Sc₂@ $C_{3\nu}(8)$ -C₈₂ vs. Sc₂C₂@ $C_{3\nu}(8)$ -C₈₂: Drastic effect of C₂ capture on the redox properties of scandium metallofullerenes

Hiroki Kurihara,^a Xing Lu,^a Yuko Iiduka,^a Naomi Mizorogi,^a Zdenek Slanina,^a Takahiro Tsuchiya,^a

Shigeru Nagase,^b and Takeshi Akasaka*^a

^aLife Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,

[§]Department of Theoretical and Computational Molecular Science, Institute for Computational Molecular Science, Okazaki, Aichi 444-8585, Japan

Table of Contents

Complete citation of reference 25.	····· S1
Figure S1 Full range mass spectrum of $Sc_2@C_{3\nu}(8)$ - C_{82}	····· S2
Figure S2 CV and DPV curves of $Sc_2@C_{3\nu}(8)$ -C ₈₂	····· S2
Figure S3 ¹³ C NMR spectrum of $Sc_2@C_{3\nu}(8)$ -C ₈₂	····· S3
Figure S4 ⁴⁵ Sc NMR spectrum of $Sc_2@C_{3\nu}(8)$ -C ₈₂	····· S3
Figure S5 Molecular orbital (MO) diagrams $C_{3\nu}(8)$ - C_{82} and $Sc_2@C_{3\nu}(8)$ - C_{82}	····· S4
Figure S6 Molecular orbital (MO) diagrams $C_{3\nu}(8)$ - C_{82} and $Sc_2C_2@C_{3\nu}(8)$ - C_{82}	····· S4
Figure S7 LUMOs of $Sc_2@C_{3\nu}(8)$ -C ₈₂ and $Sc_2C_2@C_{3\nu}(8)$ -C ₈₂	····· S5

(25f) Gaussian 09, Revision A.02; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Figure S1 Mass spectrum of $Sc_2@C_{3\nu}(8)$ -C₈₂ in a negative reflection mode.

Figure S2 CV and DPV curves of $Sc_2@C_{3\nu}(8)$ -C₈₂.

Figure S3 ¹³C NMR spectrum (125 MHz) of Sc₂@ $C_{3\nu}(8)$ - C_{82} measured in CS₂/acetone- d_6 capillary at 298K.

¹³C NMR (125 MHz, CS₂/acetone-*d*₆ capillary, 298 K) δ 154.46 (s, 3C), 148.33 (s, 6C), 147.61 (s, 3C), 147.50 (s, 6C), 146.28 (s, 6C), 145.91 (s, 3C), 144.26 (s, 3C), 144.22 (s, 6C), 144.07 (s, 6C), 143.76 (s, 6C), 143.58 (s, 6C), 140.69 (s, 1C), 139.94 (s, 6C), 138.12 (s, 6C), 137.79 (s, 3C), 136.57 (s, 6C), 133.93 (s, 6C).

Figure S4 ⁴⁵Sc NMR spectrum (145.8 MHz) of Sc₂@C_{3ν}(8)-C₈₂ in 1,2-dichlorobenzene- d_4 at 293 K. The chemical shift scale was calibrated using Sc₂O₃ in HCl/D₂O as external reference (0 ppm).

Figure S5 Molecular orbital (MO) diagrams of $C_{3\nu}(8)$ - $C_{82}(\text{left})$ and $\text{Sc}_2@C_{3\nu}(8)$ - $C_{82}(\text{right})$.

Figure S6 Molecular orbital (MO) diagrams of $C_{3\nu}(8)$ - $C_{82}(\text{left})$ and $\text{Sc}_2C_2@C_{3\nu}(8)$ - $C_{82}(\text{right})$.

Sc₂@C_{3v}(8)-C₈₂

Sc₂C₂@C₃,(8)-C₈₂

Figure S7 LUMOs of $Sc_2@C_{3\nu}(8)$ -C₈₂ and $Sc_2C_2@C_{3\nu}(8)$ -C₈₂.