SUPPORTING INFORMATION

A BPTTF-based Self-Assembled Electrodonating Triangle capable of C₆₀ binding

Sébastien Goeb, Sébastien Bivaud, Paul Ionut Dron, Jean-Yves Balandier, Marcos Chas and Marc Sallé*

Table of Contents

- p. S1 : General experimental methods instruments
- p. S2 : C₆₀ titration method
- p. S2 : Materials
- p. S2 : Synthesis
- p. S2 : Figure S1. Analytical data for square 3
- p. S3 : Figure S2. Front view of the energy-minimized structures (MM+) of triangle 2 and square 3 and their respective cavity size
- p. S3 : Figure S3. Spectral changes in a UV-vis titration exp. of triangle (2.0 x 10^{-5} M) vs C₆₀ (2.0 x 10^{-3} M) at rt in CS₂ / CH₂Cl₂ (8 / 2). Inset: Benesi-Hildebrand curve from titration (R = 0.995)
- p. S3 : References

General experimental methods – instruments.

Most of the spectroscopic data were obtained with the equipment facilities of the PIAM (technical platform) at the University of Angers. The 500 (1 H), 202.5 (31 P) and 470.6 MHz (19 F) NMR spectra were recorded at room temperature using perdeuterated solvents as internal standards (1 H), external H₃PO₄ solution (31 P) or CFCl₃ (19 F). Mass spectra were achieved on a ESI source spectrometer in CH₃CN at the Université de Rennes 1 (CRMPO). Cyclic voltammetry experiments were carried out on a potentiostat-galvanostat with solvents and electrolyte of electrochemical grades. CV experiments were carried out at 298K in a conventional three-electrode cell equipped with a Pt disk working electrode (diameter: 1mm), a Pt wire counter electrode, and a Ag wire reference electrode calibrated using an internal ferrocen reference.

C₆₀ titration method.

A solution (2.5 mL) of triangle 2 (2.0 x 10^{-5} M) in CS₂ / CH₂Cl₂ (80 / 20) was placed in a UV-Vis cell equipped with a septum. Aliquots of the C₆₀ solution (2.0 x 10^{-3} M) in CS₂ / CH₂Cl₂ (80 / 20) were added into the working cell and into the reference cell containing 2.5mL of CS₂ / CH₂Cl₂ (80 / 20). UV-Vis spectra were recorded at room temperature. To maintain a constant concentration the collected data were corrected from the dilution factor.

Materials. Methylene chloride was used as purchased. Compound 1^1 and complex dpppPt(OTf)₂² were synthesized as described in literature.

Synthesis.

Triangle 2: To a mixture of *dppp*Pt(OTf)₂ (21.7 mg, 0.022 mmol) and compound **1** (10.0 mg, 0.022 mmol) was added CH₂Cl₂ (30 mL). The mixture was stirred for 5 days at room temperature. The insoluble square **3** was filtered and the resulting clear solution evaporated under an air flow to give **2** (19 mg, 60%) as a brown yellow solid. ¹H NMR (500 MHz, acetone-d₆): δ 8.86 (d, ³*J* = 5.8 Hz, 12H), 7.88-7.79 (m, 24H) 7.48 (s, 12H), 7.46-7.39 (m, 36H), 7.31 (d, ³*J* = 6.0 Hz, 12H), 3.46 (s(b), 12H); ³¹P NMR (202.5 MHz, acetone-d₆): -12.98 (s); ¹⁹F NMR (470.6 MHz, acetone-d₆): -78.63 (s); ES-MS m/z (nature of the peak): 1862.5625 ([**1**-Ptdppp)₃.4TfO⁻]²⁺; Anal. Calcd for C₁₄₅H₁₁₄F₁₂N₁₂O₁₂P₆S₂Pt₃ + 2CH₂Cl₂ : C, 42.64; H, 2.83; N, 4.01. Found: C, 42.58; H, 3.01; N, 4.11 %.

Figure S1. Analytical data for square 3

Figure S2. Front view of the energy-minimized structure (MM+) of square **3** and triangle **2** and their respective cavity size (the ligand *dppp* was replaced with *dmpp* (1,3-bis(dimethyl phosphine)propane) for a better readability).

Figure S3. Spectral changes in a UV-vis titration exp. of triangle **2** (2.0 x 10^{-5} M) vs C₆₀ (2.0 x 10^{-3} M) at rt in CS₂ / CH₂Cl₂ (8 / 2). Inset: Benesi-Hildebrand curve from titration (log K_a = 4.2; R = 0.995)

References.

- 1. J. Y. Balandier, M. Chas, S. Goeb, P. I. Dron, D. Rondeau, A. Belyasmine, N. Gallego and M. Sallé, *New J. Chem.* 2011, **35**, 165.
- 2. P. J. Stang, D.H. Cao, S. Saito and A. M. Arif, J. Am. Chem. Soc. 1995, 117, 6273.