Enantioselective Total Synthesis of (+)-galbulin via organocatalytic domino Michael–Michael–aldol condensation.

Bor-Cherng Hong, *,† Che-Sheng Hsu, † and Gene-Hsiang Lee[‡]

[†]Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, 621, Taiwan, R.O.C., and [‡]Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan, R.O.C.

chebch@ccu.edu.tw

SUPPORTING INFORMATION:

Contents: (1) Experimental procedures and characterization data for compounds 1-10.

(2) Spectra data for compounds 1-10.

General Procedure. All solvents were reagent grade. L-proline (99+%) was purchased from Bachem. Other chemicals were purchased from Aldrich or Acros Chemical Co. Reactions were normally carried out under argon atmosphere in glassware. Merck silica gel 60 (particle size 0.04-0.063 mm) was employed for flash chromatography. Melting points are uncorrected. ¹H NMR spectra were obtained in CDCl₃ unless otherwise noted at 400 MHz (Bruker DPX-400) or 500 MHz (Varian-Unity INOVA-500). ¹³C NMR spectra were obtained at 100 MHz or 125 MHz. *E.e.* values were measured by HPLC on a chiral column (chiralpak IA, chiralpak IB, chiralpak IC or chiralcel OD-H, 0.46 cm ID x 25 cm, particle size 5 μ) by elution with IPA-hexane. The flow rate of the indicated elution solvent is maintained at 1 mL/min, and the retention time of a compound is recorded accordingly. HPLC was equipped with the ultraviolet and refractive index detectors. The melting point was recorded on a melting point apparatus (MPA100 – Automated melting point system, Stanford Research Systems, Inc.) and is uncorrected. The optical rotation values were recorded with a Jasco-P-2000 digital polarimeter.

Preparation of ketoaldehyde 3.

To a solution of 3,4-dihydro-2-methoxy-4-methyl-2H-pyran 5 (300 mg, 2.34 mmol) in H₂O (5.0 mL) was added a concentrate aqueous HCl solution (0.5 mL). The resulting mixture was stirred at 25 °C for 2 h until the solution turned to clear. The solution was neutralized to pH 7 by slow addition of NaHCO₃, monitored by pH indictor paper. To this mixture was slowly added a solution of 1-(triphenylphosphoranylidene)acetone (460.0 mg, 1.445 mmol) in CH₂Cl₂ (2 mL) over 1.5 h. After the addition, the resulting mixture was stirred at ambient temperature for 14 h until the completion of reaction, as monitored by TLC. The reaction mixture was extracted with EtOAc (25 mL x 2), and the organic solution was washed with brine (10 mL x 2), dried over Na₂SO₄, concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 25% EtOAc-hexane ($R_f = 0.56$ for 3 in 50 % EtOAc-hexane) to give **3** as a colorless oil (120 mg, 54% yield). Selected spectroscopic data: IR (neat): 3428, 2960, 2727, 1722, 1671, 1626, 1363, 1255, 1175, 984 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 9.74 (t, J = 1.5 Hz, 1 H), 6.75-6.67 (m, 1 H), 6.06 (d, J = 15.5 Hz, 1 H), 2.50 -2.10 (m, 5 H), 2.22 (s, 3 H), 0.99 (d, J = 6.3 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz): δ 201.6 (CH), 198.2 (C), 145.3 (CH), 133.0 (CH), 50.3 (CH₂), 39.4 (CH₂), 27.5 (CH), 27.1 (CH₃), 19.9 (CH₃); MS (*m/z*, relative intensity): 55 (M⁺+1, 32.57), 154 (M⁺, 2.), 129 (58), 111 (63), 99 (64), 95 (47), 85 (49), 71 (67), 69 (100), 58 (62), 55 (70); exact mass calculate for $C_9H_{14}O_2$ (M⁺): 154.0994; found (M⁺): 154.0984.

Preparation of (+)-2.

To a solution of (E)-3-(3,4-dimethoxyphenyl)acrylaldehyde 4 (290 mg, 1.51 mmol) and (E)-3-methyl-7-oxooct-5-enal 3 (565 mg, 3.66 mmol) in CH₃CN (5.0 mL) was added dropwise a solution of catalyst I (98 mg, 0.30 mmol) and acetic acid (18 mg, 0.30 mmol) in CH₃CN (1 mL). The resulting solution was stirred at ambient temperature for 72 h until the completion of reaction, as monitored by TLC, and followed by the addition of p-TsOH (430 mg, 2.50 mmol), and stirring for an additional 5 h. The solution was extracted with EtOAc (10 mL x 3), washed with brine (5 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give the crude product. The residue was purified by flash column chromatography with 25% EtOAc–hexane ($R_f = 0.43$ for 2 in 20% EtOAc-hexane) to give 2 as a white solid (407 mg, 82% yield); mp. 109-111 °C. Selected spectroscopic data for (+)-2: $[\alpha]_D^{26}$ +58.9 (*c* 6.3, CHCl₃); IR (neat): 2957, 1723, 1678, 1516, 1463, 1262, 1226, 1142, 1026, 759, 668 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 9.37 (d, J = 4.5 Hz, 1 H), 6.82 - 6.78 (m, 1 H), 6.74 - 6.65 (m, 1 H), 6.62 - 6.60 (m, 1 H), 6.48 (d, J = 10.0 Hz, 1 H), 5.88 (dd, J = 10.0, 2.5 Hz, 1 H), 3.86 (s, 3 H), 3.84 (s, 3 H), 2.64 (t, J = 11.5 Hz, 1 H), 2.50 (dd, J = 16.5, 3.0, 1 H), 2.44 – 2.38 (m, 1 H), 2.35 – 2.25 (m, 1 H), 2.23 – 2.15 (m, 1 H), 2.05 - 1.80 (m, 3 H), 1.30 - 1.08 (m, 1 H), 0.96 (d, J = 6.5 Hz, 3 H); 13 C NMR (CDCl₃, 125 MHz): δ 203.7 (CH), 199.2 (C), 150.6 (CH), 148.3 (C), 131.8 (C), 130.0 (CH), 111.5 (CH), 63.7 (CH), 55.9 (CH₃), 55.8 (CH₃), 47.8 (CH), 46.2 (CH), 44.8 (CH₂), 40.6 (CH), 40.3 (CH₂), 32.1 (CH), 19.9 (CH₃), some aryl carbons are broadened and disappeared due to the slow rotation and coalescence phenomenon; MS (m/z, relative intensity): 328 (M^+ , 66), 243 (5), 221(5), 194 (11), 151 (100), 138 (30), 128 (6), 115 (11), 91 (9), 77 (11), 73 (7), 66 (6); exact mass calculated for $C_{20}H_{24}O_4(M^+)$: 328.1675; found 328.1673.

Figure S1 Stereo plots of the X-ray crystal structures of (+)-2: C, gray; O, red, and the ORTEP diagram.

CCDC 844400 contains the supplementary crystallographic data for (+)-2. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

S5

Preparation of alcohol 6.

To a solution of 2 (20.0 mg, 0.06 mmol) and CeCl₃•7H₂O (34.0 mg, 0.09 mmol) in MeOH (3 mL) was added NaBH₄ (3.0 mg, 0.08 mmol) at 0 °C. The resulting solution was stirred at ambient temperature for 2 h until the completion of reaction, monitored by TLC, followed by addition of a 1N aqueous NaOH solution (1.0 mL). The resulting mixture was filtered through Celite and extracted with EtOAc (15 mL x 2). The organic solution was washed with brine (5 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give the crude product. To a solution of this residue in CH₂Cl₂ (3.0 mL) was added MnO₂ (80.0 mg, 0.92 mmol) and the resulting mixture was stirred at room temperature for 12 h until the completion of reaction, monitored by TLC. The resulting mixture was filtered through Celite and extracted with EtOAc (10 mL x 2). The organic solution was washed with brine (5 mL), dried over Na₂SO₄, and concentrated in *vacuo* to give the crude product. The residue was purified by flash column chromatography with 40% EtOAc-hexane ($R_f = 0.33$ for 6 in 60% EtOAc-hexane) to give 6 as a colorless oil (19.7 mg, 98% yield). Selected spectroscopic data: $[\alpha]_D^{26}$ +30.2 (c 2.4, CHCl₃); IR (neat): 3478, 3006, 2903, 2839, 1668, 1516, 1464, 1261, 1225, 1153, 1027, 806, 755, 665 cm⁻¹; ¹H NMR $(CDCl_3, 400 \text{ MHz}): \delta 6.90 - 6.61 \text{ (m, 3 H)}, 6.45 \text{ (dd, } J = 10.2, 1.3 \text{ Hz}, 1 \text{ H}), 5.83 \text{ (dd, } J = 10.2, 1.3 \text{ Hz}, 1 \text{ H})$ 2.6 Hz, 1 H), 3.86 (s, 3 H), 3.85 (s, 3 H), 3.64 (dd, J = 11.2, 2.6 Hz, 1 H), 3.21 (dd, J = 11.2, 1.7 Hz, 1 H), 2.65 – 2.42 (m, 2 H), 2.32 – 2.18 (m, 2 H), 2.02 – 1.85 (m, 1 H), 1.80 – 1.70 (m, 1 H), 1.40 - 1.00 (m, 4 H), 1.04 (d, J = 6.3 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz): δ 199.9 (C), 152.9 (CH), 129.4 (CH), 60.5 (CH₂), 55.9 (CH₃), 55.8 (CH₃), 48.3 (CH), 45.1 (CH₂), 41.6 (CH₂), 40.9 (CH), 31.5 (CH), 19.9 (CH₃); Some aryl carbons are broadened and disappeared due to the slow rotation and coalescence phenomenon; MS (m/z, relative intensity): 330 (M^+ , 47), 316 (1), 314 (0.86), 284 (0.86), 267 (0.61), 256 (0.66), 243 (1), 239 (1), 205 (5), 191 (3), 177 (5), 153 (6), 151 (100), 138 (7), 115 (5), 107 (5), 91 (6), 77 (5), 57 (4), 55 (4); exact mass calculated for $C_{20}H_{26}O_4(M^+)$: 330.1831; found 330.1832.

To a solution of 6 (20.0 mg, 0.06 mmol) in MeOH (1 mL) was added a 10% aqueous solution of NaOH (0.005 mL) and H₂O₂ (30%, 0.016 mL) at 0 °C. After the addition, the resulting solution was stirred at ambient temperature for 2 h until the completion of reaction, monitored by TLC. In order to remove methanol, the solution was concentrated in vacuo to ca. 3/4 of the original volume. To the resulting mixture was added ice water (2.0 mL), and the solution was extracted with EtOAc (5.0 mL x 2), washed with brine (5.0 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give the crude product. The residue was purified by flash column chromatography with 40% EtOAc-hexane ($R_f = 0.42$ for 7 in 60% EtOAc-hexane) to give 7 as a colorless oil (17 mg, 80% yield). Selected spectroscopic data: $[\alpha]_D^{26}$ +65 (c 2.45, CHCl₃); IR (neat): 3515, 3009, 2960, 2913, 2839, 1706, 1516, 1261, 1027, 808, 756 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.93 – 6.63 (m, 3 H), 3.87 (s, 3 H), 3.86 (s, 3 H), 3.66 (d, J = 12.0 Hz, 1 H), 3.25 (d, J = 12.0 Hz, 1 H), 3.09 (d, J = 3.5 Hz, 1 H), 2.97 (brs, 1 H), 2.85 - 2.70 (m, 1 H), 2.48 (dd, J = 19.0, 4.5 Hz, 1 H), 2.10 – 1.95 (m, 1 H), 1.88 – 1.70 (m, 4 H), 1.31 (t, J =11.0 Hz, 1 H), 1.03 (d, J = 6.0 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 205.0 (C), 60.6 (CH₂), 56.3 (CH), 56.0 (2 CH₃), 55.7 (2 CH), 47.6 (CH), 43.6 (CH₂), 41.7 (CH₂), 31.5 (CH), 30.0 (CH), 19.9 (CH₃); Some aryl protons and carbons are broadened and disappeared due to the slow rotation and coalescence phenomenon; MS (m/z, relative intensity): 346 (M^+ , 72), 330 (2), 310 (2), 295 (3), 284 (6), 267 (3), 256 (19), 239 (5), 213 (14), 211 (5), 185 (10), 169 (9), 151 (53), 149 (26), 129 (25), 111 (28), 97 (41), 85 (70), 71 (90), 57 (100); exact mass calculated for $C_{20}H_{26}O_5(M^+)$: 346.1780; found 346.1779.

Preparation of alcohol 9.

A solution of 7 (10.0 mg, 0.03 mmol) and NaOH (5.7 mg, 0.14 mmol) in MeOH (0.11 mL) was heated to reflux for 10 min. The solution was concentrated *in vacuo* to remove most methanol but not dried and gave a sticky reside. The residue 8 was heated to 120 °C under N₂, with a reflux condenser, for 50 min until the completion of reaction, as monitored by TLC. The solution was washed with aqueous saturated NaHCO₃ solution, extracted with CH₂Cl₂ (5 mL x 2). The combined organic solution was washed with brine (5 mL), dried over Na_2SO_4 , and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 40% EtOAc-hexane ($R_f = 0.33$ for **9** in 50% EtOAc-hexane) to give **9** as a yellow oil (4.4 mg, 44% yield). Selected spectroscopic data: $[\alpha]_D^{26}$ +8.4 (c 2.15, CHCl₃); IR (neat): 3401, 3003, 2959, 2926, 1726, 1666, 1593, 1513, 1464, 1260, 1026, 759 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.78 (d, J = 8.0 Hz, 1 H), 6.74 (d, J = 8.0 Hz, 1 H), 6.61 (d, J = 12.0 Hz, 2 H), 6.17 (s, 1 H), 5.40 (s, 1 H), 3.97 (d, J = 11.0 Hz, 1 H), 3.87 (s, 3 H), 3.80 – 3.75 (m, 1 H), 3.79 (s, 3 H), 3.58 (s, 3 H), 3.43 (d, J = 11.0 Hz, 1 H), 2.75 (dd, J = 16.0, 4.5 Hz, 1 H), 2.62 - 10.02.56 (m, 1 H), 2.07 - 1.98 (m, 1 H), 1.59 - 1.52 (m, 2 H), 1.12 (d, J = 6.5 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): *δ* 149.0 (C), 147.5 (C), 144.8 (C), 143.6 (C), 138.5 (C), 131.8 (C), 129.6 (C), 121.7 (CH), 113.4 (CH), 112.1 (CH), 111.9 (CH), 110.9 (CH), 61.1 (CH₂), 55.9 (2 CH₃), 55.8 (CH₃), 50.7 (CH), 47.4 (CH), 38.6 (CH₂), 30.1 (CH), 19.7 (CH₃); MS (m/z, relative intensity): 358 (M⁺, 11), 339 (15), 323 (12), 309 (7), 299 (5), 285 (6), 269 (24), 255 (10), 254 (7), 211 (4), 203 (16), 189 (7), 178 (8), 167 (7), 151 (15), 149 (14), 111 (14), 97 (20), 85 (20), 71 (28), 58 (100), 57 (35); exact mass calculated for $C_{21}H_{26}O_5$ (M⁺): 358.1780; found: 358.1777.

R_f = 0.12 for **8** in 50% EtOAc–hexane. Selected spectroscopic data for **8**: $[\alpha]_D^{26}$ +31.6 (*c* 2.26, CHCl₃); IR (neat): 3515, 3010, 2925, 2839, 1687, 1619, 1515, 1464, 1261, 1155, 1027, 753 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.82 – 6.69 (m, 3 H), 5.28 (s, 1 H), 3.87 (s, 6 H), 3.64 (d, *J* = 11.0 Hz, 1 H), 3.32 (s, 3 H), 3.20 (d, *J* = 11.0 Hz, 1 H), 2.58–2.47 (m, 2 H), 2.37 (t, *J* = 10.5 Hz, 1 H), 2.24 (dd, *J* = 16.5, 14 Hz, 1 H), 1.92–1.89 (m, 1 H), 1.79 – 1.75 (m, 2 H), 1.31 (t, *J* = 10.5 Hz, 1 H), 1.20 (brs, 1 H), 1.03 (d, *J* = 6.5 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 194.0 (C), 151.4 (C), 147.8 (C), 134.4 (C), 122.9 (CH), 118.6 (CH), 117.6 (CH), 114.5 (C), 112.2 (C), 110.8 (CH), 108.1 (CH), 60.6 (CH₂), 55.9 (CH₃), 55.8 (CH₃), 54.7 (CH₃), 49.4 (CH), 41.0 (CH), 40.9 (CH₂), 31.5 (CH), 47.4 (CH), 19.9 (CH₃); MS (*m*/*z*, relative intensity): 360 (M⁺, 15), 347 (2), 333 (2), 320 (2), 305 (3), 285 (5), 277 (3), 263 (3), 249 (4), 239 (7), 221 (15), 205 (20), 193 (12), 191 (11), 165 (15), 151 (43), 137 (24), 125 (36), 97 (81), 83 (73), 71 (84), 57 (100); exact mass calculated for C₂₂H₂₈O₄ (M⁺): 360.1937; found: 360.1937.

Preparation of 10.

To a solution of 9 (10.0 mg, 0.03 mmol) and K_2CO_3 (8.0 mg, 0.06 mmol) in acetone (1 mL) was added MeI (6.0 mg, 0.04 mmol). The solution was stirred at room temperature for 12 h until the completion of reaction, as monitored by TLC, followed by addition of H₂O (4 mL). The solution was extracted with EtOAc (15 mL x 2), washed with brine (10 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give the crude product. The residue was purified by flash column chromatography with 30% EtOAc-hexane ($R_f = 0.38$ for 10 in 50% EtOAc-hexane) to give 10 as a yellow oil (9.9 mg, 95% yield). Selected spectroscopic data: $\left[\alpha\right]_{D}^{26}$ -4.5 (c 2.2, CHCl₃); IR (neat): 3469, 2926, 2850, 2834, 1738, 1607, 1514, 1464, 1256, 1028, 808, 756 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.79 (d, J = 8.0 Hz, 1 H), 6.74 (dd, J = 8.0, 2.0 Hz, 1 H), 6.59 (d, J = 2.0 Hz, 1 H), 6.56 (s, 1 H), 6.20 (s, 1 H), 3.99 (dd, J = 10.0, 1.0 Hz, 1 H), 3.86 (s, 3 H),3.83 (s, 3 H), 3.80 – 3.76 (m, 1 H), 3.78 (s, 3 H), 3.56 (s, 3 H), 3.47 – 3.42 (m, 1 H), 2.79 (dd, J = 16.0, 4.5 Hz, 1 H), 2.67 - 2.59 (m, 1 H), 2.06 - 1.97 (m, 1 H), 1.54 - 1.50 (m, 2 H), 1.14 (d, J = 6.5 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 149.0 (C), 147.5 (C), 147.1 (C), 147.0 (C), 138.4 (C), 132.2 (C), 128.8 (C), 121.8 (CH), 112.9 (CH), 112.0 (CH), 110.9 (CH), 110.6 (CH), 61.1 (CH₂), 55.9 (CH₃), 55.83 (2 CH₃), 55.78 (CH₃), 50.7 (CH), 47.3 (CH), 38.9 (CH₂), 30.2 (CH), 19.7 (CH₃); MS (*m*/*z*, relative intensity): 372 (M⁺, 100), 356 (9), 339 (16), 323 (18), 313 (7), 299 (9), 284 (16), 269 (65), 256 (10), 239 (21), 238 (10), 203 (22), 189 (6), 178 (10), 165 (8), 151 (22), 133 (7), 118 (7), 98 (9), 91 (43), 71 (14), 58 (61), 57 (19); exact mass calculated for C₂₂H₂₈O₅ (M⁺): 372.1937; found: 372.1936.

Synthesis of (+)-Galbulin.

To a solution of 10 (12.0 mg, 0.03 mmol) and Et_3N (6.5 mg, 0.06 mmol) in CH_2Cl_2 (2 mL) was added methanesulfonyl chloride (7.4 mg, 0.06 mmol). The resulting solution was stirred at ambient temperature for 2 h until the completion of reaction, as monitored by TLC, and followed by addition of H₂O (3 mL). The solution was extracted with CH₂Cl₂ (10 mL x 2), washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo to give the crude product. To a solution of the residue in THF (2.0 mL) was added a Super-Hydride® solution (lithium triethylborohydride, 1M in THF, 0.071 mL, 0.07 mmol), and the resulting solution was stirred at ambient temperature for 2 h until the completion of reaction, as monitored by TLC. To the reaction mixture was added H₂O (3 mL). The solution was extracted with EtOAc (15 mL x 2), washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 10% EtOAc-hexane ($R_f = 0.71$ for 1 in 50% EtOAc-hexane) to give 1 as a white solid (9.1 mg, 80%) yield); mp. 130-131 °C. Selected spectroscopic data: $[\alpha]_D^{30}$ +8.0 (c 0.3, CHCl₃); IR (neat): 2960, 2872, 2833, 1607, 1516, 1464, 1417, 1249, 1217, 1029, 801, 754 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 6.78 (d, J = 8.5 Hz, 1 H), 6.69 (dd, J = 8.0, 1.5 Hz, 1 H), 6.56 - 6.54 (m, 2 H), 6.14 (s, 1 H), 3.86 (s, 3 H), 3.82 (s, 3 H), 3.79 (s, 3 H), 3.54 (s, 3 H), 3.41 (d, J = 10.5 Hz, 1 H), 2.74 (dd, J = 16.0, 4.5 Hz, 1 H), 2.63 - 2.56 (m, 1 H), 1.68 - 1.58 (m, 1 H), 1.56 - 1.45 (m, 1 H)H), 1.06 (d, J = 6.5 Hz, 3 H), 0.85 (d, J = 6.5 Hz, 3 H); ¹³C NMR (CDCl₃, 125 MHz): δ 148.8 (C), 147.3 (C), 147.0 (C), 146.9 (C), 139.0 (C), 132.4 (C), 129.1 (C), 121.9 (CH), 112.8 (CH), 112.0 (CH), 110.7 (CH), 110.6 (CH), 55.9 (2 CH₃), 55.8 (2 CH₃), 54.3 (CH), 43.8 (CH), 39.0 (CH₂), 35.5 (CH), 20.0 (CH₃), 17.2 (CH₃); MS (*m*/*z*, relative intensity): 356 (M⁺, 4), 355 (M⁺-1, 11), 341 (4), 339 (2), 316 (4), 295 (21), 281 (13), 269 (4), 256 (5), 239 (6), 221 (38), 207 (10), 185 (4), 167 (4), 147 (20), 141 (5), 129 (11), 111 (11), 97 (17), 85 (24), 71 (35), 58 (100), 57 (44); exact mass calculated for $C_{22}H_{28}O_4(M^+)$: 356.1988; found: 356.1988.

Lit. ¹	Lit. ²	Compound 1
148.9	148.9	148.8
147.4	147.3	147.3
147.0	147.0	147.0
146.9	146.9	146.9
139.1	139.0	139.0
132.5	132.5	132.4
129.1	129.1	129.1
121.9	121.9	121.9
112.9	112.9	112.8
112.2	112.1	112.0
110.8	110.7	110.7
110.7	110.6	110.6
55.9 (2C)	55.9 (2C)	55.9 (2C)
55.8 (2C)	55.8, 55.7	55.8 (2C)
54.3	54.3	54.3
43.8	43.8	43.8
39.1	39.0	39.0
35.6	35.6	35.5
20.0	20.0	20.0
17.2	17.2	17.2

Table S1. Comparison of compound **1** and Galbulin (¹³C NMR spectra with literature data).

 ¹ Buckleton, J. S.; Cambie, R. C.; Clark, G. R.; Craw, P. A.; Rickard, C. E. F.; Rutledge, P. S.; Woodgate, P. D. *Aust. J. Chem.* **1988**, *41*, 305-324.
² Datta, P. K.; Yau, C.; Hooper, T. S.; Yvon, B. L.; Charlton, J. L. *J. Org. Chem.* **2001**, *66*, 8606-8611.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Fig S11. 1H NMR (CDCI3, 400 MHz) of compound 3.

Electronic Supplementary Material (ESI) for Chemical Communications This jour Faigs S12 e 13 GINMIRy (CDGB st1) 00 11/11/2) of compound 3.

C13 spectrum of

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Fig S13. DEPTof compound 3.

						h		Current Da NAME EXPNO PROCNO	ata Parameters HCS-005 2 1
								F2 - Acqui	isition Parameters
								Jale_ Time	22 06
								INSTRUM	spect
								PROBHD	5 mm QNP 1H
								PULPROG	zgpg30
								TD	65536
								SOLVENT	CDC13
								NS	1024
								05 SMH	4 25125 620 Hz
								ETDRES	0 383387 Hz
		1						AQ	1.3042164 sec
	1							RG	256
								DW	19.900 usec
								DE	6.50 usec
								TE	300.0 K
								D1	2.00000000 sec
								d11	0.03000000 sec
								012	0.00002000 Sec
									=== CHANNEL f1 ==========
								NUC1	13C
								P1	10.00 usec
								PL1	0.00 dB
								SF01	100.6237959 MHz
									=== CHANNEL f2 ==========
								CPDPRG2	waltz16
								NUC2	1H
								PCPD2	90.00 usec
								PL2	-3.00 dB
	a a construit survey and a philips of the same structure are signing and grant the second site of the same structure is	and an air second s				alan ang kanarang di pang kanarang kanarang di pang kanarang di pang kanarang di pang kanarang kanarang kanaran	an piper a design of the state	PL12	15.70 dB
								PL13	18.70 dB
								5FU2	400.1326008 MHZ
								F2 - Procr	essing parameters
								SI	32768
								SF	100.6127715 MHz
								WDW	EM
								SSB	0
	1							LB	0.30 HZ
						1		GB	1 40
								10	1.40
								1D NMR plr	ot parameters
								CX	20.00 cm
								CY	10.00 cm
								F1P	220.000 ppm
				والمسيحات والمستركب والمستان والمستان والمسترك والمتعادين			and the first state of the state of the tables	F1	22134.81 Hz
	an a		ومراقبه والمربية المرابية والمرابع ومرابع والمرابع	. مى 1960 يى 1 9 كى بىلىكى يەركى 10 كى	a	······································	an a	F2P	0.000 ppm
									U.UU HZ
pm	200 175 150)	125	100	75 !	50 2	5	HZCM	1106.74048 Hz/cm

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Fig S14. 1H NMR (CDCI3, 500 MHz) of compound 2.

~

.

Fig S16. DEPT of compound 2.

HCS-006						*		
exp42 DEPT								
SAMPLE date Sep 24 2009 solvent cdcl3 sample undefined ACQUISITION sw Sw 31446.5 at 1.000 np 62894 bs 16 ss -4	DEPT j1xh 140.0 mult arrayed SPECIAL temp not used gain 20 spin 0 PROCESSING lb 1.00 fn not used SEFTPUM	ACQUISITION ARRAYS array mult arraydim 3 i mult 1 0.5 2 1 3 1.5	1		.			
ui 1.000 nt 1000 ct 1000 TRANSMITTER 1000 tof 2512.2 tpwr 54 pw 9.400 DECOUPLER 0 dn H1 dof 0 dpwr 39 dm nnyy dmm ccw dmf 11905 nplyl 49	wp 27650.1 sp -1256.9 rp -140.2 lp 43.5 ai cdc ph REFERENCE rfl 1302.0 rfp 0 PLOT wc 210 sc 0 vs 275 hzmm 131.67 th 4							
pp 29.400	1					1.		

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $^{\odot}$ The Royal Society of Chemistry 2011 Fig S17. COSY of compound 2.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Fig S18. COSY of compound 2, expanded.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Fig S19. HMQC of compound 2.

sw

at

np fb

SS

d1

nt

ni

tn

рw

dn

dm

 $\begin{array}{l} \mbox{Electronic Supplementary Material (ESI) for Chemical Communications} \\ \mbox{This journal is } \textcircled{\sc Chemistry Solution} \\ \mbox{Fig S20. NOESY of compound 2.} \end{array}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Fig S21. 1H NMR (CDCI3, 400 MHz) of compound 6.

Electronic Supplementary Material (ESI) for Chemical Communications This journal to S22 Rdy Columbia (Clacks), 200 MHz) of compound 6.

C13 spectrum of

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Fig S23. DEPT of compound 6.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Fig S24. 1H NMR (CDCI3, 500 MHz) of compound 7.

Fig S25. 13C NMR (CDCI3, 126 MHz) of compound 7.

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

S26

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Fig S27. 13C NMR (CDCI3, 126 MHz) of compound 7, expanded.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemical Strength States and the Royal Society of Chemical States and the Royal Sta

Fig S29. DEPT of compound 7, expanded.

HCS-3-82-c			•						
exp53 DEPT									
SAMPLE date Jul 17 2011 solvent cdcl3 sample undefined ACQUISITION Sw sw 31446.5 at 1.000 np 62894 bs 16 SS -4 d1 1.000 nt 2048 TRANSMITTER tn tn C13 tof 2512.2 tpwr 56 pw 10.800 DECOUPLER dn	DEPT j1×h 140.0 mult arrayed SPECIAL temp not used gain 54 spin 0 PROCESSING 1b 1.00 fn not used wp 1000000000000000000000000000000000000	ACQUISITION AR array arraydim 1 2 3 3	RAYS mult 3 mult 1.5 1.5	La da da ta da la la da a seda da da da la la da	and dan ang ang ang ang ang ang ang ang ang a	han bild til den de bin er gesten bildet og som			
dof 0 dpwr 42 dm nny dmm ccw dmf 11696 pplv1 53 pp 27.400	wc 210 sc 7192 hzmm 35.91 th 68	llalayberayyetteritationalastication	ntigety and the state of the state	d by the stand of the		etissastine per generative for the forther by	www.aller.		
	Handra an	hanalah biling dalah biling dalah bilang Arang dalah biling dalah biling dalah biling dalah biling dalah biling Arang dalah biling d	hin and a shirt hit of a single si	fan, jah, da, ad ila, da si jan bakin kan ku jah Program ing pangan kan program ing pangan si jan pan					(a) a line a star a ta fill di ante Margar per ing popular (e star a
	(e co a tra la la la contra la la contra da l		ali balikan bahar da balan alamat kuning ba			had have been been a state of the second			h Maria an Èshika Maria 1 Julio Jawa Ing Karia Maria I
	155	150	145 140	135	130 125	120	115	110 10	5 ppm

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Fig S30. HSQC of compound 7.

HCS-3-82-c

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 201 Fig S31. HSQC of compound 7, expanded.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Fig S32. COSY of compound 7.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Fig S33. NOESY of compound 7.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Fright 34. THINMR (CDCI3, 500 MHz) of compound 8.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Rogal S35et) 3Chemical Communications of compound 8.

.

Electronic Supplementary Material (ESU for Chamical Communications This journal is © The Royal Society of Shemistry 20 NMR (CDCI3, 126 MHz) of compound 8, expanded.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Fig S41. 1H NMR (CDCI3, 500 MHz) of compound 9.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2021NMR (CDCI3, 126 MHz) of compound 9.

S42

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemical 30 DEPT of compound 9.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemis**Fig 344. COSY of compound 9.**

S44

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry Pig 1S45. HSQC of compound 9.

> HCS-3-137-F3 exp56 gHSQC SAMPLE FLAGS ACQUISITION ARRAYS date Jul 5 2011 hs n array phase solvent cdc13 sspul У arraydim 256 sample undefined PFGflg ACQUISITION phase 1008 hsglvl sw 8000.0 SPECIAL 1 1 0.128 temp not used 2 2 at 34 gain 2048 np fb not used spin 0 SS 32 GRADIENTS gzlvl1 1008 d 1 1.000 0.002000 nt 8 gt1 2D ACQUISITION gz1v13 507 21367.5 gt3 0.001000 sw1 ni gstab 0.000500 128 arrayed phase F2 PROCESSING gf TRANSMITTER 0.059 H1 gfs fn tn not used 499.830 sfrq 2048 tof 499.7 F1 PROCESSING 58 tpwr gf1 0.006 /F2 14.000 not used pw gfs1 (ppm-) DECOUPLER proc1 fn1 1p C13 2048 dn 0 dof -2515.2 DISPLAY nny ccp 32258 285.0 dm sp 3656.2 dmm wp dmf sp1 1581.7 dpwr 38 wp1 14502.4 2 pwx1v1 54 rfl 4102.7 14.000 rfp 3082.9 pwx HSQC rfl1 15387.9 j1xh 140.0 rfp1 14090.0 0 nullflg PLOT у 2 Ο wc 150.0 mult SC 6.2 3wc2 116.2 sc2 0 136 vs 0 th ai cdc ph 0 4 5 6 7.

> > - 1

110

100

90

80

120

.

S45

20

30

40

50

60

70

F1 (ppm)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Fig S46. COSY of compound 9.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2**Pig** S47. NOESY of compound 9.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Fig S48. 1H NMR (CDCI3, 500 MHz) of compound 10.

This journal is © The Royal Society of Characterist Wild (CDCI3, 126 MHz) of compound 10.

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Fig S50. DEPT of compound 10.

S50

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry Fig^{201} \$51. HSQC of compound 10.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 204 ig S52. COSY of compound 10.

sw

at

np fb

SS

d1

nt

tn

dn dm

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Fig S54. 1H NMR (CDCI3, 500 MHz) of compound 1.

Electronic Supplementation Material (ESI) for Chemical Communications This jurnan's of the Nova Society of

Supporting information). Copyright (2001) American Chemical Society. (For comparison)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Fig S56. 13C NMR (CDCI3, 126 MHz) of compound 1.

Electronic Supplementary Material (ESI) for Chemical Communications. This jour hage Strine Racal Store Racal Store Racal Store (25), pp 8606–8611, Supporting information). Copyright (2001) American Chemical Society. (For comparison)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Fig S58. DEPT of compound 1.

S58

.

F1 (ppm)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 20159. HSQC of compound 1.

S59

•

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry Fage 560. COSY of compound 1.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemi**Fig** 361. NOESY of compound 1.

First line of organization's address Second line of organization's address

Report produced on 2011/7/26 at 下午 01:31:04 by Put your name here

2011/7/26 ¤W¤È 11:52:04 Flow set to 1.00 at 0.00 minutes 2011/7/26 ¤U¤È 12:28:32 Run stopped by operator

PEAK REPORT

#	begin	end	area	percent	maximum	time	begins as	name
1	24.33	26.48	2292	50.4	94.39	25.23	Baseline	
2	27.35	29.81	2257	49.6	89.36	28.30	Baseline	

First line of organization's address Second line of organization's address

Report produced on 2011/7/26 at 下午 02:33:10 by Put your name here

2011/7/26 ¤U¤È 01:49:21 Flow set to 1.00 at 0.00 minutes 2011/7/26 ¤U¤È 02:31:29 Run stopped by operator

PEAK REPORT

#	begin	end	area	percent	maximum	time	begins as	name
1	22.64	26.69	11390	100.0	218.31	24.25	Baseline	

Electronic Supplementary Material (ESI) for Chemical Communications This journals Some Hole Sanalysis of the mixture of racemic and chiral compound (+)-3 obtained.

First line of organization's address Second line of organization's address

2011/7/26 ¤U¤È 02:34:54 Flow set to 1.00 at 0.00 minutes 2011/7/26 ¤U¤È 03:11:15 Run stopped by operator

PEAK REPORT

#	begin	end	area	percent	maximum	time	begins as	name
1	23.59	26.56	7389	87.5	159.20	24.46	Baseline	
2	27.45	29.51	1052	12.5	62.81	28.38	Baseline	