Electronic Supplementary Information

Carbon nanodots as a fluorescence probe for rapid, sensitive, and label-free detection of Hg²⁺ and biothiols in complex matrices

Experimental Section

Materials and measurements:

EDTA-2Na·2H₂O was purchased from Alfa Aesar and used without further purification. Standard stock solutions of Hg^{2+} ion were prepared with $HgCl_2$ in double-distilled water with the same concentration HCl. Different concentrations of Hg^{2+} ion were obtained by diluting standard stock solutions. All other reagents were of analytical reagent grade and used as received. The UV-Vis absorption spectra and the fluorescence spectra were recorded using a JASCO V-550 UV/Visible and a JASCO FP6500 spectrophotometer (JASCO International Co.,LTD., Tokyo, Japan). The ζ -potential the C-Dots was measured in a Zetasizer 3000HS analyzer. TEM images were recorded using a FEI TECNAI G2 20 high-resolution transmission electron microscope operating at 200 kV. Nanopure water (18.2 M Ω ; Millpore Co., USA) was used in all experiments.

Preparation of fluorescent carbon dots (C-Dots):

In a typical procedure, a quartz boat filled with EDTA-2Na·2H₂O (AR, 0.5 g) was thrust into a quartz tube and calcined at 400 °C for 2 h in flowing N₂. The resulting blank powders were dissolved in acetone (20 mL) and then centrifuged at a high speed (13000 rpm) for fifteen minutes. Pure luminescent C-Dots powder was obtained by evaporating the upper yellow solution. Then the obtained C-Dots were redissolved in 8 mL double-distilled water as stock solution ($66 \mu g/mL$).

Assay procedure:

4 μ L of C-Dots stock solution (66 μ g/mL) was mixed with 400 μ L of 10 mM Tris-HCl buffer. 5 μ L of different concentration of Hg(II) was added, and equilibrated for 5 min at room temperature before the spectral measurements. The fluorescence spectra were recorded under excitation at 360 nm.

For the Cys detection, 4 μ L of different concentration of Cys were added to the above mixture solution. After 1 min, the fluorescence spectra were recorded.

FIGURE

Fig. S1 Transmission electron microscopy (TEM) images of C-Dots in the absence (a) and presence of 5 μ M Hg²⁺(b).

Fig. S2 Fourier transform infrared (FTIR) spectrum of the C-Dots.

Fig. S3 FL emission spectra of C-Dots in the absence of Hg^{2+} (a) and the presence of Hg^{2+} (40 μ M) (b) and FL restoration of the C-Dots/Hg²⁺ system in the presence of Cys (40 μ M) (c) in the 10 mM Tris-HCl buffer at pH 8.5.

Fig. S4 UV-Vis spectra of C-Dots in the absence of Hg^{2+} (blank lines) and the presence of 40 μ M Hg^{2+} (red lines) and UV-Vis restoration of the C-Dots/ Hg^{2+} system in the presence of 40 μ M Cys (blue lines) in the 10 mM Tris-HCl buffer at pH 8.5.

Figure S5 The response time of C-Dots to different concentrations of Hg^{2+} (0 nM, 400 nM, 1 μ M, 2 μ M) (a) and Cys(0 nM, 100 nM, 400 nM, 1 μ M, 2 μ M) (b). (I₀, I and Ia were the FL signals of the C-Dots solution without Hg^{2+} , C-Dots solution with Hg^{2+} , C-Dots solution with Hg^{2+} and Cys, respectively)

Fig. S6 Plots of the C-Dots FL-quenched efficiency $(I_0-I)/I_0$ by 5.0 μ M Hg²⁺ (a) and FL-recovered efficiency (Ia- I)/(I_0-I) at 410nm by 1 μ M Cys versus different pH (b).

Method	Linear range	Detect limit	reference	
Fluorescent gold	0.01.10 uM	5 nM	s1	
nanoparticle	0.01-10 µlvi	5 IIIVI		
DNA-functionalized gold	0.05.2.5	25 nM	s2	
nanoparticles	0.03-2.5 μM	23 IIIVI		
Mononucleotides-stabilized	0.02 ($0.0M$	50) /	a?	
gold nanoparticles	0.02 -0.0 µlvi	50 nivi	85	
Surface-modified CdTe	0.012.15 mM	1 mM	-4	
quantum dots	0.012-1.3 IIIIvi	4 mvi	84	
Au@Ag core-shell	0.01.0.45	0 mM	s5	
Nanoparticles	0.01-0.43 µM	9 IIIVI		
Cysteine functionalized Ag	0.55)	65 mM	s7	
nanoparticles	0-33 μΜ	03 MM		
Carbon nanodots	0-3 μM	4.2 nM	Our method	

Table S1 Comparison of different nanoparticle-based methods for Hg^{2+} detection.

Fig. S7 Selectivity of the Hg^{2+} sensor. All competing ion solutions were 1 μ M.

Samples	Added	Measured(nM)	Recovery(%)	RSD(n=3%)	
	Hg(II)(nM)				
Lake water	30	30.14	101	1.7	
	200	210	105	2.6	
Fountain water	30	28.1	94	2.0	
	200	194.7	97	2.3	
Tap water	30	30.23	101	1.3	
	200	213.6	107	1.0	

Table S2 Determination of Hg^{2+} in natural water samples.

Fig. S8 The relationship between (Ia-I)/ I_0 and (a) Hcy (b) GSH from 0.01 to 10 μ M, The error bars represent the standard deviation of three measurements. Inset is a linear region. Ia is the recovered FL intensity of C-Dots in the presence of HCy/GSH, I is the FL intensity of C-Dots in the presence of Hg²⁺ (5 μ M), and I₀ is the FL intensity of C-Dots at 410 nm, respectively.

Method	Cys		Нсу	_	GSH	_	reference
	linear	detect	linear	detect	linear	detect	
	range	limit	range	limit	range	limit	
Gold nanoparticle-based	4.0-250	10 nM	Not given		Not given		s8
near-infrared fluorescent	μΜ						
CdTe quantum	2.0-20	0.6 µM	Not given		0.6-20	0.1 µM	s9
dots-Hg(II) system	μΜ				μΜ		
CdTe/CdSe quantum dots	0.2-200	131 nM	Not given	26 nM	Not given	26 nM	s10
	μΜ						
A fluorescent probe based	Not given	50 nM	Not given	100 nM	0-350 nM	53 nM	s11
on fluorescein							
Poly(methacrylic acid)	6.0-250	20 nM	Not given		Not given		s12
templated Ag clusters	μΜ						
Oligonucleotide-stabilized	8.0-100	4.0 nM	0.6-2 µM	0.2 µM	8.0-100	4.0 nM	s13
Ag nanoclusters	nM				nM		
DNA/Ligand/Ion-Based	2.5-110	5.1 nM	Not given		Not given		s14
	nM						
Carbon nanodots/Hg ²⁺	0.01-5	4.9 nM	0.01-5	6.1 nM	0.01-5	8.5 nM	Our
	μΜ		μΜ		μΜ		method

Table S3 Comparison of different methods for biothiols detection.

Fig. S9 FL response of C-Dots solution in the presence of different concentrations of biothiols.

Fig. S10 FL response of C-Dots/Hg²⁺ solution towards 19 essential amino acids at a concentration of 5 μ M.

Fig. S11 FL response of C-Dots/Hg²⁺ to serum with or without pretreatment by thiol blocking agent, NEM.

Determined	Added Cys	Measured	Recovery	RSD
biothiol (µ M)	(µM)	(µM)	(%)	(n=3, %)
168.6	50	229.6	104.9	2.38
168.6	100	279	96.1	3.1

Table S4 Determination of biothiols in fetal bovine serum(fetal bovine serum wasdiluted with buffer before detection).

Supporting References

- (s1) C. C. Huang, Z. Yang, K. H. Lee and H. T. Chang, *Angew. Chem. Int. Ed.*, 2007, 46, 6824–6828.
- (s2) C. W. Liu, C. C. Huang and H. T. Chang, *Langmuir*, 2008, 24, 8346–8350.
- (s3) Y. Xu, L. Deng, H. Wang, X. Ouyang, J. Zheng, J. Li and R. Yang, *Chem. Commun.*, 2011, 47, 6039–6041.
- (s4) Y. Xia, C. Zhu, Talanta, 2008, 75, 215–221.
- (s5) S. Guha, S. Roy and A. Banerjee, Langmuir, 2011, 27, 13198–13205.
- (s6) C. Jiang, Z. Guan, S. Y. R. Lim, L. Polavarapu and Q. Xu, Nanoscale, 2011, 3, 3316–3320.
- (s7) L. Shang, J. Yin, J. Li, L. Jin and S. Dong, Biosens. Bioelectron., 2009, 25, 269–274.
- (s8) B. Han, J. Yuan and E. Wang, Anal. Chem., 2009, 81, 5569–5573.
- (s9) Y. Zhang, Y. Li and X. Yan, Anal. Chem., 2009, 81, 5001–5007.
- (s10) X. Chen, S. K. Ko, M. J. Kim, I. Shin and J. Yoon, Chem. Commun., 2010, 46, 2751–2753.
- (s11) L. Shang, S. Dong, Biosens. Bioelectron., 2009, 24, 1569–1573.
- (s12) B. Han and E. Wang, Biosens. Bioelectron., 2011, 26, 2585–2589.
- (s13) F. Pu, Z. Huang, J. Ren and X. Qu, Anal. Chem., 2010, 82, 8211-8216.