Supplementary Materials for:

Hybrid Microtubes of Polyoxometalate and Fluorescence Dye with Tunable Photoluminescence

Huanqiu Zhang^a, JunPeng^a*, Yan Shen^a, Xia Yu^a, Fang Zhang^a, Jilan Mei^a, Bin Li^b and Liming Zhang^b

^aKey Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of

Chemistry, Northeast Normal University, Changchun, Jilin, 130024, People's Republic of China

^bState Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China.

1. Chemicals and measurements

HCl and fluorescein sodium (FS) were used as received. Monolacunary tungstosilicate α -K₈[SiW₁₁O₃₉] (α -SiW₁₁) was synthesized according to the published procedure.^[1] All reagents were used as received without further purification. All the aqueous solutions were prepared using de-ionized water.

Elemental analyses were carried out on a Euro Vector EA 3000 and Vario EL instruments. SEM images were taken with a XL30 field emission environmental scanning electron microscope (ESEM-FEG). FT-IR spectra were measured on a D/MAX-IIIC spectrometer. Powder XRD patterns were recorded with a D/max-IIIC diffractometer. Thermogravimetric analysis measurements (TG) were performed with a Perkin-Elmer TGA7 instrument. UV/Vis spectra were captured on 756 CRT and Cary 500 UV-Vis-NIR spectrophotometer. Fluorescence spectra were measured on an FLSP920 Edinburgh Fluorescence Spectrometer. The fluorescent stability was

- S2 -

performed with a HITACHI F-7000 fluorescence spectrophotometer. Fluorescence microscopy images were obtained with an Olympus FV-1000 confocal laser scanning microscope with mercury lamp as excitation source, using CCD scanning (objective lens 20 times).

2. Control experiment for chemically synthesized SiW_{12} -F and physically dyed SiW_{12} /F microtubes

To make a comparison between the chemically synthesized SiW_{12} -F microtubes and the physically dyed SiW_{12}/F microtubes, a control experiment was designed. Pre-synthesized SiW_{12} microtubes ^[2] were dipped into a fluorescein sodium solution of pH=1, then dried in air to obtain physically dyed (SiW_{12}/F) microtubes. The microscope images of the products show that the color of SiW_{12} -F microtubes is well spread, but SiW_{12}/F microtubes are not dyed evenly (**Fig. S1**). These facts reveal that F dye is doped into the crystal structure of the SiW_{12} microtubes during chemical synthesis of SiW_{12} -F microtubes.

Fig. S1. Microscope images for (top) chemically synthesized SiW_{12} -F and (bottom) physically dyed SiW_{12} /F microtubes.

3. Preparation of other fluorescent microtubes

The preparation of other fluorescent microtubes is as for the procedure for SiW_{12} -F microtubes except for variation of fluorescent dyes: Fluorescent Green 4A (0.0160 g); Fluorescent Red XD (0.056 g); Fluorescent Violet XD (0.0040 g); Fluorescein GG (0.0114 g); Fluorescent Green 10G (0.0020 g); Methyl violet ethanol solution (2 mL of 7.1×10^{-4} M); Invisible Fluorescent Blue (0.0400 g) and Fluorescent Blue XD (0.0190 g). Optical micrograph images of the products are shown in **Fig. S3**.

Fig. S2. Optical micrograph images of the other fluorescent microtubes: (A) Fluorescent Green 4A; (B) Fluorescent Red XD; (C) Fluorescent Violet XD; (D) Fluorescein GG; (E) Fluorescent Green 10G; (F) Methyl Violet; (G) Invisible Fluorescent Blue; (H) Fluorescent Blue XD.

Fig. S3. FT-IR spectrum obtained from SiW₁₂-F microtubes.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012

Fig. S4. XRD spectra obtained from SiW_{12} -F and SiW_{12} microtubes.

Fig. S5. TG curve obtained from SiW_{12} -F microtubes.

The TG measurement of SiW_{12} -F microtubes shows the initial weight loss of 2.09 % from 30-150 °C, corresponding to the loss of four water molecules. The final weight loss of 0.246 % in the region of 420-500 °C indicates the removal of organic F moiety. Weight loss calculations give an empirical ratio SiW_{12} : F of 1: 0.02, consistent with the element analysis results.

Fig. S6. Solid UV-Vis spectra obtained from FS powder, SiW_{12} -F and SiW_{12} microtubes.

Fig. S7. Solid-state fluorescence emission spectra obtained from the SiW₁₂-F microtubes at room temperature by variation of excitation light (Ex), at 380 nm corresponding to violet light; at 458 nm corresponding to blue light; at 550 nm corresponding to green light. The insets are the fluorescence microscopy images of an individual SiW₁₂-F microtube (up) and FS powder (bottom). The light source is violet, blue and green light from left to right, respectively.

Fig. S8. Time-scan fluorescence spectra obtained from SiW_{12} -F microtubes (excitation at 380 nm, emission at 508 nm) and FS (excitation at 350 nm, emission at 650 nm for FS).

Fig. S9. Visble absorption spectra obtained from a 3 mL solution containing 1.33×10^{-5} molmL⁻¹ FS (pH=1): (a) under the irritation by daylight for 8h in the presence of SiW₁₂ (up to down: SiW₁₂= 7.0 mg, 5.7 mg, 1.3 mg, 1.0 mg, 0.5 mg, 0.4 mg, 0.1 mg and 0 mg; (b) in the dark (SiW₁₂= 0 mg). The m(SiW₁₂) means the mass of SiW₁₂ microtubes.

- C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck and R. Thouvenot., *Inorg. Chem.*, 1983, 22, 207.
- [2] Z. F. Xin, J. Peng, T. Wang, B. Xue, Y. M. Kong, L. Li and E. B. Wang, *Inorg. Chem.*, 2006, 45, 8856.

- S6 -