Supporting Information

Pd(II)-Catalyzed Direct C5-Arylation of Azole-4-carboxylates

through Double C-H Bond Cleavage

Ziyuan Li, Ling Ma, Jinyi Xu, Lingyi Kong, Xiaoming Wu and Hequan Yao*

State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China

Pharmaceutical University, Nanjing 210009, P. R.China.

E-mail: <u>hyao@cpu.edu.cn</u>, 86-25-83271042

1. General Information

Melting point (mp) was measured on a microscopic melting point apparatus. ¹H and ¹³C NMR spectra were collected on BRUKER AV-300 (300MHz) spectrometer using CDCl₃ or DMSO as solvent. Chemical shifts of ¹H NMR were recorded in parts per million (ppm, δ) relative to tetramethylsilane ($\delta = 0.00$ ppm) with the solvent resonance as an internal standard (CDCl₃: $\delta = 7.26$ ppm; DMSO-d₆: $\delta = 2.50$ ppm). Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, brs = broad singlet, m = multiplet), coupling constant (Hz), and integration. Chemical shifts of ¹³C NMR were reported in ppm with the solvent as the internal standard (CDCl₃: $\delta = 77.0$ ppm; DMSO-d₆: $\delta = 40.5$ ppm). Infrared spectra (IR) were recorded on a Thermo Scientific iS10 FT/IR spectrometer; absorptions are reported in reciprocal centimeters. High Resolution Mass measurement was performed on Agilent QTOF 6520 mass spectrometer with electron spray ionization (ESI) as the ion source. High Performance Liquid Chromatography (HPLC) was performed on Agilent 1260 eluting with acetonitrile and water. The peaks were detected by UV light of irradiation (254 nm).

2. Materials

Palladium(II) catalysts, oxidants (except IOAc), additives and arenes are commercially available. IOAc was prepared *in situ* using I_2 and PhI(OAc)₂ according to previous literatures.¹ As shown in *Scheme S1*, Thiazole-4-carboxylate and oxazole-4-carboxylate substrates were synthesized from corresponding aldehydes or nitriles by our recently disclosed methods.² Unless otherwise indicated, all other reagents and solvents were obtained from commercial suppliers and used as received.

Scheme S1. Preparation of Thiazole-4-carboxylate (a) and oxazole-4-carboxylate (b). *Reaction Conditions*: (i) NH₂OH-HCl, Na₂CO₃, MeOH/H₂O, reflux; (ii) Ac₂O, reflux; (iii) L-cysteine, NaHCO₃, EtOH/H₂O, rt or reflux; (iv) MeI, KHCO₃, DMF, 0 °C to rt; (v) Cu(OAc)₂, DMF, 120 °C; (vi) O₂, K₂CO₃, MS, DMF, 100 °C; (vii) HCl (g), EtOH, 0 °C to rt; (viii) methyl L-serine hydrochloride, NEt₃, CH₂Cl₂, 0 °C to rt.

3. Screening of Reaction Conditions

 Table S1. Screening of Reaction Conditions^a

Entry	Pd(II)	Oxidant	Additive (equiv)	Solvent	Benzene (mL)	Temp. (°C)	Yield (%) ^b (2a / 3a / 1a)
1	$Pd(OAc)_2$	AgOAc	-	-	1.5	80	44 / 38 / trace
2	$Pd(OAc)_2$	AgOAc	-	-	1.5	100	59 /27 / trace
3	$Pd(OAc)_2$	AgOAc	-	-	1.5	120	62 / 25 / 0
4	PdCl ₂	AgOAc	-	-	1.5	120	69 / 11 / 5
5	PdCl ₂ (MeCN) ₂	AgOAc	-	-	1.5	120	54 / 16 / 12
6	Pd(OCOCF ₃) ₂	AgOAc	-	-	1.5	120	36 / 40 / 15
7	PdCl ₂	AgCO ₃	-	-	1.5	120	0 / 8 / 86
8	PdCl ₂	Cu(OAc) ₂	-	-	1.5	120	21 / 27 / 47
9	PdCl ₂	<i>p</i> -BQ	-	-	1.5	120	0 / 0 / 94
10	PdCl ₂	Ag ₂ O	-	-	1.5	120	0 / trace / 94
11 ^c	PdCl ₂	IOAc	-	-	1.5	120	0 / 0 / 53

12	PdCl ₂	$K_2S_2O_8$	-	_	1.5	120	0 / trace / 90
13	$Pd(OAc)_2$	AgCO ₃	-	-	1.5	120	46 / 39 / 7
14	$Pd(OAc)_2$	$Cu(OAc)_2$	-	-	1.5	120	6 / 42 / 44
15	$Pd(OAc)_2$	p-BQ	-	-	1.5	120	0 / 26 / 68
16	$Pd(OAc)_2$	Ag ₂ O	-	-	1.5	120	trace / 93 / 0
17^d	$Pd(OAc)_2$	IOAc	-	-	1.5	120	0 / trace / 56
18	$Pd(OAc)_2$	$K_2S_2O_8$	-	-	1.5	120	trace / 25 / 65
19	PdCl ₂	AgOAc	K_2CO_3 (1)	-	1.5	120	0 / 82 / 5
20	PdCl ₂	AgOAc	Cs_2CO_3 (1)	-	1.5	120	0 / 84 / 9
21	PdCl ₂	AgOAc	KOAc (2)	-	1.5	120	0 / 35 / 53
22	PdCl ₂	AgOAc	p-TsOH (1)	-	1.5	120	31 / 27 / 32
23	PdCl ₂	AgOAc	АсОН (1)	-	1.5	120	66 / 18 / 6
24	PdCl ₂	AgOAc	TFA (1)	-	1.5	120	38 / 19 / 33
25	PdCl ₂	AgOAc	PivOH (1)	-	1.5	120	77 / 15 / 5
26	PdCl ₂	AgOAc	PivOH (2)	-	1.5	120	79 / 13 / 6
27	PdCl ₂	AgOAc	PivOH (4)	-	1.5	120	71 / 16 / 5
28	PdCl ₂	AgOAc	DMSO (5%, v/v)	-	1.5	120	25 / 58 / 8
29	PdCl ₂	AgOAc	DMSO (10%, v/v)	-	1.5	120	33 / 62 / trace
30	Pd(OAc) ₂	AgOAc	DMSO (5%, v/v)	-	1.5	120	21 / 60 / 10
31	Pd(OAc) ₂	AgOAc	DMSO (10%, v/v)	-	1.5	120	22 / 62 / 0
32	PdCl ₂	AgOAc	DMSO (10%, v/v)	-	1.5	100	29 / 55 / 8
33	Pd(OAc) ₂	AgOAc	DMSO (10%, v/v)	-	1.5	100	42 / 50 / 0
34	PdCl ₂	AgOAc	-	AcOH (1 ml)	0.5	120	15 / 27 / 43
35	PdCl ₂	AgOAc	-	EtCOOH (1 ml)	0.5	120	23 / 45 / 21
36	PdCl ₂	AgOAc	-	PivOH (1 g)	0.5	120	33 / 51 / 8
37	PdCl ₂	AgOAc	-	-	1	120	51 / 28 / 7
38	PdCl ₂	AgOAc	-	PivOH (0.5 g)	1	120	45 / 47 / 0

39	PdCl ₂	AgOAc	-	PivOH (0.25 g)	1	120	57 / 35 / 0
40	PdCl ₂	AgOAc	PivOH (4)	-	1	120	51 / 36 / 0
41	PdCl ₂	AgOAc	PivOH (2)	-	1	120	65 / 28 / trace
42	PdCl ₂	AgOAc	PivOH (1)	-	1	120	63 / 26 / trace
43	PdCl ₂	AgOAc	PivOH (2)	-	2	120	76 / 13 /trace
44	PdCl ₂	AgOAc	PivOH (2)	-	1.5	140	43 / 37 / 6
45	PdCl ₂	AgOAc	PivOH (2)	-	2	140	42 / 41 / 6
46	Pd(OAc) ₂	AgOAc	PivOH (2)	-	1.5	120	76 / 16 / 0

^{*a*} Reaction conditions: methyl 2-phenylthiazole-4-carboxylate **1a** (0.5 mmol), Pd(II) catalyst (0.05 mmol), oxidant (1 mmol), additive and/or solvent in benzene for 12 h. ^{*b*} Isolated yield. ^{*c*} Afford 45 % of 5-iodination product. ^{*d*} Afford 39 % of 5-iodination product.

4. Direct Arylation of Azole-4-carboxylates (1) with Benzene through Double C-H cleavage

4.1 General Procedure for the Direct Arylation of Azole-4-carboxylates 1 with Benzene

A reaction tube was charged with azole-4-carboxylate (0.5 mmol, 1 equiv.), Pd(II)-catalyst (0.05 mmol, 0.1 equiv.), AgOAc (1 mmol, 2 equiv.), PivOH (1 mmol, 2 equiv.) or DMSO (0.15 ml, 10%, v/v), and benzene (1.5 mL). The reaction mixture was vigorously stirred at 120°C (oil temperature). After stirring for 12 hours, the mixture was cooled to room temperature, diluted with ethyl acetate and filtered. The filtrate was washed with saturated NaHCO₃, water and brine, dried over Na₂SO₄, and concentrated *in vacuo* to give dark residue, which was purified by flash chromatography on silica gel to afford the arylated products **2** as summarized in *Table S2*.

Table S2. Scope of Azole-4-carboxylates in the Direct Arylation^{*a*}

2	MeO S CO ₂ Me 1b	MeO-CO2Me 2b	PdCl ₂ Pd(OAc) ₂	56/6 68/0
3	Me - S H N CO ₂ Me 1c	Me N CO ₂ Me 2c	PdCl ₂ Pd(OAc) ₂	48/26 69/trace
4	$F \xrightarrow{S} \stackrel{H}{\underset{CO_2Me}{}} H$	F-CO ₂ Me	PdCl ₂ Pd(OAc) ₂	81/0 81/0
5	CI-CO ₂ Me 1e		PdCl ₂ Pd(OAc) ₂	78/0 82/0
6	CI S CO_2Me CO_2Me	CI 2f	Pd(OAc) ₂	83/0
7			Pd(OAc) ₂	79/0
8	Br - S + H N CO ₂ Me 1h	Br	Pd(OAc) ₂	^c 64/0 ^d 37/0
9	F ₃ C-CO ₂ Me 1i	F ₃ C-C ₂ Me	PdCl ₂ Pd(OAc) ₂	83/0 84/0
10	N CO ₂ Me	S N CO ₂ Me	PdCl ₂ Pd(OAc) ₂	72/trace 75/trace
11	N CO ₂ Me	N CO ₂ Me	PdCl ₂ Pd(OAc) ₂	73/19 77/trace
12			PdCl ₂ Pd(OAc) ₂	76/12 81/0

13	MeO-C-PH CO ₂ Me	MeO-CO ₂ Me 2m	PdCl ₂ Pd(OAc) ₂	79/0 81/0
14	$F_3C \xrightarrow{O} \stackrel{H}{\underset{CO_2Me}{}}$	F ₃ C-CO ₂ Me	PdCl ₂ Pd(OAc) ₂	82/4 84/0
15			PdCl ₂ Pd(OAc) ₂	74/13 78/0
16	CI N LCO ₂ Me	Cl V Cl V CO ₂ Me 2p	PdCl ₂ Pd(OAc) ₂	77/8 81/0
17	$ \begin{array}{c} $		Pd(OAc) ₂	78/0

^{*a*} Reaction conditions: methyl azole-4-carboxylates **1** (0.5 mmol), Pd(II) catalyst (0.05 mmol), AgOAc (1 mmol), PivOH (1 mmol) in benzene (1.5 mL) at 120 °C for 12 h. ^{*b*} Isolated yield. ^{*c*} DMSO (0.15 ml) was used as the additive instead of PivOH at 100°C. ^{*d*} DMSO (0.15 mL) was used as the additive instead of PivOH at 120°C.

4.2 Characterization of the Arylated Products (2a-2q)

Methyl 2,5-Diphenylthiazole-4-carboxylate (2a)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 3.78 (s, 3H), 7.35-7.38 (m, 6H), 7.45-7.48 (m, 2H), 7.89-7.92 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.3, 160.8, 144.5, 139.0, 130.9, 128.8, 128.4, 128.0, 127.4, 127.2, 126.4, 124.9, 50.4 ppm; IR (KBr): 2950, 1720, 1468, 1336, 1329, 1211, 1014, 762, 748, 686 cm⁻¹;

HRMS (ESI) calcd for $[C_{17}H_{13}NO_2S+Na]^+$ 318.0565, found 318.0572.

Methyl 2-(p-Methoxylphenyl)-5-phenylthiazole-4-carboxylate (2b)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 3.85 (s, 3H), 3.87 (s, 3H), 6.96 (d, *J* = 8.6 Hz, 2H), 7.42-7.44 (m, 3H), 7.53-7.55 (m, 2H), 7.92 (d, *J* = 8.6 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 162.7, 161.7, 130.4, 129.9, 129.1, 128.5, 128.3, 128.2, 126.5, 125.6, 114.3, 55.4, 52.2 ppm; IR (KBr)

2932, 1724, 1609, 1469, 1249, 1211, 1174, 1038, 830, 796, 751, 692 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{15}NO_3S+Na]^+$ 348.0670, found 318.0678.

Methyl 2-(*p*-Methylphenyl)-5-phenylthiazole-4-carboxylate (2c)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.41 (s, 3H), 3.86 (s, 3H), 7.26 (d, J = 8.1 Hz, 2H), 7.43-7.45 (m, 3H), 7.53-7.56 (m, 2H), 7.88 (d, J = 8.1 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 162.7, 146.0, 141.1, 140.7, 130.4,

130.1, 129.9, 129.7, 129.2, 128.2, 126.7, 52.2, 21.5 ppm; IR (KBr) 2944, 2914, 1718, 1602, 1471, 1329, 1202, 1014, 970, 818, 755, 695 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{15}NO_2S+Na]^+$ 332.0721, found 332.0729.

Methyl 2-(p-Fluorophenyl)-5-phenylthiazole-4-carboxylate (2d)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 3.86 (s, 3H), 7.12-7.18 (m, 2H), 7.43-7.46 (m, 3H), 7.53-7.56 (m, 2H), 7.95-8.00 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 164.9, 162.6, 146.4, 140.8, 130.1, 129.9, 129.3, 129.1, 128.8, 128.7, 128.3, 116.3, 116.0, 52.3 ppm; IR (KBr) 3056, 2943, 1729, 1601,

1468, 1347, 1170, 1158, 1010, 844, 760, 700 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{12}FNO_2S+Na]^+$ 336.0470, found 336.0479.

Methyl 2-(p-Chlorophenyl)-5-phenylthiazole-4-carboxylate (2e)

White solid, m.p. 111-112 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.86 (s, 3H), 7.42-7.46 (m, 5H), 7.53-7.56 (m, 2H), 7.93 (d, J = 8.6 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.7, 162.5, 146.6, 141.0, 136.7, 131.2, 130.1, 129.9, 129.4, 129.3, 128.3, 127.9, 52.3 ppm; IR (KBr) 2944, 1724, 1466, 1345, 1201, 1171, 1087, 1014,

967, 843, 761, 698 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{12}CINO_2S+Na]^+$ 352.0175, found 352.0182.

Methyl 2-(m-Chlorophenyl)-5-phenylthiazole-4-carboxylate (2f)

White solid, m.p. 121-122 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.87 (s, 3H), 7.39-7.46 (m, 5H), 7.53-7.56 (m, 2H), 7.82-7.85 (m, 1H), 8.01 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.3, 162.5, 146.9, 141.0, 135.2, 134.3, 130.6, 130.3, 130.0, 129.9, 129.4, 128.3, 126.6, 124.9, 52.3 ppm; IR (KBr) 3056, 2944, 1727,

1567, 1452, 1333, 1248, 1197, 1168, 1021, 993, 882, 784, 759, 746, 696, 677 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{12}CINO_2S+Na]^+$ 352.0175, found 352.0184.

Methyl 2-(o-Chlorophenyl)-5-phenylthiazole-4-carboxylate (2g)

White solid, m.p. 136-138 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.87 (s, 3H), 7.38-7.52 (m, 6H), 7.56-7.59 (m, 2H), 8.30-8.32 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.7, 161.5, 147.7, 139.6, 132.1, 131.3, 131.1, 130.9, 130.5, 130.1, 130.0, 129.3, 128.3, 127.2, 52.2 ppm; IR (KBr) 2944, 1721, 1481, 1434,

1338, 1208, 1066, 1017, 761, 750, 688 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{12}CINO_2S+Na]^+$ 352.0175, found 352.0184.

Methyl 2-(p-Bromophenyl)-5-phenylthiazole-4-carboxylate (2h)

White solid, m.p. 120-122 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.78 (s, 3H), 7.36-7.38 (m, 3H), 7.45-7.48 (m, 2H), 7.52 (d, *J* = 8.3 Hz, 2H), 7.78 (d, *J* = 8.3 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.8, 162.5, 146.6, 141.0, 132.2, 131.6, 130.1, 129.9, 129.4, 128.3, 128.1, 125.1, 52.3 ppm; IR (KBr) 2944,

1723, 1466, 1346, 1200, 1171, 1066, 1013, 966, 843, 761, 697 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{12}BrNO_2S+Na]^+$ 395.9670, found 395.9671.

Methyl 2-(p-Trifluoromethylphenyl)-5-phenylthiazole-4-carboxylate (2i)

White solid, m.p. 126-127.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.79 (s, 3H), 7.37-7.39 (m, 3H), 7.46-7.49 (m, 2H), 7.64 (d, J = 8.2 Hz, 2H), 8.02 (d, J =

8.2 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.1, 162.5, 147.3, 141.3, 135.8, 132.4, 132.0, 129.9, 129.5, 128.3, 127.0, 126.1, 126.0, 125.6, 122.0, 52.3 ppm; IR (KBr) 2950, 1725, 1470, 1322, 1203, 1172, 1065, 860, 762, 705, 698 cm⁻¹; HRMS (ESI) calcd for [C₁₈H₁₂F₃NO₂S+Na]⁺ 386.0439, found 386.0448.

Methyl 2-Phenylethyl-5-phenylthiazole-4-carboxylate (2j)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 3.07 (t, *J* = 8.5 Hz, 2H), 3.29 (t, *J* = 8.5 Hz, 2H), 3.77 (s, 3H), 7.16-7.26 (m, 5H), 7.34-7.39 (m, 5H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.5, 162.5, 146.6, 39.9, 138.3, 130.4, 129.9, 129.1, 128.6, 128.5, 128.2, 126.6, 52.2, 35.9, 35.2 ppm; IR (KBr) 3027, 2950, 1720,

1475, 1327, 1070, 1006, 754, 695 cm⁻¹; HRMS (ESI) calcd for $[C_{19}H_{17}NO_2S+Na]^+$ 346.0878, found 346.0884.

Methyl 2-Benzoyl-5-phenylthiazole-4-carboxylate (2k)

White solid, m.p. 105-106 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.79 (s, 3H), 7.39-7.41 (m, 3H), 7.45-7.50 (m, 4H), 7.59 (t, *J* = 7.4 Hz, 1H), 8.48 (d, *J* = 7.4 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 183.5, 165.2, 162.3, 152.6, 134.5, 134.0, 131.3, 130.0, 129.9, 129.6, 128.9, 128.6, 128.4, 52.4 ppm; IR (KBr) 3056, 2956,

1729, 1639, 1459, 1297, 1202, 1173, 901, 754, 713, 697 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{13}NO_3S+Na]^+$ 346.0514, found 346.0521.

Methyl 2,5-Diphenyloxazole-4-carboxylate (2l)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 3.91 (s, 3H), 7.42-7.46 (m, 6H), 8.06-8.10 (m, 4H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.7, 159.8, 155.3, 131.1, 130.3, 128.8, 128.4, 128.0, 127.0, 126.8, 126.3, 52.3 ppm; IR (KBr) 2923, 1713, 1563, 1492, 1358, 1227, 1099, 775, 708, 686 cm⁻¹; HRMS (ESI) calcd for

 $[C_{17}H_{13}NO_3+Na]^+$ 302.0793, found 302.0801.

Methyl 2-(*p*-Methoxylphenyl)-5-phenyloxazole-4-carboxylate (2m)

White solid, m.p. 114-115 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.81 (s, 3H), 3.90 (s, 3H), 6.92 (d, J = 8.9 Hz, 2H), 7.39-7.45 (m, 3H), 8.00-8.08 (m, 4H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.8, 162.0, 159.9, 154.8, 130.2, 128.6, 128.4, 128.3, 127.8, 127.2, 119.0, 114.3, 55.4, 55.3 ppm; IR (KBr) 2923,

1724, 1615, 1506, 1356, 1257, 1214, 1105, 1023, 831, 762, 737, 682 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{15}NO_4+Na]^+$ 332.0899, found 302.0905.

Methyl 2-(p-Trifluoromethylphenyl)-5-phenyloxazole-4-carboxylate (2n)

White solid, m.p. 111-112 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.90 (s, 3H), 7.42-7.45 (m, 3H), 7.67 (d, *J* = 8.2 Hz, 2H), 8.04-8.07 (m, 2H), 8.19 (d, *J* = 8.2 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.3, 158.2, 155.9, 132.8, 132.4, 130.6, 129.4, 128.5, 128.2, 127.0, 126.6, 125.9, 125.8, 125.5, 121.9,

52.4 ppm; IR (KBr) 2920, 1723, 1492, 1326, 1221, 1063, 1012, 853, 769, 708 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{12}F_3NO_3+Na]^+$ 370.0667, found 370.0673.

Methyl 2-(*p*-Chlorophenyl)-5-phenyloxazole-4-carboxylate (20)

White solid, m.p. 123-124 °C; ¹H NMR (300 MHz, CDCl₃) & 3.90 (s, 3H),

N CO ₂ Me

7.38-7.45 (m, 5H), 8.00-8.06 (m, 4H) ppm; 13 C NMR (75 MHz, CDCl₃) δ 162.5, 158.8, 155.4, 137.3, 130.5, 129.2, 128.5, 128.4, 128.1, 126.8, 124.8, 52.4 ppm; IR (KBr) 2920, 1724, 1607, 1491, 1405, 1221, 1088, 1010, 835, 814, 759, 730, 683 cm⁻¹; HRMS (ESI) calcd for [C₁₇H₁₂ClNO₃+Na]⁺ 336.0403, found 336.0409.

Methyl 2-(*m*-Chlorophenyl)-5-phenyloxazole-4-carboxylate (2p)

White solid, m.p. 106-108 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.92 (s, 3H), 7.36-7.47 (m, 5H), 7.97 (d, J = 7.2 Hz, 1H), 8.05-8.09 (m, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 162.4, 158.3, 155.6, 135.0, 131.1, 130.5, 130.1, 128.5, 128.4, 128.1, 128.1, 127.9, 126.7, 124.8, 52.4 ppm; IR (KBr) 3080, 2950, 2920,

1720, 1561, 1494, 1228, 1111, 879, 819, 722, 689 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{12}CINO_3+Na]^+$ 336.0403, found 336.0411.

Methyl 2-(o-Chlorophenyl)-5-phenyloxazole-4-carboxylate (2q)

White solid, m.p. 104-105 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.92 (s, 3H), 7.13-7.24 (m, 2H), 7.42-7.46 (m, 4H), 8.07-8.13 (m, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.6, 162.0, 158.6, 132.8, 132.7, 130.5, 130.0, 128.5, 128.4, 126.8, 124.4, 124.3, 117.0, 116.8, 52.4 ppm; IR (KBr) 2923, 1718, 1495, 1442,

1240, 1220, 1098, 1014, 812, 766, 737, 683 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{12}CINO_3+Na]^+$ 336.0403, found 336.0409.

5. Arylation of Azole-4-carboxylates 1a/1i/1l/1n with Other Arenes

5.1 General Procedure for the Arylation of Azole-4-carboxylates 1a/1i/1l/1n with Other Arenes

A reaction tube was charged with azole-4-carboxylate (0.5 mmol, 1 equiv.), Pd(II)-catalyst (0.05 mmol, 0.1 equiv.), AgOAc (1 mmol, 2 equiv.), PivOH (1 mmol, 2 equiv.) or DMSO (0.15 mL, 10%, v/v), and arene (1.5 mL). The reaction mixture was vigorously stirred at 120 °C (oil temperature). After stirring for 12 hours, the mixture was cooled to room temperature, diluted with ethyl acetate and filtered. The filtrate was washed with saturated NaHCO₃, water and brine, dried over Na₂SO₄, and concentrated *in vacuo* to give dark residue, which was purified by flash chromatography on silica gel to afford the arylated products **4** as summarized in *Table S3*. Isomers of **4a** and **4b** were isolated via HPLC.

 Table S3. Scope of Arenes in the Direct Arylation^a

2	H	4b-I / 4b-II	PivOH	77/0 $(1,3/1,4 = 1:1.4^{c})$
3	H	Me Me V CO ₂ Me 4c	PivOH	56/ trace
4	H	F ₃ C K CO ₂ Me 4d	PivOH	73/0
5		CI S CO ₂ Me 4e	PivOH	56/0
6		F ₃ C-CI NCO ₂ Me 4f	PivOH	68/0
7		CI CI CO ₂ Me 4g-I / 4g-II	PivOH	78/0 (1,2,3/1,2,4=1:4.8 ^c)
8	CIH CI	$F_3C \longrightarrow V$	PivOH	72/7
9	Н	S CO ₂ Me 4i	PivOH DMSO ^d DMSO ^e	39/0 56/0 61/0
10		F ₃ C-Cl F ₃ C-Cl N-CO ₂ Me 4j-l / 4j-l	PivOH	63/0 (1,2,4/1,3,5=1:2.1 ^c)
11	H	Me S Me Me Me Me Me Me Me Me Me Me	PivOH DMSO ^d DMSO ^e	9/trace 37/0 60/0
12	Н	Me Me Me Me Me Me Me 4l	PivOH DMSO ^d DMSO ^e	21/0 44/0 51/0

^{*a*} Reaction conditions: methyl azole-4-carboxylates **1** (0.5 mmol), Pd(OAc)₂ (0.05 mmol), AgOAc (1 mmol), and PivOH (1 mmol) or DMSO (0.15 mL) in arene (1.5 ml) at 120 °C for 12 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC. ^{*d*} Conducted at 120 °C. ^{*e*} Conducted at 100 °C.

5.2 Characterization of the Arylated Products (4a-4o) Methyl 2-Phenyl-5-(4-methylphenyl)thiazole-4-carboxylate (4a-I)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.42 (s, 3H), 3.87 (s, 3H), 7.25 (d, J = 6.3 Hz, 2H), 7.44-7.46 (m, 5H), 7.96-7.99 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.8, 161.8, 145.8, 138.5, 131.8, 129.6, 128.8, 128.2, 128.0, 127.9, 126.3, 125.8, 51.3, 20.4 ppm; IR (KBr) 3015, 2950, 1728, 1466, 1203, 140.0000

1010, 763, 690 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{15}NO_2S + H]^+$ 310.0902, found 310.0900.

Methyl 2-Phenyl-5-(3-methylphenyl)thiazole-4-carboxylate (4a-II)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.42 (s, 3H), 3.87 (s, 3H), 7.30-7.35 (m, 4H), 7.45-7.47 (m, 3H), 7.97-8.00 (m, 2H) ppm; *J* = 2.0 Hz, 1H), 7.65 (d, *J* = 8.2 Hz, 2H), 8.01 (d, *J* = 8.2 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.0, 161.7, 145.6, 139.8, 137.0, 131.8, 129.6, 129.5, 129.2, 129.1, 125.8, 51.3, 20.4 ppm; IR (KBr) 3038, 2962, 1727, 1465, 1202, 1168, 763, 689

128.0, 127.2, 126.0, 125.8, 51.3, 20.4 ppm; IR (KBr) 3038, 2962, 1727, 1465, 1202, 1168, 763, 689 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{15}NO_2S + H]^+$ 310.0902, found 310.0899.

Methyl 2-Phenyl-5-(4-methylphenyl)oxazole-4-carboxylate (4b-I)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.44 (s, 3H), 3.98 (s, 3H), 7.32 (d, J = 8.2 Hz, 2H), 7.49-7.51 (m, 3H), 8.05 (d, J = 8.2 Hz, 2H), 8.14-8.17 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 158.5, 156.0, 154.7, 139.8, 130.0, 128.2, 127.8, 127.4, 125.8, 125.5, 123.2, 51.3, 20.6 ppm; IR (KBr) 3074, 2950, 2914, 12211, 1226, 734, 710, 620, τ^{11} UDM (6, (TCH)), τ^{11}

1720, 1561, 1449, 1221, 1096, 784, 710, 689 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{15}NO_3+H]^+$ 294.1130, found 294.1128.

Methyl 2-Phenyl-5-(3-methylphenyl)oxazole-4-carboxylate (4b-II)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.46 (s, 3H), 3.98 (s, 3H), 7.30 (d, J = 7.5 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.49-7.51 (m, 3H), 7.94 (s, 1H), 7.95 (d, J = 7.5 Hz, 1H), 8.15-8.18 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 161.7, 158.8, 154.5, 143.7, 137.2, 130.2, 130.1, 127.9, 127.8, 127.4, 126.9,

125.9, 125.4, 124.7, 51.4, 20.5 ppm; IR (KBr) 3068, 2956, 1714, 1564, 1443, 1225, 1104, 792, 701, 695 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{15}NO_3+H]^+$ 294.1130, found 294.1127.

Methyl 2-Phenyl-5-(3,4-dimethylphenyl)thiazole-4-carboxylate (4c)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.24 (s, 6H), 3.80 (s, 3H), 7.13 (d, J = 7.9 Hz, 1H), 7.23 (d, J = 7.9 Hz, 1H), 7.24 (s, 1H), 7.37-7.39 (m, 3H), 7.89-7.92 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 162.8, 138.1, 136.6, 132.9, 130.9, 130.5, 129.9, 129.6, 129.0, 128.3, 127.6, 127.4, 126.8,

52.2, 19.8, 19.7 ppm; IR (KBr): 2920, 1723, 1473, 1338, 1216, 1039, 969, 818, 777, 757, 682 cm⁻¹; HRMS (ESI) calcd for $[C_{19}H_{17}NO_2S+Na]^+$ 346.0878, found 346.0887.

Methyl 2-(p-Trifluoromethylphenyl)-5-(3,4-dimethylphenyl)thiazole-4-carboxylate (4d)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.22 (s, 6H), 3.79 (s, 3H), 7.11 (d, *J* = 7.9 Hz, 1H), 7.17 (d, *J* = 7.9 Hz, 1H), 7.22 (s, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.99 (d, *J* = 8.3 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 163.6, 162.6, 147.8, 140.9, 138.5, 136.7, 135.9, 132.3, 131.9, 130.9, 129.9,

129.6, 128.3, 127.3, 127.2, 126.9, 126.1, 126.0, 125.9, 125.6, 122.0, 52.3, 19.7, 19.6 ppm; IR (KBr) 2920, 1725, 1616, 1467, 1322, 1205, 1111, 1068, 839, 781 cm⁻¹; HRMS (ESI) calcd for $[C_{20}H_{16}F_{3}NO_{2}S+Na]^{+}$ 414.0752, found 414.0753.

Methyl 2-Phenyl-5-(3,4-dichlorophenyl)thiazole-4-carboxylate (4e)

White solid, m.p. 144-146 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.89 (s, 3H), 7.40 (dd, J = 8.3, 2.0 Hz, 1H), 7.47-7.49 (m, 3H), 7.52 (d, J = 8.3 Hz, 1H), 7.66 (d, J = 2.0 Hz, 1H), 7.96-7.99 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 162.3, 143.3, 141.5, 138.4, 133.7, 132.5, 132.4, 131.7, 131.0, 130.2, 129.3,

129.1, 126.8, 52.4 ppm; IR (KBr) 2922, 1719, 1467, 1384, 1337, 1221, 1033, 820, 760, 684 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{11}Cl_2NO_2S+Na]^+$ 385.9785, found 385.9790.

Methyl 2-(p-Trifluoromethylphenyl)-5-(3,4-dichlorophenyl)thiazole-4-carboxylate (4f)

White solid, m.p. 137-139 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.81 (s, 3H), 7.32 (dd, J = 8.3, 2.0 Hz, 1H), 7.44 (d, J = 8.3 Hz, 1H), 7.58 (d, J = 2.0 Hz, 1H), 7.65 (d, J = 8.2 Hz, 2H), 8.01 (d, J = 8.2 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.8, 162.1, 144.2, 141.9, 135.5, 134.0, 132.8, 132.7,

131.7, 130.4, 129.7, 129.3, 127.1, 126.2, 126.1, 125.5, 121.9, 52.6 ppm; IR (KBr) 2956, 1722, 1614, 1466, 1324, 1212, 1106, 1068, 1025, 841 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{10}Cl_2F_3NO_2S+Na]^+$ 453.9659, found 453.9665.

Methyl 2-Phenyl-5-(3,4-dichlorophenyl)oxazole-4-carboxylate (4g-I)

White solid, m.p. 150-152 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.01 (s, 3H), 7.49-7.53 (m, 3H), 7.58 (d, J = 8.5 Hz, 1H), 8.09 (dd, J = 8.5, 2.0 Hz, 1H), 8.14-8.17 (m, 2H), 8.33 (d, J = 2.0 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.4, 160.1, 152.6, 134.5, 132.9, 131.4, 130.5, 129.9, 128.9, 127.4, 127.2,

126.9, 126.8, 125.9, 52.6 ppm; IR (KBr) 2920, 1714, 1564, 1471, 1349, 1224, 1108, 1031, 789, 710, 685 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{11}Cl_2NO_3+Na]^+$ 370.0014, found 370.0014.

Methyl 2-Phenyl-5-(2,3-dichlorophenyl)oxazole-4-carboxylate (4g-II)

White solid, m.p. 136-138 °C; ¹H NMR (300 MHz, CDCl₃) & 3.88 (s, 3H), 7.35 (t, J = 8.0 Hz, 1H), 7.47-7.53 (m, 4H), 7.64 (dd, J = 8.0, 1.6 Hz, 1H), 8.13-8.16 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 161.8, 161.4, 152.0, 134.0, 132.9, 132.4, 131.4, 130.9, 130.6, 129.0, 128.9, 127.1, 127.0, 126.2, 52.3 ppm; IR (KBr) 2923, 1721, 1456, 1366, 1259, 1234, 1101, 784, 713, 684 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{11}Cl_2NO_3+Na]^+$ 370.0014, found 370.0016.

Methyl 2-(p-Trifluoromethylphenyl)-5-(3,4-dichlorophenyl)oxazole-4-carboxylate (4h)

White solid, m.p. 169-170 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.93 (s, 3H), 7.51 (d, J = 8.5 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 8.00 (dd, J = 8.5, 2.0 Hz, 1H), 8.19 (d, J = 8.3 Hz, 2H), 8.24 (d, J = 2.0 Hz, 1H) ppm; ¹³C NMR (75) CO₂Me MHz, CDCl₃) & 162.1, 158.6, 153.3, 134.9, 133.2, 133.0, 132.8, 130.6, 130.0, 129.2, 129.0, 127.5, 127.2, 126.4, 126.0, 125.9, 125.4, 121.8, 52.7 ppm; IR (KBr) 2920, 1715, 1567, 1475, 1322, 1225, 1113, 848, 786, 709 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{10}Cl_{2}F_{3}NO_{3}+H]^{+}$ 416.0063, found 416.0057.

Methyl 2-Phenyl-5-(3,5-dimethylphenyl)thiazole-4-carboxylate (4i)

346.0883.

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.37 (s, 6H), 3.87 (s, 3H), 7.07 (s, 1H), 7.15 (s, 2H), 7.44-7.46 (m, 3H), 7.96-7.99 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 162.8, 146.7, 137.8, 132.8, 131.0, 130.5, 130.0, 129.0, 127.6, 126.8, 126.3, 52.2, 21.3 ppm; IR (KBr) 2926, 1731, 1464, 1381, 1275, 1260, 1207, 1166, 764, 750, 689 cm⁻¹; HRMS (ESI) calcd for [C₁₉H₁₇NO₂S+Na]⁺ 346.0878, found

Methyl 2-(p-Trifluoromethylphenyl)-5-(3,5-dichlorophenyl)oxazole-4-carboxylate (4j-I)

White solid, m.p. 137-138 °C; ¹H NMR (300 MHz, CDCl₃) & 3.95 (s, 3H), 7.41 (t, J = 1.8 Hz, 1H), 7.70 (d, J = 8.3 Hz, 2H), 8.05 (d, J = 1.8 Hz, 2H), 8.21 (d, J = 8.3 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 161.95, 158.9, 152.7, 135.4, 133.3, 132.9, 130.3, 129.7, 129.2, 128.9, 127.2, 126.5, 126.0,

125.9, 125.4, 121.8, 52.7 ppm; IR (KBr) 3091, 2956, 1715, 1552, 1329, 1226, 1112, 1066, 804, 711, 662 cm^{-1} ; HRMS (ESI) calcd for $[C_{18}H_{10}Cl_2F_3NO_3+H]^+$ 416.0063, found 416.0063.

Methyl 2-(p-Trifluoromethylphenyl)-5-(2,4-dichlorophenyl)oxazole-4-carboxylate (4i-II)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 3.90 (s, 3H), 7.41 (dd, J = 8.4, 1.9 Hz, 1H), 7.56-7.59 (m, 2H), 7.75 (d, *J* = 8.3 Hz, 2H), 8.26 (d, *J* = 8.3 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 160.5, 159.0, 151.2, 136.5, 134.2, 132.2, 132.1, 131.8, 130.3, 129.1, 128.4, 126.2, 126.1, 125.0, 124.9, 124.5,

124.0, 120.9, 51.4 ppm; IR (KBr) 2920, 1720, 1622, 1470, 1322, 1169, 1117, 1070, 853, 800 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{10}Cl_2F_3NO_3+H]^+$ 416.0063, found 416.0065.

Methyl 2-Phenyl-5-(2,5-dimethylphenyl)thiazole-4-carboxylate (4k)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.19 (s, 3H), 2.35 (s, 3H), 3.81 (s, 3H), 7.10-7.18 (m, 3H), 7.45-7.48 (m, 3H), 7.98-8.01 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 162.2, 135.0, 134.2, 132.8, 130.6, 130.1, 130.0, 129.8, 129.0, 126.8, 52.2, 20.9, 19.6 ppm; IR (KBr) 2950, 2914, 1728, 1468, 1330, 1291, 1236, 1206, 1036, 972, 774, 731, 690 cm⁻¹; HRMS Calcd for [C₁₉H₁₇NO₂S+H]⁺

324.1058, found 324.1062.

Methyl 2-Phenyl-5-(2,5-dimethylphenyl)oxazole-4-carboxylate (4l)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.23 (s, 3H), 2.31 (s, 3H), 3.81 (s, 3H), 7.15 (s, 2H), 7.19 (s, 1H), 7.39-7.42 (m, 3H), 8.05-8.07 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.2, 160.6, 156.1, 135.0, 134.9, 131.3, 131.2, 130.4, 129.5, 128.8, 126.8, 126.7, 126.6, 52.1, 20.9, 19.7 ppm; IR (KBr) 2926,

1720, 1602, 1494, 1437, 1353, 1221, 1096, 1034, 814, 711, 686 cm⁻¹; HRMS (ESI) calcd for $[C_{19}H_{17}NO_3+Na]^+$ 330.1106, found 330.1114.

Methyl 2-Phenyl-5-(3-nitrophenyl)thiazole-4-carboxylate (4m)

White solid, m.p. 186-188 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.89 (s, 3H), 7.48-7.50 (m, 3H), 7.64 (t, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.98-8.01 (m, 2H), 8.31 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.43 (d, J = 1.7 HZ, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 167.2, 162.2, 148.0, 141.8, 136.0, 132.3, 131.1,

129.2, 129.1, 127.2, 126.9, 125.0, 124.0, 52.5 ppm; IR (KBr): 2922, 1716, 1531, 1467, 1354, 1218, 1031, 763, 742, 686 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{12}N_2O_4S+Na]^+$ 363.0415, found 363.0418.

Methyl 2-Phenyl-5-(3-nitrophenyl)oxazole-4-carboxylate (4n)

Light yellow solid, m.p. 155-157 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.03 (s, 3H), 7.53-7.55 (m, 3H), 7.71 (t, *J* = 8.2 Hz, 1H), 8.18-8.21 (m, 2H), 8.33 (dd, *J* = 8.2, 1.8 Hz, 1H), 8.74 (d, *J* = 8.2 Hz, 1H), 9.09 (d, *J*= 1.8 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.4, 160.6, 152.4, 148.4, 133.9, 131.6, 129.6,

129.0, 128.5, 127.0, 125.8, 124.6, 123.2, 52.7 ppm; IR (KBr) 2922, 1720, 1531, 1348, 1236, 1115, 817, 741, 710 cm⁻¹; HRMS (ESI) calcd for $[C_{17}H_{12}N_2O_5+Na]^+$ 347.0644, found 347.0648.

Methyl 2-(p-Trifluoromethylphenyl)-5-(3-nitrophenyl)oxazole-4-carboxylate (40)

Light yellow solid, m.p. 138-139 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.03 (s, 3H), 7.69-7.80 (m, 3H), 8.28-8.36 (m, 3H), 8.56 (d, J = 7.9 Hz, 1H), 9.06 (d, J = 1.7 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 158.1, 152.0, 147.4, 133.0, 132.4, 131.9, 128.9, 128.7, 128.2, 128.0, 127.2, 126.3,

125.1, 125.0, 124.9, 124.4, 123.9, 122.7, 122.3, 120.8, 51.8 ppm; IR (KBr) 2956, 1725, 1532, 1324, 1229, 1183, 1121, 1065, 852, 740, 710 cm⁻¹; HRMS (ESI) calcd for $[C_{18}H_{11}F_3N_2O_5+Na]^+$ 415.0518, found 415.0518.

6. Mechanism Studies

To gain mechanistic insights of this process, we performed kinetic isotope effect studies (Scheme S3). By comparing the the initial rates of benzene to those of benzene-d₆, the k_H / k_D values (by ¹H NMR) were determined to be 2.39 and 3.01 for thiazole and oxazole, respectively. The k_H / k_D values (by ¹H NMR) of H/D-azoles were determined to be 1.07 and 1.16 for thiazole and oxazole, respectively. The results suggest that the second C-H bond cleavage could be a rate-limiting step of the reaction. Thus, a plausible mechanism for the direct arylation of azoles is set out to be in Scheme 1. This process is initiated by a palladation of azole at C5 to give palladium intermediate **A**. In the presence of unactivated arene, the C5-palladated species **A** inserts slowly into arene, and reductive elimination produced the arylated product, along with Pd(0) which is reoxidized by Ag(I) to complete the catalytic cycle.

Scheme S2. Mechanism Studies.

7. Derivation of the Arylated Products 2i and 2l

Scheme S3. Derivation of the 5-Arylation Products. *Reaction conditions:* (i) LiAlH₄, THF, 0 °C; (ii) 20 % KOH (aq), MeOH, r.t. to 60°C; (iii) BnNH₂, 100°C; (iv) BnOH, KHCO₃, 100 °C; (v) Ag₂CO₃ (20 mol%), AcOH (5 mol%), DMSO, 120 °C.

7.1 Reduction of the Arylated Products

To a mixture of the arylation product **2i** or **2l** (0.2 mmol, 1 equiv.) and THF (2 mL) was added LiAlH₄ (0.5 mmol, 2.5 equiv.) at 0 °C. After stirring for 10 min, the reaction mixture was quenched with 0.2 ml water, diluted with ethyl acetate, washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo* to give crude product, which was purified by flash chromatography on silica gel to afford the reduction derivative **5a** or **5b**.

2-(4-Trifluoromethylphenyl)-5-phenylthiazole-4-methanol (5a)

White solid, m.p. 106.5-107.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.86 (brs, 1H), 4.82 (s, 2H), 7.39-7.53 (m, 5H), 7.70 (d, J = 8.2 Hz, 2H), 8.06 (d, J = 8.2 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.2, 151.8, 136.3, 131.9, 131.5, 130.6, 129.2, 129.0, 128.8, 126.5, 126.0, 125.9, 125.7, 122.1, 58.9 ppm; IR (KBr) 3297, 2926, 1617, 1451, 1324, 1131, 1070, 843, 750, 696 cm⁻¹; HRMS (ESI) calcd for [C₁₇H₁₂F₃NOS+Na]⁺ 358.0489, found 358.0495.

2,5-Diphenyloxazole-4-methanol (5b)

White solid, m.p. 117-118 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.96 (brs, 1H), 4.79 (s, 2H), 7.32 (t, J = 7.2 Hz, 1H), 7.37-7.44 (m, 5H), 7.66 (d, J = 7.2 Hz, 2H), 8.00-8.03 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 147.4, 136.3, 130.5, 128.9, 128.8, 128.6, 128.1, 127.0, 126.4, 126.1, 57.0 ppm; IR (KBr) 3252, 2932,

1593, 1548, 1487, 1445, 1026, 777, 705, 688 cm⁻¹; HRMS (ESI) calcd for $[C_{16}H_{13}NO_2+Na]^+$ 274.0844, found 274.0848.

7.2 Hydrolysis of the Arylated Products

To a mixture of the arylated product 2i or 2l (1 mmol, 1 equiv.) and MeOH (5 ml) was added 20% KOH (aq) (4 mL) at room temperature. After stirring at 60 °C for 3 hours, the reaction mixture was concentrated *in vacuo* to remove MeOH, cooled to 0 °C, adjusted pH value to 2.0 with 3M HCl (aq), and then filtered. The filter cake was washed with water and petrol ether to give crude product, which was purified by recrystallization to afford the hydrolysis derivative **6a** or **6b**.

2-(4-Trifluoromethylphenyl)-5-phenylthiazole-4-carboxylic Acid (6a)

White solid, m.p. 150-151 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.48-7.50 (m, 3H), 7.59-7.62 (m, 2H), 7.92 (d, J = 8.3 Hz, 2H), 8.20 (d, J = 8.3 Hz, 2H), 13.21 (brs, 1H) ppm; ¹³C NMR (75 MHz, DMSO-d₆) δ 163.4, 163.1, 145.6, 143.0, 136.2, 131.1, 130.7, 130.3, 130.1, 129.8, 128.8, 127.4, 126.7, 126.2 ppm; IR (KBr) 3434, 3003, 2826, 1693, 1614, 1474, 1327, 1067, 847, 752, 695 cm⁻¹; HRMS (ESI) calcd for [C₁₇H₁₀F₃NO₂S+H]⁺ 350.0463, found 350.0468.

2,5-Diphenyloxazole-4-carboxylic Acid (6b)

White solid, m.p. 177-181 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.60 (m, 6H), 8.09-8.15 (m, 4H), 13.30 (brs, 1H) ppm; ¹³C NMR (75 MHz, DMSO-d₆) δ 163.5, 159.2, 154.3, 131.6, 130.6, 129.7, 129.2, 128.9, 128.8, 127.3, 126.8, 126.5 ppm; IR (KBr) 3451, 3050, 2909, 1713, 1560, 1492, 1216, 1109, 779, 709, 687 cm⁻¹; HRMS (ESI) calcd for [C₁₆H₁₁NO₃+H]⁺ 266.0817, found 266.0825.

7.3 Ammonolysis of the Arylated Products

A mixture of the aryled product **2i** or **2l** (0.2 mmol, 1 equiv.) and benzylamine (1 mL) was stirred at 100 °C. After stirring for 12 hours, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with 3M HCl (aq), water and brine, dried over Na₂SO₄, and concentrated *in vacuo* to give crude product, which was purified by flash chromatography on silica gel to afford the ammonolysis derivative **7a** or **7b**.

N-Benzyl 2-(4-Trifluoromethylphenyl)-5-phenylthiazole-4-formamide (7a)

White solid, m.p. 169-170 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.56 (d, J = 6.0 Hz, 2H), 7.21-7.31 (m, 5H), 7.35-7.37 (m, 3H), 7.60-7.64 (m, 4H), 7.80 (brs, 1H), 7.95 (d, J = 8.3 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.9, 161.2, 144.7, 142.8, 138.4, 135.8, 132.4, 131.9, 130.4, 129.9, 129.4, 128.7, 128.2, 127.9, 127.5, 126.7, 126.2, 126.1, 126.0, 125.6, 122.0, 43.3 ppm; IR (KBr) 3310, 2909, 1650, 1544, 1328, 1125, 1068, 851, 756, 694 cm⁻¹; HRMS (ESI) calcd for [C₂₄H₁₇F₃N₂OS+H]⁺ 439.1092, found 439.1095.

N-Benzyl 2,5-Diphenyloxazole-4-formamide (7b)

White solid, m.p. 125-127 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.61 (d, J = 6.0 Hz, 2H), 7.18-7.45 (m, 11H), 7.69 (brs, 1H), 7.99-8.03 (m, 2H), 8.34 (dd, J = 7.0, 2.1 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 158.5, 152.4, 138.4, 131.0, 130.3, 129.9, 128.9, 128.7, 128.4, 128.3, 127.9, 127.5, 127.4, 126.6, 126.5, 43.3 ppm; IR (KBr) 3323, 3068, 2926, 1643, 1512, 1232, 1219, 775, 748, 706, 687 cm⁻¹; HRMS (ESI) calcd for [C₂₃H₁₈N₂O₂+H]⁺ 355.1447, found 355.1450.

7.4 Transesterification of the Arylated Products

A mixture of the arylated product **2i** or **2l** (0.2 mmol, 1 equiv.), KHCO₃ (0.4 mmol, 2 equiv.) and phenylmethanol (1 mL) was stirred at 100 °C. After stirring for 6 hours, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo* to give crude product, which was purified by flash chromatography on silica gel to afford the ammonolysis derivative **8a** or 8**b**.

Benzyl 2-(4-Trifluoromethylphenyl)-5-phenylthiazole-4-carboxylate (8a)

Benzyl 2,5-Diphenyloxazole-4-carboxylate (8b)

Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 5.33 (s, 2H), 7.22-7.29 (m, 3H), 7.32-7.38 (m, 8H), 7.93-7.96 (m, 2H), 8.03-8.06 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 162.1, 159.9, 155.3, 135.7, 131.1, 130.3, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 127.1, 126.9, 126.5, 66.9 ppm; IR (KBr) 3044, 2926, 1709, 1562, 1489, 1350, 1221, 1108, 1006, 748, 708, 688 cm⁻¹; HRMS (ESI) calcd for [C₂₃H₁₇NO₃+Na]⁺ 378.1106, found 378.1109.

7.5 Decarboxylation of the Hydrolysis Derivatives³

A mixture of the hydrolysis derivative **6a** or **6b** (0.2 mmol, 1 equiv.), Ag_2CO_3 (0.04 mmol, 0.2 equiv.), AcOH (0.01 mmol, 0.05 equiv.) and DMSO (2 ml) was stirred at 120 °C. After stirring for 24 hours, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered. The filtrate was washed with saturated NaHCO₃, water and brine, dried over Na₂SO₄, and concentrated *in vacuo* to give crude product, which was purified by flash chromatography on silica gel to afford the 4-unsubstituted derivative **9a** or **9b**.

2-(4-Trifluoromethylphenyl)-5-phenylthiazole (9a)

White solid, m.p. 150-151 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.27-7.37 (m, 3H), 7.52 (dd, *J* = 6.9, 1.9 Hz, 2H), 7.61 (d, *J* = 8.3, 2H), 7.97-7.99 (m, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 165.0, 140.6, 139.6, 136.7, 131.7, 131.3, 126.8, 126.5, 126.1, 126.0, 125.9, 125.7, 122.1 ppm; IR (KBr) 2920, 1614,

131.0, 129.2, 128.7, 126.8, 126.5, 126.1, 126.0, 125.9, 125.7, 122.1 ppm; IR (KBr) 2920, 1614, 1450, 1327, 1169, 1107, 1070, 846, 835, 756, 687 cm⁻¹; HRMS (ESI) calcd for $[C_{16}H_{10}F_3NS+H]^+$ 306.0564, found 306.0568.

2,5-Diphenyloxazole (9b)

White solid, m.p. 78-80 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.34 (t, J = 7.3 Hz, 1H), 7.42-7.52 (m, 6H), 7.73 (dd, J = 7.3, 1.3 Hz, 2H), 8.13 (dd, J = 7.9, 1.7 Hz, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 161.2, 151.3, 130.3, 128.9, 128.8, 128.4,

128.1, 127.5, 126.3, 124.2, 123.5 ppm; IR (KBr) 2920, 1585, 1481, 1445, 1133, 1027, 760, 707, 686 cm⁻¹; HRMS (ESI) calcd for $[C_{15}H_{11}NO+H]^+$ 222.0919, found 222.0918.

References

1. (a) Giri, R.; Chen, X.; Yu, J.-Q. *Angew. Chem., Int. Ed.* **2005**, *44*, 2112. (b) Giri, R.; Wasa, M.; Breazzano, S. P.; Yu, J.-Q. Org. Lett. **2006**, *8*, 5685. (c) Mei, T. -S.; Giri. R.; Maugel, N.; Yu, J. -Q. *Angew. Chem. Int. Ed.* **2008**, *47*, 5215. (d) Mei, T. -S.; Wang, D. -H.; Yu, J.-Q. Org. Lett. **2010**, *12*, 3140.

2. For the preparation of various azole-4carboxylic derivatives, see (a) Huang, Y.; Gan, H.; Li, S.; Xu, J.; Wu, X.; Yao, H. *Tetrahedron Lett.* **2010**, *51*, 1751. (b) Huang, Y.; Ni, L.; Gan, H.; He, Y.; Xu, J.; Wu, X.; Yao, H. *Tetrahedron* **2011**, *67*, 2066. (c) Wang, Y.; Li, Z.; Huang, Y.; Tang, C.; Wu, X.; Xu, J.; Yao, H. *Tetrahedron* **2011**, *67*, 7406.

3. (a) Dickstein, J. S.; Mulrooney, C. A.; O'Brien, E. M.; Morgan, B. J.; Kozlowski, M. C. *Org. Lett.* **2007**, 9, 2441. (b) Lu, P.' Sanchez, C.; Cornella, J.; Larrosa, I. *Org. Lett.* **2009**, 11, 5710. (c) Gooβen, L. J.; Linder, C.; Rodriguez, N.; Lange, P. P.; Fromm, A. *Chem. Commun.* **2009**, 7173. (d) Cornella, J.; Sanchez, C.; Banawa, D.; Larrosa, I. *Chem. Commun.* **2009**, 7176.

