbz-2d** (3.69 g, 81 %), as a white solid that required no further purification. The product was recrystallised (MeOH/CH₂Cl₂) for analysis.⁵

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.25. **mp**: 129-131 °C. **IR**: (solid): ν_{max} = 3332, 3032, 2974, 2853, 1718, 1654, 1532, 1279, 1249, 1103 cm⁻¹. ¹**H-NMR** (400 MHz, CD₃OD): δ 1.93-2.03 (m, 2H), 2.07-2.17 (m, 2H), 3.62-3.71 (m, 2H), 3.74-3.81 (m, 2H), 5.07 (s, 2H), 7.26-7.40 (m, 5H) ppm. ¹³**C-NMR** (100 MHz, CD₃OD): δ 33.6 (2CH₂), 57.8 (C), 64.4 (2CH₂), 67.3 (CH₂), 128.8 (2CH), 129.0 (CH), 129.5 (2CH), 138.3 (C), 157.9 (CO), 177.2 (CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 302 ([M +Na]⁺, 100%). **HRMS** (ES⁺, MeOH): Calcd for C₁₄H₁₇N₁O₅+Na: 302.0999, found 302.0997.

Synthesis of CbzThpAib₄GlyNH₂ 8d

From a solution of Cbz-ThpOH **Cbz-2d** (67 mg, 0.24 mmol), HOBt (32 mg, 0.24 mmol), HBTU (91 mg, 0.24 mmol), DIPEA (84 μ L, 62 mg, 0.48 mmol) and NH₂Aib₄GlyNH₂ **5** (100 mg, 0.24 mmol) in CH₂Cl₂ (2 mL) following the general procedure B and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-ThpAib₄GlyNH₂ **8d** was obtained as a white solid (107 mg, 66 %).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.35. **mp**: 129-131 °C. **IR**: (solid): ν_{max} = 3285, 2982, 1651, 1527, 1454, 1382, 1361, 1262, 1225 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.32 (s, 6H), 1.34 (s, 6H), 1.46 (s, 6H), 1.50 (s, 6H), 1.78-1.85 (m, 2H), 2.09-2.18 (m, 2H), 3.67-3.74 (m, 2H), 3.77-3.85 (m, 4H), 5.16 (s, 2H), 7.28-7.43 (m, 5H), 7.46-7.51 (m, 1H), 7.53-7.57 (m, 1H), 7.72-7.76 (m, 2H), 7.86-7.90 (m, 1H), 8.00 (brs, 1H), 8.09-8.12 (m, 1H), 8.14 (brs, 1H) ppm. ¹³**C-NMR** (100 MHz, CD₃OD): δ 25.1 (2CH₃), 25.2 (2CH₃), 25.4 (2CH₃), 25.7 (2CH₃), 33.6 (2CH₂), 43.8 (CH₂), 54.9 (C), 57.6 (C), 57.8 (C), 58.2 (C), 58.3 (C), 64.5 (2CH₂), 67.8 (CH₂), 128.5 (2CH), 129.2 (CH), 129.7 (2CH), 138.7 (C), 157.9 (CO), 175.4 (CO), 176.4 (CO), 176.8 (CO), 176.8 (CO), 176.1 (CO), 178.2 (CO) ppm. **MS** (ES⁺, MeOH) *m*/*e*= 698 ([M +Na]⁺, 100%). **HRMS** (ES⁺, MeOH): Calcd for C₃₂H₄₉N₇O₈+Na: 698.3484, found 698.3477.

Synthesis of Cbz-DpgAib₄GlyNH₂ 8e

From a solution of Cbz-DpgOH³ (181 mg, 0.50 mmol), cyanuric fluoride (86 μ L, 135 mg, 1.0 mmol), pyridine (41 μ L, 40 mg, 0.50 mmol), DIPEA (32 μ L, 24 mg, 0.18 mmol) and NH₂Aib₄GlyNH₂ **5** (69 mg, 0.17 mmol) following the general procedure C and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-DpgAib₄GlyNH₂ **8e** was obtained as a white solid (110 mg, 87 %).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.38. **mp**: 216-218 °C. **IR**: (solid): ν_{max} = 3310, 2986, 2935, 1655, 1650, 1523, 1518, 1382, 1359, 1248, 1225, 1214 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.30 (s, 6H), 1.33 (s, 6H), 1.34 (s, 6H), 1.50 (s, 6H), 3.82 (s, 2H), 5.20 (s, 2H), 7.25-7.42 (m, 15H), 7.84 (m, 2H), 7.92 (brs, 1H), 8.42 (brs, 1H) ppm. ¹³**C-NMR** (125 MHz, CD₃OD): δ 24.9 (2CH₃), 25.2 (2CH₃), 25.3 (2CH₃), 25.7 (2CH₃), 43.7 (CH₂), 57.8 (C), 58.1 (C), 58.3 (C), 58.4 (C), 68.3 (CH₂), 70.6 (C), 128.7 (2CH), 128.8 (2CH), 128.9 (4CH), 129.2 (CH), 129.2 (4CH), 129.7 (2CH), 138.5 (C), 142.9 (2C), 158.7 (CO), 173.2 (CO), 175.4 (CO), 177.0 (CO), 178.1 (3CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 780 ([M +Na]⁺, 100%). **HRMS** (ES⁺, MeOH): Calcd for C₄₀H₅₁N₇O₈+Na: 780.3691, found 780.3690.

Synthesis of CbzGlyAib₄GlyNH₂ 8g

From a solution of Cbz-GlyOH (75 mg, 0.36 mmol), HOBt (73 mg, 0.54 mmol), EDC (0.10 mL, 84 mg, 0.54 mmol) and HAib₄GlyNH₂ **5** (100 mg, 0.24 mmol) in CH₂Cl₂ (2 mL) following the general procedure A and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-GlyAib₄GlyNH₂ **8g** was obtained as a white solid (110 mg, 76 %).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.33. **mp**: 261-263 °C. **IR**: (solid): ν_{max} = 3312, 2984, 2933, 2459, 2391, 1650, 1646, 1634, 1521, 1436, 1415, 1361, 1168 cm⁻¹. ¹**H-NMR** (400 MHz, CD₃OD): δ 1.40 (s, 6H), 1.41 (s, 12H), 1.50 (s, 6H), 3.73 (s, 2H), 3.82 (s, 2H), 5.11 (s, 2H), 7.27-7.40 (m, 5H) ppm. ¹³**C-NMR** (100 MHz, CD₃OD): δ 25.2 (4CH₃), 25.4 (2CH₃), 25.6 (2CH₃), 43.8 (CH₂), 45.2 (CH₂), 57.6 (C), 57.8 (C), 58.0 (C), 58.2 (C), 67.9 (CH₂), 128.8 (2CH), 129.2 (CH), 129.6 (2CH), 138.2 (C), 159.5 (CO), 172.3 (CO), 175.4 (CO), 176.7 (CO), 177.8 (CO), 178.0 (CO), 178.1 (CO) ppm. **MS** (ES⁺, MeOH) *m*/*e*= 628 ([M +Na]⁺, 100%). **HRMS** (ES⁺, MeOH): Calcd for C₂₈H₄₃N₇O₈+Na: 628.3065, found 628.3058.

Synthesis of CbzβAlaAib₄GlyNH₂ 8h

From a solution of Cbz- β AlaOH (80 mg, 0.36 mmol), HOBt (73 mg, 0.54 mmol), EDC (0.10 mL, 84 mg, 0.54 mmol) and HAib₄GlyNH₂ **5** (100 mg, 0.24 mmol) in CH₂Cl₂ (2 mL) following the general procedure A and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz- β AlaAib₄GlyNH₂ **8h** was obtained as a white solid (117 mg, 79 %).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.30. **mp:** 247-249 °C. **IR**: (solid): ν_{max} = 3297, 3270, 2994, 2982, 2919, 1650, 1536, 1529, 1383, 1360, 1271 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.38 (s, 12H), 1.45 (s, 6H), 1.50 (s,

6H), 2.45 (t_{ap} , J_{ap} =6.3 Hz, 2H), 3.41 (t_{ap} , J_{ap} =6.3 Hz, 2H), 3.82 (s, 2H), 5.07 (s, 2H), 7.27-7.36 (m, 5H). ¹³**C**-**NMR** (100 MHz, CD₃OD): δ 25.3 (4CH₃), 25.3 (2CH₃), 25.7 (2CH₃), 37.3 (CH₂), 38.3 (CH₂), 43.8 (CH₂), 57.5 (C), 57.8 (C), 58.1 (C), 58.2 (C), 67.6 (CH₂), 128.9 (2CH), 129.1 (CH), 129.6 (2CH), 138.3 (brC), 158.9 (brCO), 173.9 (CO), 175.4 (CO), 176.6 (CO), 177.9 (CO), 178.1 (2CO) ppm. MS (ES⁺, MeOH) *m*/*e*= 642 ([M +Na]⁺, 100%). **HRMS** (ES⁺, MeOH): Calcd for C₂₉H₄₅N₇O₈+Na: 642.3222, found 642.3226.

Synthesis of Cbz-GlyGlyAib₄GlyNH₂ 8i

From a solution of Cbz-GlyGlyOH (96 mg, 0.36 mmol), HOBt (73 mg, 0.54 mmol), EDC (0.10 mL, 84 mg, 0.54 mmol) and HAib₄GlyNH₂ **5** (100 mg, 0.24 mmol) in CH_2Cl_2 (2 mL) following the general procedure A and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide CbzGlyGlyAib₄GlyNH₂ **8i** was obtained as a white solid (127 mg, 80 %).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.20. **mp**: 230-232 °C. **IR**: (solid): ν_{max} = 3278, 2983, 2935, 1655, 1650, 1536, 1530, 1223 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.41 (s, 6H), 1.43 (s, 6H), 1.45 (s, 6H), 1.50 (s, 6H), 3.80-3.84 (m, 6H), 5.12 (s, 2H), 7.28-7.38 (m, 5H), 7.44-7.56 (m, 2H), 7.71-7.78 (m, 2H), 7.83-7.92 (m, 3H), 8.12 (brs, 1H), 8.18 (brs, 1H). ¹³**C-NMR** (100 MHz, CD₃OD): δ 25.3 (6CH₃), 25.7 (2CH₃), 43.7 (CH₂), 44.4 (CH₂), 45.2 (CH₂), 57.7 (C), 57.9 (C), 58.2 (C), 58.3 (C), 68.0 (CH₂), 128.9 (2CH), 129.2 (CH), 129.6 (2CH), 138.1 (C), 159.3 (CO), 171.7 (CO), 173.5 (CO), 175.4 (CO), 176.6 (CO), 176.7 (CO), 178.2 (CO), 178.3 (CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 685 ([M +Na]⁺, 100%). **HRMS** (ES⁺, MeOH): Calcd for C₃₀H₄₆N₈O₉+H: 663.3461, found 663.3481.

General procedure D for cleavage of the Cbz protecting group from 8.

A round-bottomed flask was charged with a solution of 1.0 equiv of Cbz-linker-Aib₄GlyNH₂ **8** in MeOH (5 mL/mmol) and 5-10% of Pd/C was added carefully. The mixture was stirred under H₂ atmosphere (balloon) until completion (TLC monitoring). Upon completion, the mixture was filtered through a celite pad washing with EtOAc. The mixture was then concentrated under reduced pressure to give the expected amine NH₂-linker-Aib₄GlyNH₂ **9** that required no further purification.

General procedure E for the coupling of Cbz-L-PheAib₄OH 7 and NH₂-linker-Aib₄GlyNH₂ 9 *via* azlactone opening.

A round-bottomed flask was charged with a solution of 1.0 equiv. of Cbz-L-PheAib₄-OH **7** in acetic anhydride (10 mL/mmol). The mixture was heated at 120 °C for 2h. The solvent was removed in vacuo and last traces of acetic anhydride were removed by coevaporation with dry toluene (3 times). The resulting azlactone was directly dissolved in dry acetonitrile (20 mL/mmol), 1.0 equiv of NH₂-linker-Aib₄GlyNH₂ **9** (obtained by the cleavage of the Cbz protecting group from Cbz-linker-Aib₄GlyNH₂ **8** following the general procedure D) was added. The mixture was heated under reflux (90 °C) for 3 days. The mixture was cooled down to 0 °C and the precipitate collected by filtration and washed with cold acetonitrile and cold ether (mother liquor contains oftentimes some product). The precipitate (eventually mother liquid) was further purified by column chromatography, using the appropriate mixture of eluents, to give the expected product Cbz-L-PheAib₄-linker-Aib₄GlyNH₂ **1**.

Synthesis of CbzAibGlyNH₂

A round-bottomed flask was charged with a solution of Cbz-AibOH (400 mg, 1.68 mmol), HOBt (340 mg, 2.52 mmol) in dry CH_2Cl_2 (5 mL). This mixture was cooled down to 0 °C and EDC (0.46 mL, 84 mg, 2.52 mmol) were added dropwise. After completed dissolution or at least 1 h, glycinamide hydrochloride (242 mg, 2.20 mmol) was then added followed by NEt₃ (0.48 mL, 3.30 mmol). The mixture was allowed to warm up to room temperature for 24 h. Then the mixture was diluted with CH_2Cl_2 (100 mL), which was washed with NaHCO₃ saturated solution (3 times, 5 mL) and brine (1 times, 5 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a crude product that was purified by column chromatography (2% EtOH-CH₂Cl₂), peptide Cbz-AibGlyNH₂ (310 mg, 63%) was obtained as a white solid.

Rf: SiO₂/CH₂Cl₂:EtOH 95:5 = 0.30. **mp:** 148-150 °C. **IR** (film): ν_{max} = 3327, 1699, 1651, 1519, 1259, 1079 cm⁻¹. ¹**H NMR** (400 MHz, CD₃OD): δ 1.43 (s, 6H), 3.77 (s, 2H), 5.08 (s, 2H), 7.29–7.36 (m, 5H) ppm. ¹³**C NMR** (100 MHz, CD₃OD): δ 25.6 (2CH₃), 43.8 (CH₂), 57.8 (C), 67.8 (CH₂), 129.1 (2CH), 129.2 (CH), 129.5 (2CH), 138.1 (C), 158.2 (CO), 175.3 (CO), 177.9 (CO) ppm. **MS** (ES⁺, MeOH): 316 ([M+Na]⁺, 100%), 294 ([M+H]⁺, 5%). **HRMS** (ES⁺, MeOH): Calcd for C₁₄H₁₉N₃O₄ + Na: 316.1268, found 316.1279

Synthesis of Cbz-L-PheAib₉GlyNH₂ 1a

A round-bottomed flask was charged with a solution of Cbz-L-PheAib₈OH **12** (210 mg, 0.21 mmol) in acetic anhydride (4 mL). The mixture was heated at 120 °C for 2h. The solvent was removed in vacuo and last traces of acetic anhydride were removed by coevaporation with dry toluene (3 times). The resulting azlactone was directly dissolved in dry acetonitrile (4 mL), NH₂AibGlyNH₂ (37 mg, 0.24 mmol) (obtained by the cleavage of the Cbz protecting group from Cbz-NH₂AibGlyNH₂ following the general procedure B) was added. The mixture was heated under reflux (90 °C) for 3 days. The mixture was cooled to 0 °C and the precipitate collected by filtration and washed with cold acetonitrile and cold ether. The precipitate was further purified by column chromatography (10 % EtOH-CH₂Cl₂) the peptide Cbz-L-PheAib₉GlyNH₂ **1a** was obtained as a white solid (70 mg, 29%).

Rf: SiO₂/CH₂Cl₂:EtOH 90:10 = 0.33. **mp**: 242-244 °C. **IR** (film): ν_{max} = 3289, 2985, 1649, 1526, 1382, 1361, 1226, 1168 cm⁻¹. ¹**H NMR** (400 MHz, CD₃OD): δ 1.25 (s, 3H), 1.30 (s, 3H), 1.37 (s, 3H), 1.41 (s, 3H), 1.42 (s, 3H), 1.48 (m, 33 H), 1.53 (s, 6H), 2.96–3.05 (m, 2H), 3.77 (d of A of AB quartet, *J*=17.0, 4.1 Hz, 1H), 3.91 (d of B of AB quartet, *J*=17.0, 5.0 Hz, 1H), 4.23 (t_{ap}, *J_{ap}*=7.5 Hz, 1H), 5.07 (A of AB quartet, *J*=12.5 Hz, 1H), 5.11 (B of AB quartet, *J*=12.5 Hz, 1H), 7.22–7.33 (m, 11H), 7.58 (brs, 1H), 7.73 (brs, 1H), 7.78 (brs, 1H), 7.88 (brs, 1H), 7.89 (brs, 1H), 7.91 (brs, 1H), 7.92 (brs, 1H), 8.00 (brs, 1H), 8.14 (t, *J*=6.0 Hz, 1H), 8.36 (brs, 1H) ppm. ¹³**C NMR** (125 MHz, CD₃OD): δ 24.0–25.1 (overlapping signals, CH₃), 26.0–26.4 (overlapping signals, CH₃), 38.3 (CH₂), 43.9 (CH₂), 57.6–58.3 (overlapping signals 9 C + 1 CH), 67.7 (CH₂), 128.0 (CH), 128.6 (2CH), 129.1 (CH), 129.6 (2CH), 129.6 (2CH), 130.6 (2CH), 138.0 (C), 138.2 (C), 158.6 (CO), 174.3 (CO), 175.5 (CO), 176.7 (CO), 177.3 (CO), 177.6 (CO), 177.7 (CO), 177.7 (2CO), 178.1 (CO), 178.2 (CO), 178.4 (CO) ppm. **MS** (ES⁺, MeOH): 1143 ([M+Na]⁺, 100%).

Synthesis of Cbz-L-PheAib₄Ac₅cAib₄GlyNH₂ 1b

From a solution of Cbz-L-PheAib₄OH azlactone (97 mg, 0.16 mmol, obtained quantitatively from Cbz-L-PheAib₄OH **7**), HAc₅cAib₄GlyNH₂ **9b** (82 mg, 0.16 mmol, obtained quantitatively from CbzAc₅cAib₄GlyNH₂ **8b** by procedure D) in dry acetonitrile (3 mL) following the general procedure E and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-L-PheAib₄Ac₅cAib₄GlyNH₂ **1b** was obtained as a white solid (117 mg, 65%).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.54. **mp**: 249-251 °C. **IR**: (solid): ν_{max} = 3290, 1653, 1526, 1465, 1382, 1361, 1081 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.25 (s, 3H), 1.30 (s, 3H), 1.37 (s, 3H), 1.41 (s, 3H), 1.42 (s, 3H), 1.47 (s, 6H), 1.48 (s, 6H), 1.49 (s, 9H), 1.50 (s, 6H), 1.53 (s, 6H), 1.68-1.86 (m, 4H), 1.92-2.08 (m, 2H), 2.18-2.38 (m, 2H), 2.94-3.07 (m, 2H), 3.67 (d of A of AB quartet, *J*=16.7, 4.0 Hz, 1H), 3.82 (d of B of AB quartet, *J*=16.7, 5.0 Hz, 1H), 4.23 (t_{ap}, *J*_{ap}= 7.9 Hz, 1H), 5.08 (A of AB quartet, *J*=12.6 Hz, 1H), 5.11 (B of AB quartet, *J*=12.6 Hz, 1H), 7.22-7.36 (m, 10H), 7.59 (brs, 1H), 7.79-7.83 (m, 2H), 7.89-7.93 (m, 3H), 8.00 (brs, 1H), 8.12-8.15 (m, 1H) ppm. ¹³**C-NMR** (125 MHz, CDCl₃): δ 23.6-24.4 (overlapping signals, 8CH₃), 24.8-25.8 (overlapping signals, 8CH₃), 24.4 (2CH₂), 29.7 (2CH₂), 36.9 (CH₂), 43.4 (CH₂), 57.04-56.52 (overlapping signals, 8C + 1CH), 66.8 (C), 67.3 (CH₂), 127.3 (CH), 128.0 (2CH), 128.5 (CH), 128.7 (2CH), 128.8 (2CH), 129.2 (2CH), 135.9 (C), 135.9 (C), 156.8 (CO), 172.0 (CO), 173.7 (CO), 174.4 (CO), 175.5 (CO), 175.5 (CO), 175.8 (CO), 176.2 (CO), 176.4 (CO), 176.6 (CO), 176.8 (CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 1169 ([M +Na]⁺, 100%).

Synthesis of Cbz-L-PheAib₄Ac₆cAib₄GlyNH₂ 1c

From a solution of Cbz-L-PheAib₄OH azlactone (62 mg, 0.10 mmol, obtained quantitatively from Cbz-L-PheAib₄OH **7**), HAc₆cAib₄GlyNH₂ **9c** (54 mg, 0.10 mmol, obtained quantitatively from Cbz-Ac₆cAib₄GlyNH₂ **8c**) in dry acetonitrile (2 mL) following the general procedure E and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-L-PheAib₄Ac₆cAib₄GlyNH₂ **1c** was obtained as a white solid (90 mg, 69%).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.50. **mp**: 253-255 °C. **IR**: (solid): ν_{max} = 3290, 1655, 1520, 1465, 1382, 1361, 1081 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.27 (s, 3H), 1.31 (s, 3H), 1.36 (s, 3H), 1.41 (s, 3H), 1.42 (s, 3H), 1.47 (s, 6H), 1.48 (s, 15H), 1.49 (s, 3H), 1.51 (s, 3H), 1.53 (s, 6H), 1.45-1.55 (m, 2H), 1.58-1.67 (m, 3H), 1.68-1.78 (m, 2H), 1.79-1.90 (m, 1H), 2.08-2.17 (m, 1H), 2.23-2.30 (m, 1H), 2.95-3.07 (m, 2H), 3.67 (A of AB quartet, *J*=17.3 Hz, 1H), 3.82 (B of AB quartet, *J*=17.3 Hz, 1H), 4.23 (t_{ap}, *J_{ap}*= 7.9 Hz, 1H), 5.08 (A of AB quartet, *J*=12.6 Hz, 1H), 5.11 (B of AB quartet, *J*=12.6 Hz, 1H), 7.22-7.36 (m, 10H), 7.51 (brs, 1H), 7.75 (brs, 1H), 7.80 (brs, 1H), 7.90-7.97 (m, 4H), 8.11-8.16 (m, 1H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ 23.6-24.9 (overlapping signals, 8CH₃), 25.6-26.5 (overlapping signals, 8CH₃), 21.7 (2CH₂), 25.5 (CH₂), 36.8 (2CH₂), 36.8 (CH₂), 43.4 (CH₂), 57.1-56.4 (overlapping signals, 8C + 1CH), 59.4 (C), 67.4 (CH₂), 127.4 (CH), 128.0

(2CH), 128.5 (CH), 128.7 (2CH), 128.9 (2CH), 129.2 (2CH), 135.9 (C), 135.9 (C), 156.8 (CO), 171.9 (CO), 173.6 (CO), 174.3 (CO), 175.2 (CO), 175.2 (CO), 175.8 (CO), 176.1 (CO), 176.3 (CO), 176.5 (CO), 176.6 (CO), 176.8 (CO) ppm. **MS** (ES⁺, MeOH) *m*/*e* = 1183 ([M +Na]⁺, 100%).

Synthesis of Cbz-L-PheAib₄ThpAib₄GlyNH₂ 1d

From a solution of Cbz-L-PheAib₄OH azalactone (87 mg, 0.14 mmol, obtained quantitatively from Cbz-L-PheAib₄OH **7**), HThpAib₄GlyNH₂ **9d** (76 mg, 0.14 mmol, obtained quantitatively from Cbz-ThpAib₄GlyNH₂ **8d**) in dry acetonitrile (3 mL) following the general procedure E and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-L-PheAib₄ThpAib₄GlyNH₂ **1d** was obtained as a white solid (49 mg, 30%).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.60. **mp**:. 223-225 °C. **IR**: (solid): ν_{max} = 3298, 2981, 1646, 1521, 1382, 1361, 1168 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.27 (s, 3H), 1.32 (s, 3H), 1.36 (s, 3H), 1.40 (s, 3H), 1.42 (s, 3H), 1.47 (s, 3H), 1.49 (s, 6H), 1.49 (s, 9H), 1.51 (s, 3H), 1.52 (s, 3H), 1.53 (s, 3H), 1.54 (s, 6H), 2.01-2.16 (m, 3H), 2.18-2.28 (m, 1H), 2.95-3.07 (m, 2H), 3.56-3.68 (brs, 1H), 3.74-3.96 (m, 5H), 4.23 (t_{ap}, J_{ap}= 7.9 Hz, 1H), 5.08 (A of AB quartet, J=12.6 Hz, 1H), 5.12 (B of AB quartet, J=12.6 Hz, 1H), 7.24-7.37 (m, 10H), ppm. **MS** (ES⁺, MeOH) *m/e*= 1185 ([M +Na]⁺, 100%).

Synthesis of Cbz-L-PheAib₄DpgAib₄GlyNH₂ 1e

From a solution of Cbz-L-PheAib₄OH azlactone (42 mg, 0.07 mmol, obtained quantitatively from Cbz-L-PheAib₄OH **7**), NH₂DpgAib₄GlyNH₂ **9e** (42 mg, 0.07 mmol, obtained quantitatively from Cbz-DpgAib₄GlyNH₂ **8e**) in dry acetonitrile (2 mL) following the general procedure E and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-L-PheAib₄DpgAib₄GlyNH₂ **1e** was obtained as a white solid (43 mg, 52%).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.50. **mp**: 228-230 °C. **IR**: (solid): v_{max} = 3299, 2984, 1650, 1524, 1454, 1383, 1361, 1224, 1169 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ1.11 (s, 6H), 1.24 (s, 3H), 1.28 (s, 3H), 1.32 (s, 6H), 1.34 (s, 3H), 1.38 (s, 3H), 1.42 (s, 3H), 1.45 (s, 6H), 1.47 (s, 3H), 1.49 (s, 12H), 2.92-3.05 (m, 2H), 3.77-3.83 (m, 2H), 4.21 (t_{ap}, J_{ap}= 7.6 Hz, 1H), 5.05 (A of AB quartet, J=12.6 Hz, 1H), 5.09 (B of AB quartet, J=12.6 Hz, 1H), 6.92 (brs, 1H), 7.22-7.38 (m, 16H), 7.43 (d, J= 7.6 Hz, 4H), 7.52 (brs, 1H), 7.64 (brs, 1H), 7.66 (brs, 1H), 7.67 (brs, 1H), 7.81 (brs, 1H), 8.04-8.10 (m, 1H), 8.31 (brs, 1H) ppm. ¹³C-NMR (125 MHz, CDCl₃): δ 24.3-24.4 (overlapping signals, 8CH₃), 24.7-25.1 (overlapping signals, 8CH₃), 36.8 (CH₂), 43.1 (CH₂), 56.0 (C), 56.3 (C), 56.7 (C), 56.8 (C), 56.8 (C), 56.9 (C), 57.0 (C), 57.1 (CH), 57.2 (C), 67.2 (C), 72.8 (C), 127.1 (CH), 127.8 (2CH), 127.9 (2CH), 128.2 (4CH), 128.3 (CH), 128.4 (4CH), 128.6 (2CH), 128.7 (2CH), 129.2 (2CH), 136.1 (C), 136.2 (C), 175.6 (CO), 175.6 (CO), 175.7 (CO), 175.9 (CO), 176.3 (CO) ppm. **MS** (ES⁺, MeOH) *m*/e= 1267 ([M +Na]⁺, 100%).

Synthesis of Cbz-L-PheAib₄PhSerOMe 10

A round-bottomed flask was charged with a solution of Cbz-L-PheAib₄OH **7** (200 mg, 0.31 mmol), HOBt (64 mg, 0.47 mmol), HBTU (142 mg, 0.38 mmol), DIPEA (0.164 ml, 121 mg, 0.94 mmol) in dry CH_2Cl_2 (5 mL). After 2 h, (±)-phenylserine methyl ester hydrochloride (88 mg, 0.38) was added and the mixture was stirred at room temperature for 24 h. CH_2Cl_2 was removed under reduced pressure, the residue was diluted in EtOAc (100 mL), which was washed with HCl (1N) (2 times, 20 mL), NaHCO₃ saturated solution (2 times, 20 mL), brine (1 time, 20 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a crude product that was purified by column chromatography (5-10% MeOH- CH_2Cl_2), the two diastereomers (dr = 1:1) of the peptide Cbz-L-PheAib₄PhSerOMe **10** (230 mg, 91%) was obtained as a white solid.

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.50. **mp:** 84-86 °C. **IR**: (solid): ν_{max} = 3297, 2983, 2938, 1677, 1672, 1665, 1657, 1644, 1633, 1536, 1530, 1519, 1514, 1504, 1383, 1361, 1229, 1169 cm⁻¹. ¹H-NMR (400 MHz, CD₃OD): two diastereomers: δ 1.25 (s, 3H), 1.26 (s, 3H), 1.29 (s, 3H), 1.32 (s, 3H), 1.33 (s, 3H), 1.36 (s, 3H), 1.37 (s, 3H), 1.39 (s, 3H), 1.41 (s, 3H), 1.42 (s, 3H), 1.44 (s, 3H), 1.45 (s, 6H), 1.46 (s, 3H), 1.48 (s, 3H), 1.50 (s, 3H), 2.93-3.09 (m, 4H), 3.56 (s, 3H), 3.61 (s, 3H), 4.23 (t_{ap}, J_{ap}= 7.6 Hz, 1H), 4.24 (t_{ap}, J_{ap}= 7.6 Hz, 1H), 4.71-4.78 (m, 2H), 5.01-5.13 (m, 4H), 5.15 (d, J= 5.5 Hz, 1H), 5.18 (d, J= 5.0 Hz, 1H), 7.21-7.36 (m, 26H), 7.37-7.43 (m, 4H), 7.60 (brs, 1H), 7.61 (brs, 1H), 7.74 (brs, 1H), 7.76 (brs, 1H), 7.78 (brs, 1H), 7.85 (brs, 1H), 7.87 (brs, 1H), 7.96 (brs, 1H) ppm. ¹³C-NMR (100 MHz, CD₃OD): two diastereomers: δ 23.7–27.2 (overlapping signals, 16CH₃), 38.2 (CH₂), 38.2 (CH₂), 52.5 (CH₃), 52.6 (CH₃), 57.5 (C), 57.5 (C), 57.8 (C), 57.8 (C), 58.1 (2C), 58.2 (2C), 58.3 (2CH), 60.5 (CH), 60.8 (CH), 67.6 (CH₂), 67.6 (CH₂), 74.9 (CH), 75.1 (CH), 127.7 (2CH), 127.8 (2CH), 127.9 (2CH), 128.6 (2CH), 128.8 (CH), 128.9 (CH), 129.1 (2CH), 129.2 (2CH), 129.2 (2CH), 129.4 (CH), 129.5 (4CH), 129.6 (5CH), 130.5 (2CH), 130.6 (2CH), 138.0 (C), 138.0 (C), 138.1 (C), 138.2 (C), 141.2 (C), 141.6 (C), 158.5 (CO), 158.5 (CO), 171.8 (CO), 171.9 (CO), 174.2 (CO), 174.3 (CO), 176.4 (CO), 176.5 (CO), 176.6 (CO), 176.9 (CO), 177.4 (CO), 177.6 (CO), 177.7 (CO), 177.7 (CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 839 ([M +Na]⁺, 100%). **HRMS** (ES⁺, MeOH): Calcd for C₄₃H₅₆N₆O₁₀+Na: 839.3950, found 839.3952.

Synthesis of Cbz-L-PheAib₄^ΔPheAib₄GlyNH₂ 1f

A round-bottomed flask was charged with a solution of Cbz-L-PheAib₄PhSerOMe **10** (230 mg, 0.28 mmol) in THF (2 mL). A solution of LiOH (~8 mg, ~0.34 mmol) in water (2mL) was added slowly. The mixture was stirred at room temperature for 3 h. Then the mixture was diluted with EtOAc (40 mL) and HCl(1N) (60 mL). The aqueous phase was extracted with EtOAc (5 times, 40 mL). The organic extracts were dried over MgSO₄, filtered and concentrated in vacuo to give the expected acid Cbz-L-PheAib₄PhSerOH (223 mg, 98%) as a white solid that required no further purification.⁶

A round-bottomed flask was charged with a solution of the resulting Cbz-L-PheAib₄PhSerOH (276 mg, 0.34 mmol), NaOAc (36 mg, 0.52 mmol) in acetic anhydride (3 mL). The mixture was stirred at room temperature for 60 h. Then the mixture was diluted with CH_2Cl_2 (70 mL) and the mixture was washed with $KHSO_4$ (2

times, 10 mL), Na₂CO₃ saturated solution (2 times, 10 mL), brine (1 time, 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure and last traces of acetic anhydride were removed by coevaporation with dry toluene (3 times) to give the corresponding azlactone (259 mg, 98%) as a white solid that required no further purification and directly engaged to the following step.

A round-bottomed flask was charged with a solution of the resulting azlactone (150 mg, 0.20 mmol) in dry acetonitrile (4 mL). The HAib₄GlyNH₂ **5** (81 mg, 0.20 mmol) was added and the mixture was heated under reflux (90 °C) for 1 day. The mixture was cooled down to 0 °C and the precipitate collected by filtration and washed with cold acetonitrile and cold ether. The precipitate was further purified by column chromatography (5-10% MeOH-CH₂Cl₂), peptide Cbz-L-PheAib₄^{Δ}PheAib₄GlyNH₂ **1f** (151 mg, 65%) was obtained as a white solid.

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.34. **mp**: 261-263 °C. **IR**: (solid): ν_{max} = 3285, 2983, 2934, 1653, 1647, 1527, 1382, 1361, 1225, 1170 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.05 (s, 3H), 1.14 (s, 3H), 1.24 (s, 3H), 1.27 (s, 3H), 1.40 (s, 3H), 1.48 (s, 3H), 1.50 (s, 9H), 1.52 (s, 3H), 1.54 (s, 6H), 1.57 (s, 6H), 1.59 (s, 3H), 1.61 (s, 3H), 2.93-3.05 (m, 2H), 3.78 (A of AB quartet, *J*=16.7 Hz, 1H), 3.91 (B of AB quartet, *J*=16.7 Hz, 1H), 4.21 (t_{ap}, *J*_{ap}= 7.9 Hz, 1H), 5.05 (A of AB quartet, *J*=12.6 Hz, 1H), 5.08 (B of AB quartet, *J*=12.6 Hz, 1H), 7.23-7.35 (m, 14H), 752-7.56 (m, 2H), 7.85 (brs, 1H), 7.92 (brs, 1H), 8.01 (brs, 1H), 8.06 (brs, 1H) ppm. ¹³**C-NMR** (125 MHz, CDCl₃): δ 22.3-23.9 (overlapping signals, 8CH₃), 25.9-27.2 (overlapping signals, 8CH₃), 36.8 (CH₂), 43.4 (CH₂), 56.5-57.1 (overlapping signals, 8C + 1CH), 67.4 (CH₂), 130.6-127.2 (overlapping signals, 20CH + 1C), 133.8 (C), 135.8 (2C), 165.9 (CO), 171.9 (CO), 173.6 (CO), 174.2 (CO), 174.4 (CO), 175.8 (CO), 175.9 (CO), 176.0 (CO), 176.3 (CO), 176.5 (CO), 176.6 (CO), 176.8 (CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 1203 ([M +Na]⁺, 100%).

Synthesis of Cbz-L-PheAib₄GlyAib₄GlyNH₂ 1g

From a solution of Cbz-L-PheAib₄OH azlactone (87 mg, 0.14 mmol, obtained quantitatively from Cbz-L-PheAib₄OH **7**), NH₂GlyAib₄GlyNH₂ **9g** (66 mg, 0.14 mmol, obtained quantitatively from Cbz-GlyAib₄GlyNH₂ **8g**) in dry acetonitrile (3 mL) following the general procedure E and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-L-PheAib₄GlyAib₄GlyNH₂ **1g** was obtained as a white solid (76 mg, 50%).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.35. **mp**: >300 °C. **IR**: (solid): ν_{max} = 3300, 1651, 1532, 1452, 1380, 1362, 1076 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ1.25 (s, 3H), 1.29 (s, 3H), 1.36 (s, 3H), 1.40 (s, 3H), 1.43 (s, 3H), 1.45 (s, 6H), 1.46 (s, 6H), 1.50 (s, 9H), 1.52 (s, 12H), 2.95-3.06 (m, 2H), 3.70-3.91 (m, 4H), 4.23 (t_{ap}, J_{ap}= 7.6 Hz, 1H), 5.09 (A of AB quartet, J=12.6 Hz, 1H), 5.11 (B of AB quartet, J=12.6 Hz, 1H), 7.20-7.36 (m, 10H), 7.61 (brs, 1H), 7.73 (brs, 1H), 7.81 (brs, 1H), 7.89 (brs, 1H), 7.94-8.01 (m, 4H), 8.09-8.18 (m, 4H), 8.37 (brs, 1H) ppm. ¹³**C-NMR** (125 MHz, CDCl₃): δ 24.7-24.1 (overlapping signals, 8CH₃), 24.9-25.5 (overlapping signals, 8CH₃), 36.9 (CH₂), 43.4 (CH₂), 45.3 (CH₂), 57.0-56.5 (overlapping signals, 8C + 1CH), 67.2 (CH₂), 127.2 (CH), 127.9 (2CH), 128.4 (CH), 128.6 (2CH), 128.7 (2CH), 129.2 (2CH), 136.0 (C), 136.1 (C), 156.8 (CO), 171.0 (CO), 172.2 (CO), 173.9 (CO), 174.6 (CO), 175.6 (CO), 176.1 (CO), 176.3 (CO), 176.3 (CO), 176.4 (CO), 177.6 (CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 1115 ([M +Na]⁺, 100%).

Synthesis of Cbz-L-PheAib₄ β AlaAib₄GlyNH₂ 1h

From a solution of Cbz-L-PheAib₄OH azlactone (71 mg, 0.12 mmol, obtained quantitatively from Cbz-L-PheAib₄OH **7**), H β AlaAib₄GlyNH₂ **9h** (56 mg, 0.12 mmol, obtained quantitatively from Cbz- β AlaAib₄GlyNH₂ **8h**) in dry acetonitrile (3 mL) following the general procedure E and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-L-PheAib₄ β AlaAib₄GlyNH₂ **1h** was obtained as a white solid (102 mg, 74%).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.30. **mp**: >300 °C. **IR**: (solid): ν_{max} = 3285, 1652, 1538, 1455, 1382, 1361, 1081 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.24 (s, 3H), 1.28 (s, 3H), 1.35 (s, 3H), 1.40 (s, 3H), 1.42 (s, 3H), 1.43 (s, 6H), 1.44 (s, 3H), 1.45 (s, 3H), 1.47 (s, 3H), 1.48 (s, 6H), 1.49 (s, 3H), 1.50 (s, 3H), 1.51 (s, 6H), 2.38-2.51 (m, 2H), 2.92-3.05 (m, 2H), 3.35-3.45 (m, 1H), 3.54-3.64 (m, 1H), 3.70 (d of A of AB quartet, J=17.3, 6.0 Hz, 1H), 3.77 (d of B of AB quartet, J=17.3, 6.4 Hz, 1H), 4.19-4.25 (m, 1H), 5.04-5.12 (m, 2H), 7.22-7.36 (m, 10H), 7.51 (brs, 1H), 7.60 (brs, 1H), 7.61 (brs, 1H), 7.66 (brs, 1H), 7.72 (brs, 1H), 7.76-7.79 (m, 1H), 7.87 (brs, 1H), 8.04 (brs, 1H), 8.12 (m, 1H), 8.15 (t, J= 6.0 Hz, 1H), 8.36 (brs, 1H) ppm. ¹³**C-NMR** (125 MHz, CDCl₃): δ 23.4-25.8 (overlapping signals, 16CH₃), 36.8 (CH₂), 40.3 (CH₂), 43.3 (CH₂), 43.4 (CH₂), 56.5-57.2 (overlapping signals, 8C + 1CH), 67.3 (CH₂), 127.3 (CH), 128.0 (2CH), 128.4 (CH), 128.6 (2CH), 128.8 (2CH), 129.2 (2CH), 136.0 (C), 136.0 (C), 156.8 (CO), 172.0 (CO), 172.8 (CO), 173.7 (CO), 174.3 (CO), 175.0 (CO), 175.1 (CO), 176.3 (CO), 176.4 (CO), 176.6 (CO), 176.7 (CO), 176.8 (CO) ppm. **MS** (ES⁺, MeOH) *m*/e= 1129 ([M +Na]⁺, 100%).

Synthesis of Cbz-L-PheAib₄GlyGlyAib₄GlyNH₂ 1i

From a solution of Cbz-L-PheAib₄OH azlactone (104 mg, 0.17 mmol, obtained quantitatively from Cbz-L-PheAib₄OH **7**), HGlyGlyAib₄GlyNH₂ **9i** (88 mg, 0.17 mmol, obtained quantitatively from Cbz-GlyGlyAib₄GlyNH₂ **8i**) in dry acetonitrile (4 mL) following the general procedure E and after purification by column chromatography (5-10 % MeOH-CH₂Cl₂) the peptide Cbz-L-PheAib₄GlyGlyAib₄GlyNH₂ **1i** was obtained as a white solid (141 mg, 73%).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.30. **mp**: >300 °C. **IR**: (solid): ν_{max} = 3310, 1650, 1530, 1454, 1384, 1362, 1076 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ1.24 (s, 3H), 1.29 (s, 3H), 1.35 (s, 3H), 1.39 (s, 3H), 1.41 (s, 3H), 1.44 (s, 3H), 1.44 (s, 3H), 1.46 (s, 6H), 1.47 (s, 6H), 1.49 (s, 3H), 1.51 (s, 6H), 1.51 (s, 6H), 2.94-3.06 (m, 2H), 3.75-3.98 (m, 6H), 4.23 (t_{ap}, J_{ap} = 7.6 Hz, 1H), 5.07 (A of AB quartet, J=12.9 Hz, 1H), 5.10 (B of AB quartet, J=12.9 Hz, 1H), 7.22-7.35 (m, 10H), 7.45-7.55 (m, 1H), 7.63 (brs, 1H), 7.73 (brs, 1H), 7.75 (brs, 1H), 7.76 (brs, 1H), 7.85-7.88 (m, 1H), 7.90 (brs, 1H), 7.96 (brs, 1H), 7.98 (brs, 2H), 8.11-8.17 (m, 2H), 8.27 (t, J= 5.7 Hz, 1H), 8.40 (brs, 1H) ppm. ¹³**C-NMR** (100 MHz, CDCl₃): δ 24.3-24.6 (overlapping signals, 8CH₃), 24.7-25.3 (overlapping signals, 8CH₃), 36.9 (CH₂), 43.4 (CH₂), 44.6 (CH₂), 44.6 (CH₂), 56.5 (C), 56.6 (C), 56.6 (CH), 56.6 (C), 56.7 (C), 56.7 (C), 56.8 (C), 57.0 (C), 67.2 (CH₂), 127.2 (CH), 127.8 (2CH), 128.4 (CH), 128.6 (2CH), 128.7 (2CH), 129.2 (2CH), 136.0 (C), 136.0 (C), 156.8 (CO), 170.6 (CO), 172.0 (CO),

172.2 (CO), 173.9 (CO), 174.8 (CO), 175.1 (CO), 176.1 (CO), 176.4 (CO), 176.5 (CO), 176.9 (CO), 177.6 (CO), 177.7 (CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 1172 ([M +Na]⁺, 100%).

Synthesis of Cbz-L-PheAib₄NHCH₂C≡CH 11

A round-bottomed flask was charged with a solution of Cbz-L-PheAib₄OH **7** (200 mg, 0.31 mmol), HOBt (93 mg, 0.69 mmol), HBTU (237 mg, 0.63 mmol), DIPEA (0.218 ml, 162 mg, 1.25 mmol) in dry CH₂Cl₂ (5 mL). After 1 h, distilled propargylamine (43 μ l, 34 mg, 0.63) was added and the mixture was stirred at room temperature for 4 days. Then the mixture was diluted with CH₂Cl₂ (100 mL), which was washed with HCl (1N) (2 times, 20 mL), NaHCO₃ saturated solution (2 times, 20 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a crude product that was purified by column chromatography (5-10% MeOH-CH₂Cl₂), peptide Cbz-L-PheAib₄NHCH₂C≡CH **11** (164 mg, 78%) was obtained as a white solid.⁷

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.55. **mp**: 179-182 °C. **IR**: (solid): v_{max} = 3355, 3318, 2987, 2932, 2479, 2425, 1676, 1666, 1655, 1650, 1643, 1530, 1523, 1519, 1514, 1434, 1421, 1417, 1361, 1225 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.24 (s, 3H), 1.29 (s, 3H), 1.36 (s, 3H), 1.39 (s, 3H), 1.41 (s, 3H), 1.46 (s, 3H), 1.48 (s, 3H), 1.51 (s, 3H), 2.48 (s, 1H), 2.93-3.07 (m, 2H), 3.90 (A of AB quartet, *J*=17.0 Hz, 1H), 4.03 (B of AB quartet, *J*=17.0 Hz, 1H), 4.23 (t_{ap}, *J_{ap}* = 7.6 Hz, 1H), 5.06 (A of AB quartet, *J*=12.6 Hz, 1H), 5.09 (B of AB quartet, *J*=12.6 Hz, 1H), 7.20-7.35 (m, 10H), 7.54 (brs, 1H), 7.67 (brs, 1H), 7.86 (brs, 1H), 7.87 (brs, 1H), 7.88 (brs, 1H), 7.89 (brs, 1H) ppm. ¹³**C-NMR** (125 MHz, CD₃OD): δ 24.0 (CH₃), 24.3 (CH₃), 24.5 (CH₃), 24.9 (CH₃), 26.1 (CH₃), 26.3 (CH₃), 26.5 (CH₃), 26.8 (CH₃), 29.7 (CH₂), 38.2 (CH₂), 57.5 (C), 57.8 (C), 58.0 (C), 58.1 (C), 58.2 (CH), 67.6 (CH₂), 71.8 (CH), 80.8 (C), 127.9 (CH), 128.6 (2CH), 129.1 (CH), 129.5 (2CH), 129.6 (2CH), 129.6 (2CH), 138.0 (C), 138.1 (C), 158.5 (CO), 174.3 (CO), 176.5 (CO), 177.0 (CO), 177.4 (CO), 177.6 (CO) ppm. **MS** (ES⁺, MeOH) *m*/*e* 699 ([M +Na]⁺, 100%). **HRMS** (ES⁺, MeOH): Calcd for C₃₆H₄₈N₆O₇+Na: 699.3477, found 699.3475.

General procedure F for the "click" reaction between Cbz-L-PheAib₄NHCH₂C=CH 11 and $N_3Aib_4GlyNH_2$ 4 or N_3GlyOH .

A microwave sealed tube was charged with a solution of 1.0 equiv. of Cbz-L-PheAib₄NHCH₂C≡CH **11**, 1.0 equiv. of the azide, 10 mol% of CuOAc in dry DMF (7 mL/mmol). The tube was sealed and the mixture mixture was heated at 80 °C for 30 min. Most of the DMF was removed in vacuo and diluted with ether (30 mL/mmol). The mixture was cooled down to 0 °C and the precipitate collected by filtration and washed with cold ether. The precipitate was further purified by column chromatography, using the appropriate mixture of eluents, to give the triazole.⁸

Synthesis of Cbz-L-PheAib₄TrzAib₄GlyNH₂ 1j

From a solution of Cbz-L-PheAib₄NHCH₂C≡CH **11** (50 mg, 0.07 mmol), N₃Aib₄GlyNH₂ **4** (33 mg, 0.07 mmol) in dry DMF (0.5 mL) following the general procedure F and after purification by column chromatography (5-10% MeOH-CH₂Cl₂) the peptide Cbz-L-PheAib₄CH₂-Triazol-Aib₄GlyNH₂ **1j** was obtained as a white solid (65 mg, 79%).

Rf: SiO₂/CH₂Cl₂:MeOH 90:10 = 0.30. **mp**: 126-128 °C. **IR**: (solid): v_{max} = 3299, 2983, 2933, 1655, 1650, 1524, 1519, 1383, 1361, 1224, 1170 cm⁻¹. ¹**H-NMR** (500 MHz, CD₃OD): δ 1.24 (s, 3H), 1.28 (s, 3H), 1.31 (s, 3H), 1.35 (s, 3H), 1.39 (s, 3H), 1.41 (s, 3H), 1.42 (s, 3H), 1.43 (s, 6H), 1.46 (s, 6H), 1.47 (s, 3H), 1.51 (s, 3H), 1.53 (s, 3H), 1.86 (s, 3H), 1.88 (s, 3H), 2.93-3.05 (m, 2H), 3.80 (A of AB quartet, *J*=17.3 Hz, 1H), 3.84 (B of AB quartet, *J*=17.3 Hz, 1H), 4.22 (t_{ap}, *J_{ap}*= 7.6 Hz, 1H), 4.42 (A of AB quartet, *J*=15.5 Hz, 1H), 4.46 (B of AB quartet, *J*=15.5 Hz, 1H), 5.06 (A of AB quartet, *J*=12.6 Hz, 1H), 5.09 (B of AB quartet, *J*=12.6 Hz, 1H), 7.22-7.35 (m, 11H), 7.60 (brs, 1H), 7.75 (brs, 1H), 7.75 (brs, 1H), 7.87 (brs, 1H), 8.20 (brs, 1H) ppm. ¹³**C-NMR** (125 MHz, CD₃OD): δ 24.0–27.0 (overlapping signals, 16CH₃), 36.5 (CH₂), 38.3 (CH₂), 43.8 (CH₂), 57.6 (C), 57.7 (C), 58.0 (C), 58.1 (C), 58.2 (C), 58.3 (C), 58.3 (C), 58.5 (CH), 66.5 (C), 67.7 (CH₂), 123.3 (CH), 128.0 (CH), 128.6 (2CH), 129.1 (CH), 129.6 (2CH), 129.6 (2CH), 130.6 (2CH), 138.0 (C), 138.2 (C), 147.5 (C), 158.6 (CO), 173.4 (CO), 174.3 (CO), 175.4 (CO), 176.6 (CO), 177.0 (CO), 177.1 (CO), 177.5 (CO), 177.6 (CO), 177.6 (CO), 178.0 (CO), 178.3 (CO) ppm. **MS** (ES⁺, MeOH) *m*/*e*= 1139 ([M +Na]⁺, 100%).

Synthesis of Cbz-L-PheAib₄TrzGlyOH

From a solution of Cbz-L-PheAib₄NHCH₂C≡CH **11** (50 mg, 0.07 mmol), N₃GlyOH⁹ (8 mg, 0.07 mmol) in dry DMF (0.5 mL) following the general procedure F and after purification by column chromatography (10-30% MeOH-CH₂Cl₂) the peptide Cbz-L-PheAib₄CH₂-Triazol-GlyOH was obtained as a white solid (38 mg, 65%). **Rf**: SiO₂/ CH₂Cl₂:MeOH 90:10 = 0.10. **mp**: 103-105 °C. **IR**: (solid): v_{max} = 3300, 2940, 1652, 1651, 1530, 1385, 1370, cm⁻¹. ¹**H-NMR** (400 MHz, CD₃OD): δ 1.23 (s, 3H), 1.27 (s, 3H), 1.29 (s, 3H), 1.31 (s, 3H), 1.38 (s, 3H), 1.45 (s, 3H), 1.50 (s, 3H), 1.52 (s, 3H), 2.92-3.06 (m, 2H), 4.22 (t_{ap}, *J_{ap}*= 7.6 Hz, 1H), 4.51 (brs, 2H), 4.94 (brs, 2H), 5.05 (A of AB quartet, *J*=12.6 Hz, 1H), 5.09 (B of AB quartet, *J*=12.6 Hz, 1H), 7.21-7.35 (m, 11H), 7.60 (brs, 1H), 7.56 (brs, 1H), 7.71 (brs, 1H), 7.81 (brs, 1H) ppm. ¹³**C-NMR** (100 MHz, CD₃OD): δ 24.0 (CH₃), 24.2 (CH₃), 24.5 (CH₃), 25.0 (CH₃), 26.1 (CH₃), 26.3 (CH₃), 26.5 (CH₃), 26.9 (CH₃), 38.3 (CH₂), 43.4 (brCH₂), 57.6 (CH₂), 57.7 (C), 57.8 (C), 58.0 (C), 58.1 (C), 58.2 (CH), 67.7 (CH₂), 124.5 (br CH), 127.9 (CH), 128.6 (2CH), 129.1 (CH), 129.5 (2CH), 129.6 (2CH), 130.6 (2CH), 138.1 (C), 138.2 (C), 148.8 (br C), 158.6 (CO), 174.3 (CO), 176.5 (CO), 177.1 (CO), 177.2 (CO), 177.4 (CO), 177.5 (CO) ppm. **MS** (ES⁻, MeOH) *m*/= 776 ([M-H]⁻, 100%). **HRMS** (ES⁻, MeOH): Calcd for C₃₈H₅₁N₉O₉-H: 776.3736, found 776.3728.

Synthesis of Cbz-L-PheAib₄TrzGlyAib₄GlyNH₂ 1k

A round-bottomed flask was charged with a solution of Cbz-L-PheAib₄TrzGlyOH (35 mg, 0.05 mmol), HOBt (14 mg, 0.10 mmol) in dry DMF (1 mL). This mixture was cooled down to 0 °C and EDC (0.18 mL, 16 mg, 0.10 mmol) were added dropwise. After completed dissolution or at least 1 h, HAib₄GlyNH₂ **5** (19 mg, 0.05 mmol) was then added. The mixture was allowed to warm to room temperature for 7 d. Then the mixture was concentrated under reduced pressure and diluted with CH_2CI_2 (30 mL), which was washed with water (1 time, 5 mL). The organic phase was concentrated under reduced pressure to give a crude product that was purified by column chromatography (5-10% MeOH-CH₂Cl₂), peptide Cbz-L-PheAib₄TrzGlyAib₄GlyNH₂ **1k**. (33 mg, 63%) was obtained as a white solid.

Rf: SiO₂/ CH₂Cl₂:EtOH 90:10 = 0.45. **mp**:. 130–135 °C. **IR**: (solid): ν_{max} = 3310, 2989, 2935, 1655, 1652, 1522 1365, 1230, 1175 cm⁻¹. ¹**H-NMR** (400 MHz, CD₃OD): δ1.23 (s, 3H), 1.24 (s, 3H), 1.25 (s, 3H), 1.27 (s, 3H), 1.30 (s, 3H), 1.33 (s, 3H), 1.37 (s, 3H), 1.40 (s, 6H), 1.42 (s, 3H), 1.46 (s, 6H), 1.46 (s, 6H), 1.49 (s, 3H), 1.52 (s, 3H), 2.93-3.05 (m, 2H), 3.79-3.85 (m, 2H), 4.22 (t_{ap}, J_{ap} = 7.8 Hz, 1H), 4.43 (d of A of AB quartet, J=15.5, 6.3 Hz, 1H), 4.55 (d of B of AB quartet, J=15.5, 6.3 Hz, 1H), 4.70 (brs, 2H), 5.05 (A of AB quartet, J=12.6 Hz, 1H), 5.09 (B of AB quartet, J=12.6 Hz, 1H), 5.16 (brs, 2H), 7.21-7.36 (m, 11H), 7.58 (brs, 1H), 7.74 (brs, 1H), 7.76 (brs, 1H), 7.84 (brs, 1H), 7.93 (brs, 1H) 8.02-8.18 (m, 2H) ppm. ¹³**C-NMR** (100 MHz, CD₃OD): δ23.8–27.2 (overlapping signals, 16CH₃), 36.3 (CH₂), 38.3 (CH₂), 43.7 (CH₂), 53.2 (CH₂), 57.6 (C), 57.7 (C), 57.8 (C), 58.0 (CH), 58.1 (C), 58.2 (C), 58.2 (C), 58.3 (C), 67.7 (CH₂), 126.2 (CH), 128.0 (CH), 128.6 (2CH), 129.1 (CH), 129.5 (2CH), 129.6 (2CH), 130.6 (2CH), 138.0 (C), 138.2 (C), 147.4 (C), 158.6 (CO), 167.9 (CO), 174.1 (CO), 175.4 (CO), 176.3 (CO), 176.6 (CO), 177.2 (CO), 177.5 (CO), 177.7 (CO), 178.1 (CO), 178.1 (CO) ppm. **MS** (ES⁺, MeOH) *m/e*= 1196 ([M +Na]⁺, 100%).

3. Supplementary figures: ¹H and ¹³C NMR spectra

 $\mathbf{Cbz}\textbf{-}\mathbf{Aib}\mathbf{Gly}\mathbf{NH}_{\mathbf{2}}$, H ,0, NH₂ Ph_

4. Supplementary figures: Expanded ¹H NMR CH₂ (GlyNH₂) region for peptides 1

Cbz-L-PheAib₉GlyNH₂ 1a (500 MHz, CD₃OD)

Cbz-L-PheAib₄Ac₅cAib₄GlyNH₂ 1b (500 MHz, CD₃OD)

Cbz-L-PheAib₄Ac₆cAib₄GlyNH₂ 1c (500 MHz, CD₃OD)

Cbz-L-PheAib₄ThpAib₄GlyNH₂ 1d (500 MHz, CD₃OD)

Cbz-L-PheAib₄DpgAib₄GlyNH₂ 1e (500 MHz, CD₃OD)

Cbz-L-PheAib₄^ΔPheAib₄GlyNH₂ 1f (500 MHz, CD₃OD)

Cbz-L-PheAib₄**GlyAib**₄**GlyNH**₂ **1g.** (500 MHz, CD₃OD) (*After deconvolution to 2 Hz Gaussian*)

 $Cbz-L-PheAib_4\beta AlaAib_4GlyNH_2 \ 1h \ (500 \ \text{MHz}, \ \text{CD}_3\text{OD})$

 $\label{eq:cbz-L-PheAib} Cbz-L-PheAib_4GlyGlyAib_4GlyNH_2\ 1i\ (500\ \text{MHz},\ \text{CD}_3\text{OD})$

Cbz-L-PheAib₄CH₂TrzAib₄GlyNH₂ 1j (500 MHz, CD₃OD)

$Cbz-L-PheAib_{4}TrzGlyAib_{4}GlyNH_{2}\ 1k\ (500\ \text{MHz},\ \text{CD}_{3}\text{OD})$

5. Supplementary figures: Circular Dichroism spectra for peptides 1

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

¹ a) J. Clayden, A. Castellanos, J. Sola, G. A. Morris, *Angew. Chem. Int. Ed.* **2009**, *48*, 5962-5965. b) J. Sola, M. Helliwell, J. Clayden, *J. Am. Chem. Soc.* **2010**, *132*, 4548-4549. c) R. A. Brown, T. Marcelli, M. De Poli, J. Solà, J. Clayden, *Angew Chemie Int. Ed.* in press [doi: 10.1002/anie.201107583]

² N. Ousaka, T. Sato, R. Kuroda, J. Am. Chem. Soc. 2008, 130, 463-465.

³ a) P. Pengo, Q. B. Broxterman, B. Kaplein, L. Pasquato, P. Scrimin, *Langmuir* **2003**, *19*, 2521-2524. b) A. A. Yeagley, J. J. Chruma, *Org. Lett.* **2007**, *9*, 2879-2882.

⁴ M. Y. H. Lai, M. A. Brimble, D. J. Callis, P. W. R. Harris, M. S. Levi, F. Sieg, Bioorg. Med. Chem. 2005, 13, 533-548.

⁵ E. Kleinman, Pfizer Product Inc. (US) PCT Int. Appl. WO/2007/110727, 2007.

⁶ A. Guzman-Martinez, R. Lamer, M. S. VanNieuwenhze, J. Am. Chem. Soc. 2007, 129, 6017-6021.

7 S. Chamoin, H.-J. Roth, J. Zimmermann, T. Zoller, Novartis Ag. (US) PCT Int. Appl. 2010/0075966, 2010.

8 Y. Chen, Z. Guan, J. Am. Chem. Soc. 2010, 132, 4577-4579.

9 a) R. Srinivasan, L. Pheng Tan, H. Wu, P.-Y. Yang, K. A. Kalesh, S. Yao, Q. *Org. Biomol. Chem.* **2009**, *7*, 1821-1828. b) S. E. Van der Plas, E. V. Hoeck, F. Lynen, P. Sandra, Madder, A. *Eur. J. Org. Chem.* **2009**, 1796-1805.