Supporting information

for the manuscript

Thermal desorption of hydrogen from ammonia borane: unexpected role of homopolar B-H···H-B interactions

David J. Wolstenholme*, Kyle T. Traboulsee, Ye Hua, Larry A. Calhoun, and

G. Sean McGrady*

Department of Chemistry University of New Brunswick Fredericton, N.B. E3B 5A3 Canada

Phone: 1-506-452-6340 Fax: 1-506-453-4981 E-mail: <u>dwolsten@unb.ca</u> and <u>smcgrady@unb.ca</u>

S1	Experimental Methods	S3
S1.1	General Considerations	S3
S1.2	Synthesis of ND ₃ BH ₃ and NH ₃ BD ₃	S3
S1.3	Hydrogen Desorption Experiments	S4
S1.4	Thermogravimetric Analysis (TGA) Experiments	S4

S1 Experimental Methods

S1.1 General Considerations

All manipulations were carried out under an inert atmosphere in a nitrogen filled drybox or using an argon Schlenk line. Unless otherwise noted, all reagents were purchased from commercial sources (Sigma Aldrich) and used without further purification. The THF was purified using a Seca Solvent Dispensing System, followed by vigorous sparging with argon, and stored over molecular sieves (4 A). Solution ¹H and ²H NMR spectra were acquired using Varian Unity INOVA (300 MHz or 400 MHz) spectrometers at 298 K. The reported chemical shifts are presented in parts per million (ppm); in which the ¹H NMR spectra were referenced to residual ¹H nuclei in the deuteriated solvent, while the ²H NMR spectra were acquired using a TGA Q_{50} instrument.

S1.2 Synthesis of ND₃BH₃ and NH₃BD₃

 ND_3BH_3 (0.10 g, 3.0 mmol) was prepared according to literature methods,¹ in which a sample of NH_3BH_3 (0.10 g, 3.24 mmol) was washed in excess D_2O . The NH_3BD_3 derivative (0.47 g, 13.9 mmol) was synthesized through a direct 1:1 reaction between $NaBD_4$ (0.62 g, 14.8 mmol) and $(NH_4)_2SO_4$ (1.95 g, 14.8 mmol).² These reactions were allowed to stir until no residual NH_3 or BH_3 peaks were observed in the corresponding ¹H NMR spectra (Figure S1).

- 1. A.T. Luedtke, T. Autrey, *Inorg. Chem.*, 2010, 49, 3905-3910.
- 2. P.V. Ramachandran, P. Gagare, Inorg. Chem., 2007, 46, 7810-7817.

Figure S1. ¹H NMR spectrum of ND₃BH₃ (top) and NH₃BD₃ (bottom) in THF- d_8

S1.3 Hydrogen desorption experiments

Small amounts of solid ND₃BH₃ and NH₃BD₃ (~10-20 mg) were placed in separate 5 mm NMR tube each equipped with a Teflon valve (J. Young), followed by the addition of toluene- d_8 (1 mL) for ND₃BH₃ and non-deuteriated toluene (1 mL) for NH₃BD₃. The NMR tube was then placed into an oil bath and heated in 20 °C increments (60-120 °C) in 20 min stages. The ¹H and ²D NMR spectra were recorded after each increment.

S1.4 Thermogravimetric analysis (TGA) experiments

TGA plots were obtained by loading separate sample holders with 2.5-7 mg of ND_3BH_3 and NH_3BD_3 in a nitrogen-filled drybox. NH_3BD_3 in particular displayed a high tendency to plume on account of the exothermic nature of hydrogen desorption. Accordingly, the lower limit used for this sample was ~2.5 mg. These samples were each heated to 300 °C at a ramping rate of 2 °C/min.