Supporting Information

Proton-induced Switching of the Single Molecule Magnetic Properties of a Porphyrin Based Tb^{III} Double-decker Complex

Daisuke Tanaka, Tomoko Inose, Hirofumi Tanaka, Sunri Lee, Naoto Ishikawa*, Takuji Ogawa*

Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

E-mail: iskw@chem.sci.osaka-u.ac.jp, ogawa@chem.sci.osaka-u.ac.jp

General Information.

All chemicals and solvents were of reagent grade and used without further purification. Elemental analyses were performed by a Yanaco CHN CORDER MT-5. Infrared spectra were recorded as KBr pellets on a JASCO FT/IR-460 Plus. UV-visible absorption spectra were recorded with a Shimadzu UV-3150 double-beam spectrophotometer. Mass spectra were recorded on a Shimadzu AXIMA-CFR MALDI-TOF mass spectrometer. Cyclic voltammetric experiments were carried out using a BAS CV-50W voltammetric analyzer. All experiments were conducted in CH₂Cl₂ with 0.10 M tetrabutylammonium hexafluorophosphate as the supporting electrolyte. Electrochemical experiments were conducted in a three-component cell consisting of a Pt auxiliary electrode, a non-aqueous reference electrode (Ag/AgNO₃), and a Pt working electrode. All electrochemical measurements were referenced by the ferrocene/ferrocenium couple. The ac magnetic susceptibility and hysteresis loop measurements were carried out on a Quantum Design MPMS-XL7AC SQUID magnetometer.

Synthesis of [Tb^{III}H(TPP)₂] (1)

Tetraphenylporphyrin (H₂TPP) was prepared according to literature procedures.¹ The powder crystalline sample of **1** was prepared by treating Tb^{III}(acac)₃·xH₂O (0.276 g), H₂TPP (0.124 g) in 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 500 µL) at 350 °C for 1.5 h. The obtained residue was purified by passing it through an alumina column (CH₂Cl₂) to give a dark purple solid (0.174 g, 62.1%). The powder sample for magnetic measurements was obtained by the same procedure. Crystals suitable for single-crystal X-ray crystallography were obtained by recrystallization from CHCl₃/MeOH. MALDI-TOF MS (m/z): M⁺ calcd for C₈₈H₅₇N₈Tb, 1384.4960; found 1385.7; Anal. Calcd for [Tb^{III}H(TPP)₂(CH₂Cl₂)₂]: C, 69.50; H, 3.95; Cl, 9.12; N, 7.20; Tb, 10.22. Found C, 69.09; H, 4.02; N, 7.08.

Synthesis of {[Tb^{III}(TPP)₂](H-DBU)} (2)

DBU (60 μ L, 4x10⁻⁴ mol) was added to a solution of **1** (9.5 mg, 6.9x10⁻⁶ mol) in CHCl₃ (10 mL). Then, methanol was slowly added to the solution resulting in crystalline powder **2**. Crystals suitable for single-crystal X-ray crystallography and the powder sample for magnetic measurements were obtained by the same procedure. MALDI-TOF MS (m/z): M⁺ C₈₈H₅₆N₈Tb, 1383.39; found 1385.3; Anal. Calcd for {[Tb^{III}(TPP)₂](H-DBU)(CHCl₃)₂}: C, 66.94; H, 4.26; Cl, 11.97; N, 7.89; Tb, 8.95. Found C, 66.58; H, 4.32; N, 7.83.

Synthesis of {[Tb^{III}(TPP)₂](*n*Bu₄N)} (3).

A solution of **1** (32.6 mg, 2.4×10^{-5} mol), nBu_4NBr (9.3 mg, 2.4×10^{-5} mol) and triethylamine (1 mL, 7.2×10^{-3} mol) in acetone (10 mL) was evaporated and the dark purple precipitate of **3** was recrystallized in Acetone/Methanol. MALDI-TOF MS (m/z): M⁺ C₈₈H₅₆N₈Tb, 1383.39; found 1385.3; Anal. Calcd for {[Tb^{III}(TPP)₂](nBu_4N)(H₂O)}: C, 75.94; H, 5.76; Cl, 11.97; N, 7.66; Tb, 9.66. Found C, 75.82; H, 5.49; N, 7.79.

Single Crystal X-ray Diffraction.

X-ray structure determination was conducted on a Rigaku VariMax RAPID / FR-E system with $Mo_{K\alpha}$ radiation. In all cases, the structure was solved by direct methods (SHELXS-97)² and refined by full-matrix least-squares techniques on F^2 (SHELXL-97).³

Crystal data for **1**, C92 H61 Cl12 N8 Tb, $M_r = 1862.81$, monoclinic, space group $P2_1/c$, (#14), a = 16.0300(5) Å, b = 17.0927(5) Å, c = 30.0170(8) Å, $\beta = 91.7771(8)$, V = 8220.6(4) Å³, Z = 4, T = 150 K. $\rho_{calcd} = 1.505$ g/cm³, $\mu(Mo_{K\alpha}) = 1.304$ cm⁻¹, $2\theta_{max} = 50^{\circ}$, $\lambda(MoK\alpha) = 0.71075$ Å, 62010 reflections measured, 14442 unique, 9945 > $2\sigma(I)$ were used to refine 1010 parameters, 12 restraints, $R(R_w) = 0.0800$ (0.2367), GOF = 1.034.

Crystal data for **2**, C99 H75 Cl6 N10 Tb, $M_r = 1776.31$, tetragonal, space group *I4/mmm*, (#139), *a* = 14.6111(12) Å, *c* = 19.3957(16) Å, *V* = 4140.7(6) Å³, *Z* = 2, *T* = 150 K. $\rho_{calcd} = 1.425 \text{ g/cm}^3$, $\mu(Mo_{K\alpha}) = 1.104 \text{ cm}^{-1}$, $2\theta_{max} = 55^\circ$, $\lambda(MoK\alpha) = 0.71075$ Å, 20354 reflections measured, 1377 unique, 1376 > 2 $\sigma(I)$ were used to refine 114 parameters, 6 restraints, $R(R_w) = 0.0373$ (0.1074), GOF = 1.125.

We obtained a non-disordered model of **2** in the space group of I/422. However, in the non-disorderd model, inter-molecular distance is too short and unreasonable inter-atom distance was found (H-H distance is 1.42Å). To avoid such unexplainable crowding, we employed the disordered model.

- (1) Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. J Org Chem 1987, 52, 827.
- (2) Sheldrick, G. M. SHELXS-97, Universität-Gottingen, 1997
- (3) Sheldrick, G. M. SHELXL-97, Universität-Gottingen, 1997.

Figure S1. UV-visible spectral changes of **1** during a titration with DBU in CH₂Cl₂. The original concentration of **1** is (a) 1.87×10^{-6} M, and (b) 8.26×10^{-5} M.

Figure S2. UV-visible spectra of 1 (black), 2 (red) and 2 re-protonated with acetic acid (blue) in CH_2Cl_2 . The absorbances are normalized to the maximum peaks. The original absorption peak of 1 reappears upon adding acetic acid to the solution of anion complex, 2.

Figure S3. IR spectra of **1** (black), **2** (red), and **3** (blue). The peaks between 2900 and 3150 cm⁻¹ are due to C-H stretching of TPP and organic cation. The peaks at 3290 cm⁻¹ and 3400 cm⁻¹ are from N-H stretching of TPP and [H-DBU]⁺, respectively.

Figure S4. Cyclic voltammograms of (a) **1** in CH_2Cl_2 , (b) **2** in CH_2Cl_2 , and (c) **3** in CH_2Cl_2 recorded at room temperature (0.10 M *n*-Bu₄NPF₆, scan rate = 0.10 V/s).

Figure S5. Acsusceptibility of **3** measured in zero dc magnetic field with a 3.9 G ac field oscillating at the indicated frequencies. Plots of (a) in-phase (χ_M') and (b) out-of-phase (χ_M'') against temperature.

Figure S6. Hysteresis loop for 2 at 1.8 K.

Figure S7. ACsusceptibility measured in 2000 Oe dc magnetic field with a 3.9 G ac field oscillating at the indicated frequencies. Plots of (a) in-phase (χ_M') and (b) out-of-phase (χ_M'') against temperature *T* for a powder sample of **1**, plots of (c) χ_M' and (d) χ_M''' against *T* for a powder sample of **2**, and plots of (e) χ_M' and (f) χ_M''' against *T* for a powder sample of **3**.

Figure S8. The Argand diagram at 16 K under 2000 Oe for **2**. The solid line represents the least-squares fit obtained with a generalized Debye model with $\alpha = 0.19$.

Figure S9. The relaxation time (τ) of **2** under represented dc magnetic field. Black line represents the least-square fit of the data under 2000 Oe dc field to Arrhenius equation.