Supporting Information

Organometallic Multiads of Zinc(II) Porphyrins; Clear Evidence for Interchromophoric Cooperativity in S₁ and T₁ Energy Transfers

Bin Du and Pierre D. Harvey*

Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, Canada. *To whom correspondance should be addressed: Tel: 001-819-821-7092, Fax: 001-819-821-8017; E-mail: <u>Pierre.Harvey@USherbrooke.ca</u>

Table of Content

Figure S1. The synthetic routes of target multiads zinc(II) porphyrins.

Figure S2. ¹H NMR spectrum of the compound **3** in CDCl₃.

Figure S3. ³¹P NMR spectrum of the compound **3** in CDCl₃

Figure S4. ¹³C NMR spectrum of the compound **4** in CDCl₃.

Figure S5. ¹H NMR spectrum of the compound **4** in CDCl₃.

Figure S6. ¹H NMR spectrum of the compound **5** in CDCl₃.

Figure S7. ³¹P NMR spectrum of the compound **5** in CDCl₃.

Figure S8. ¹H NMR spectrum of the compound **6** in CDCl₃.

Figure S9. ¹³C NMR spectrum of the compound **6** in CDCl₃.

Figure S10. ¹H NMR spectrum of the compound **7** in CDCl₃.

Figure S11. ¹³C NMR spectrum of the compound **7** in CDCl₃.

Figure S12. Ms spectrum of the compound 7.

Figure S13. ¹H NMR spectrum of the compound **8** in CDCl₃.

Figure S14. ³¹P NMR spectrum of the compound **8** in CDCl₃.

- Figure S15. Ms spectrum of the compound 8.
- Figure S16. ¹H NMR spectrum of the compound **9** in CDCl₃.
- Figure S17. ¹³C NMR spectrum of the compound **9** in CDCl₃.
- Figure S18. ³¹P spectrum of the compound **9** in CDCl₃.
- Figure S19. Ms spectrum of the compound 9.

Figure S20. Corrected emission spectra of **4** and **7** at different excitation wavelength at 298 K in 2-MeTHF.

Figure S21. Corrected absorption (blue), excitation (red) and emission (black) spectra for zinc porphyrins (5, 7, 8 and 9) at 298 K in 2-MeTHF.

- Figure S22. Corrected absorption (blue), excitation (red) and emission (black) spectra for zinc porphyrins (5, 7, 8 and 9) at 77 K in 2-MeTHF.
- Figure S23. Corrected emission spectra of the zinc(II) porphyrins (**5** and **8**) at the different excitation wavelength at 298 K in 2-MeTHF.
- Figure S24. Corrected emission spectra of the zinc(II) porphyrins (7) at the different excitation wavelength at 77 K in 2-MeTHF.
- Table S1. UV-vis absorption data for the target zinc(II) porphyrins in 2-MeTHF at 298 K.
- Table S2. Emission data for all target zinc(II) porphyrins in 2-MeTHF.

Experimental Section

Instruments: The ¹H NMR, ¹³C NMR and ³¹P NMR spectra were collected on a Bruker DRX 400 spectrometer in deuterated chloroform solution, with tetramethylsilane (TMS) as internal standard in all cases. MALDI-TOF mass spectra were recorded on a Bruker BIFLEX III TOF mass spectrometer (Bruker Daltonics, Billerica, MA, USA) using a 337 nm nitrogen laser with dithranol as matrix. The UV-vis spectra were recorded on a Hewlett-Packard diode array model 8452A at Sherbrooke. he emission and excitation spectra were obtained using a double monochromator Fluorolog 2 instrument from Spex. The fluorescence lifetimes were measured on a Timemaster Model TM-3/2003 apparatus from PTI. The source was a nitrogen laser with a high-resolution dye laser (fwhm = 1.5 ns), and the fluorescence lifetimes were obtained from high-quality decays and deconvolution or distribution lifetime analysis. The uncertainties were about 40 ps based on multiple measurements. The phosphorescence lifetimes were performed on a PTI LS-100 using a 1 μ s tungsten flash lamp (fwhm ~1 μ s).

Quantum yield measurements: All samples were prepared under an inert atmosphere (in a glove box, $O_2 < 12$ ppm) by dissolution of the different compounds in 2MeTHF using 1 cm³ quartz cells at 298 K. Three different measurements (i.e. different solutions) were performed for each set of photophysical data (quantum yield). The sample concentrations were chosen to correspond to an absorbance of 0.05 at the excitation wavelength. Each absorbance value was measured five times for better accuracy in the measurements of emission quantum yield. The reference was zinc tetraphenylporphyrin (0.033 in THF).¹⁻²

Materials. All reagents and chemicals, unless otherwise stated, were purchased from commercial sources and used without further purification. The compounds 4-trimethylsilylethynylbenzaldehyde,³ 2-carbaldehyde-5,5',10,10',15,15'-hexahexyltruxene,⁴ 5-4-trimethylsilylethynylphenyldipyrromethane,⁵ $trans-[Pt(P(n-Bu)_3)_2Cl_2],$ and 5-(4-ethynylphenyl)-13,17-diethyl-2,3,7,8,12,18-hexamethylporphyrin zinc⁶ (2),trans-[Pt- $(P(n-Bu)_3)_2Cl(C \equiv CC_6H_5)]^6$ were prepared according to the literature methods. Chromophore abbreviation in experimental characterization: Tr: truxene; Py: pyrrole; Ph: phenyl; P: phosphorus.

Figure S1. The synthetic routes of target multiads zinc(II) porphyrins. i) (a) CH₂Cl₂, BF₃•OEt₂, DDQ; (b) Zn(OAc)₂, THF/MeOH; (c) TBAF, THF. ii) CH₂Cl₂/*i*Pr₂NH, CuI. iii) CH₂Cl₂/*i*Pr₂NH, CuI, *trans*-[Pt(P(*n*-Bu)₃)₂Cl₂]. iv) (a)CHCl₃, BF₃•OEt₂, DDQ; (b) Zn(OAc)₂, THF/MeOH. v) THF/ MeOH, K₂CO₃, RT. vi) CH₂Cl₂/*i*Pr₂NH, CuI.

3: CuI (6.0 mg, 0.030 mmol) was added to a mixture of *trans*-Pt(PnBu₃)₂Cl₂ (1.2 g, 1.8 mmol) and 5-(4-ethynylphenyl)-13,17-diethyl-2,3,7,8,12,18-hexamethylporphyrin zinc (0.20 g, 0.35 mmol) in CH₂Cl₂/iPr₂NH (50 mL, 1:1 v/v). The purple solution was stirred overnight under inert atmosphere. After all solvent was removed under reduced pressure, the residue was redissolved in CH₂Cl₂ and washed 3 times with water and dried over K₂CO₃. All solvents were removed under reduced pressure again. The residue was dissolved in a minimum amount of CH₂Cl₂ and passed through a silica column using hexane/CH₂Cl₂ (40/60, v:v) as a solvent to afford a purple solid (35 %, 0.15 g). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 9.77 (s, 2H, meso-H), 9.46 (s, 1H, meso-H), 7.88-7.85 (d, 2H, ³J_{H-H} = 8.0 Hz, Ph-H), 7.61-7.59 (d, 2H, ³J_{H-H} = 8.1 Hz, Ph-H), 3.81 (q, 4H, ³J_{H-H} = 7.6 Hz, CH₂), 3.45 (s, 6H, CH₃), 3.43 (s, 6H, CH₃), 2.49 (s, 6H, CH₃), 2.26-2.21 (m, 12H, P-CH₂), 1.89-1.55 (m, 24H, CH₂), 1.06-0.99 (m, 18H, CH₂CH₃). ³¹P NMR (CDCl₃, 161.92 MHz, ppm): δ 8.16. 4.50. MS ESI: m/z=1246.5354 [MH]⁺; 1245.52 calcd for C₆₂H₈₉ClN₄P₂PtZn.

4: A solution of 2-carbaldehyde-5,5',10,10',15,15'-hexahexyltruxene (0.92 g, 1.1 mmol), 4-trimethylsilylethynylbenzaldehyde (0.070 g, 0.35 mmol) and pyrrole (0.10 g, 1.4 mmol) in CHCl₃ (50 mL) was degassed for 30 min at room temperature. The condensation was initiated by the addition of BF₃•Et₂O in CH₂Cl₂ (5.0 μ L) in the dark and the reaction was stirred overnight. The 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (**DDQ**; 1.5 g, 2.3 mmol) was added for oxidation. The reaction mixture was stirred for additional 2 h. After the addition of triethylamine (1.0 mL), the reaction was stirred for 20 min.The reaction was concentrated and chromatographed on silica gel using CH₂Cl₂/hexane (1:4, v/v) as solvents to obtain a purple free base porphyrin. A solution of Zn(OAc)₂ (1.0 g, 4.5 mmol) in MeOH (10 mL) was added to the free base porphyrin solution in THF (50 mL) and the reaction mixture was stirred overnight. The solvents were removed under vacuum leaving a purple solid. The metalloporphyrin was purified by silica gel chromatography with CH₂Cl₂/hexane (1:4, v/v) as solvents to obtain a purple solid. The zinc porphyrin further reacted with **NBu₄F** (2 equivalent) in THF (50 mL) for 2 h. After the solvent was removed and a flash chromatography using CH₂Cl₂ as solvent, title complex was obtained (0.12 g, 10 % for three steps). ¹H NMR (CDCl₃, 100 MHz, ppm): δ 9.17-9.10 (6H, m, Py-H), 9.00-8.98 (2H, d, J = 8Hz, Py-H), 8.76-8.74 (3H, m, Tr-H), 8.43-8.25 (14H, m, Tr-H and Ph-H), 7.94-7.92 (2H, m, Ph-H), 7.56-7.37 (18H, m, Tr-H), 3.32 (1H, s, $-C \equiv CH$), 3.26-3.04 (18H, m, Tr-CH₂), 2.32-2.10 (18H, m, Tr-CH₂), 0.82-0.57 (198H, m, CH₂CH₃). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 153.9, 153.8, 152.4, 150.8, 150.2, 145,5 143.9, 139.9, 138.5, 134.6, 132.9, 132.5, 131.9, 130.7, 129.0, 126.7, 126.3, 124.9, 122.8, 122.5, 121.6, 120.3, 84.1, 78.4, 56.1, 56.0, 37.3, 31.8, 30.6, 30.0, 29.7, 24.2, 22.4, 14.4, 14.3, 14.2, 14.1.

5: Treatment of **4** (0.45 g, 0.15 mmol) with 1 equiv of **3** (0.19 g, 0.15 mmol) in the presence of CuI (5.0 mg) using *i*Pr₂NH-CH₂Cl₂ (50 mL, 1:1, v/v) as a solvent for overnight at 298 K under argon, gave the title complex as a red solid after purification on a silica column using n-hexane/CH₂Cl₂ (60:20, v/v) as a solvent (0.19 g, 30 %). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.08 (2H, s, meso-H), 9.94 (H, s, meso-H), 9.19-9.13 (8H, m, Py-H), 8.77-8.75 (3H, m, Tr-H), 8.33-8.15 (14H, m, Tr-H and Ph-H), 7.90-7.88 (2H, d, *J* = 8 Hz, Ph-H), 7.75-7.73 (4H, m, Ph-H), 7.56-7.25 (18H, m, Tr-H), 4.08-4.02 (4H, q, ³*J*_{H-H} = 7.6 Hz, CH₂), 3.60 (s, 6H, CH₃), 3.53 (s, 6H, CH₃), 3.14-3.03 (18H, m, Tr-CH₂), 2.55 (s, 6H, CH₃), 2.41-2.13 (30H, m, Tr-CH₂ and P-CH₂), 1.87-1.57 (m, 24H, CH₂), 1.10-0.50 (216H, m, CH₂CH₃). ³¹P NMR (CDCl₃, 161.92 MHz, ppm): δ 4.32. MALDI-TOF MS, m/z calcd for C₂₇₉H₃₆₈N₈P₂PtZn₂: 4215.675. Found (MH)⁺: 4216.725.

6: 5-4-Trimethylsilylethynylphenyldipyrromethane (3.6 11 mmol) and g, 2-carbaldehyde-5,5',10,10',15,15'-hexahexyltruxene (9.9 g, 11 mmol) were dissolved in CHCl₃ (125 mL) under Ar in a one-neck round-bottom flask. BF₃•Et₂O (25 µL) was added to initiate the condensation reaction. The reaction mixture stirred overnight under was Ar. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ; 2.6 g, 11 mmol) was added to the reaction mixture, and stirring was continued for another hour. The triethylamine (5 mL) was added and the mixture was stirred for additional 15 min. The solvent was removed under reduced pressure. The silicon column chromatography using hexane/CH₂Cl₂ (4:1, v:v) as a solution afforded a purple solid. A solution of Zn(OAc)₂·2H₂O (1.9 g, 8.5 mmol) in MeOH (18 mL) was added to the free base in THF (100 mL), and the mixture was stirred overnight. The solvent was removed under vacuum. The

crude product was then purified by using chromatography on silica gel with CH₂Cl₂/hexane (1:4, v:v) as a solvent to afford a red solid (1.5 g, 11 %). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 9.17-9.10 (4H, m, Py-H), 8.99-8.94 (4H, m, Py-H), 8.75-8.73 (2H, m, Tr-H), 8.47-8.19 (12H, m, Tr-H and Ph-H), 7.91-7.88 (4H, m, Ph-H), 7.56-7.37 (12H, m, Tr-H), 3.31-2.97 (12H, m, Tr-CH₂), 2.29-2.08 (12H, m, Tr-CH₂), 1.11-0.52 (132H, m, CH₂ and CH₃), 0.35(18H, s, Si-CH₃). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 153.7, 153.6, 152.1, 150.5, 149.9, 145.2, 142.1, 140.5, 138.2, 132.7, 131.7, 128.7, 124.7, 122.6, 122.2, 121.9, 120.4, 105.1, 95.3, 55.9, 55.8, 55.7, 37.0, 31.5, 29.6, 29.4, 22.3, 22.1, 14.0, 13.9, 13.80.

7: K₂CO₃ (1.4 g, 9.7 mmol) was added to a solution of **4** (4.7 g, 1.9 mmol) in THF/MeOH (v/v = 3:1; 100 mL) and was stirred for 12 h. The solution was evaporated under vacuum. The crude product was purified by column chromatography on silica gel with CH₂Cl₂/hexane (1:4, v:v) as the solvent to yield a red solid (4.0 g, 98%). ¹H NMR (CDCl₃, 400 MHz, ppm): δ 9.14-9.13 (4H, d, *J* = 4.0 Hz, Py-H), 9.01-9.00 (4H, d, *J* = 4.0 Hz, Py-H), 8.77-8.75 (2H, d, *J* = 8.0 Hz, Tr-H), 8.47-8.44 (4H, m, Tr-H), 8.37-8.35 (2H, d, *J* = 8 Hz, Tr-H), 8.30-8.25 (6H, m, Tr-H and Ph-H), 7.94-7.92 (4H, d, *J* = 8 Hz, Ph-H), 7.56-7.37 (12H, m, Tr-H), 3.31 (2H, s, $-C \equiv CH$), 3.30-2.95 (12H, m, Tr-CH₂), 2.30-2.08 (12H, m, Tr-CH₂), 1.11-0.55 (132H, m, CH₂ and CH₃). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 154.0, 153.9, 152.4, 150.8, 150.1, 145.5, 143.8, 140.1, 138.5, 133.0, 132.0, 129.1, 126.7, 126.3, 125.0, 122.9, 122.5, 122.3, 121.6, 120.5, 120.2, 83.9, 78.4, 56.1, 56.0, 55.9, 37.3, 31.8, 29.9, 29.7, 22.6, 22.4, 14.4, 14.3, 14.2, 14.1. MALDI-TOF MS, m/z calcd for C₁₆₂H₁₉₆N₄Zn: 2261.475. Found (MH)⁺: 2262.479.

8: Treatment of 7 (0.34 g, 0.15 mmol) with 2 equiv of 3 (0.37 g, 0.30 mmol) for 12 h at 298 K, in the presence of CuI (3.0 mg), in $iPr_2NH-CH_2Cl_2$ (50 mL, 1:1, v/v) under argon, gave the title complex as a red solid after purification on a silica column using n-hexane/CH₂Cl₂ (30:60, v/v) as a solvent (0.070 g, 10 %). ¹H NMR (CDCl₃, 400 MHz, ppm): 10.12 (4H, s, meso-H), 9.99 (2H, s, meso-H), 9.14-9.11 (8H, m, Py-H), 8.77-8.75 (2H, d, J = 8 Hz, Tr-H), 8.48-8.29 (8H, m, Tr-H), 8.17-8.15 (2H, d, J = 8 Hz, Ph-H), 7.90-7.88 (2H, d, J = 8 Hz, Ph-H), 7.74-7.58 (4H, m, Ph-H), 7.52-7.41 (12H, m, Tr-H), 3.90-3.88 (8H, q, ³J_{H-H}=7.6 Hz, CH₂), 3.48 (24H, s, CH₃), 3.29-3.06

(12H, m, Tr-CH₂), 2.54-2.52 (12H, s, CH₃), 2.45-2.13 (48H, m, Tr-CH₂ and P-CH₂), 1.76-1.52 (m, 48H, CH₂), 1.10-0.50 (168H, m, CH₂CH₃). ³¹P NMR (CDCl₃, 161.92 MHz, ppm): δ 5.01. MALDI-TOF MS: m/z calcd for C₂₈₆H₃₇₂N₁₂P₄Pt₂Zn₃: 4680.560. Found (MH)⁺: 4681.769.

9: Treatment (0.34)0.15 of 7 g, mmol) with 2 equiv of trans-phenylethynylchlorobis(tri-n-butylphosphine) platinum(II) (0.22 g, 0.29 mmol) for 12 h at 298 K, in the presence of CuI (3.0 mg), in *i*Pr₂NH-CH₂Cl₂ (50 mL, 1:1, v/v) gave the title complex as a red solid (0.25 mg, 75%) after purification on a silica column using n-hexane/CH₂Cl₂ (1:2, v/v) as a solvent. ¹HNMR(CDCl₃, 400 MHz, ppm): δ 9.11-9.07 (8H, m, Py-H), 8.75-8.73 (2H, d, J = 8.0Hz, Tr-H), 8.48-8.43 (4H, m, Tr-H), 8.37-8.35 (2H, d, J = 8 Hz, Tr-H), 8.29-8.26 (2H, m, Tr-H), 8.12-8.10 (4H, d, J = 8.0 Hz, Ph-H), 7.68-7.66 (4H, m, J = 8.0 Hz, Ph-H), 7.56-7.40 (12H, m, Tr-H), 7.31-7.29 (4H, m, J = 8.0 Hz, Ph-H), 7.24-7.18 (4H, t, J = 8.0 Hz, Ph-H), 7.14-7.11 (2H, m, Ph-H), 3.31-2.99 (12H, m, Tr-CH₂), 2.27-2.21 (36H, m, Tr-CH₂ and P-CH₂), 1.71-0.1.44 (48H, m, CH₂), 1.11-0.55 (168H, m, CH₂ and CH₃). ¹³C NMR (CDCl₃, 100 MHz, ppm): δ 153.9, 152.3, 150.6, 150.5, 145.5, 145.4, 139.9, 138.6, 131.1, 129.3, 128.1, 126.6, 126.3, 124.9, 122.8, 122.3, 121.8, 56.1, 56.0, 55.9, 37.3, 31.8, 29.9, 29.7, 26.7, 22.6, 22.4, 14.4, 14.3, 14.2, 14.1. ³¹P NMR (CDCl₃, 161.92 MHz): δ 4.18. MALDI-TOF MS, m/z calcd for C₂₂₆H₃₁₂N₄P₄Pt₂Zn: 3660.207. Found (MH)⁺: 3661.209.

Figure S2. ¹H NMR spectrum of the compound **3** in CDCl₃.

Figure S3. ³¹P NMR spectrum of the compound **3** in CDCl₃.

Figure S5. ¹H NMR spectrum of the compound **4** in CDCl₃.

Figure S9. 13 C NMR spectrum of the compound **6** in CDCl₃.

Figure S10. ¹H NMR spectrum of the compound **7** in CDCl₃.

Figure S11. ¹³C NMR spectrum of the compound **7** in CDCl₃.

Figure S12. Ms spectrum of the compound 7.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Figure S13. ¹H NMR spectrum of the compound **8** in CDCl₃.

Figure S15. Ms spectrum of the compound **8**.

Figure S16. ¹H NMR spectrum of the compound **9** in CDCl₃.

Figure S17. ¹³C NMR spectrum of the compound **9** in CDCl₃.

Figure S19. Ms spectrum of the compound 9.

Figure S20. Corrected emission spectra of **4** and **7** at different excitation wavelengths at 298 K in 2-MeTHF.

Figure S21. Corrected absorption (blue), excitation (red) and emission (black) spectra for zinc porphyrins (5, 7, 8 and 9) at 298 K in 2-MeTHF.

Figure S22. Corrected absorption (blue), excitation (red) and emission (black) spectra for zinc porphyrins (5, 7, 8 and 9) at 77 K in 2-MeTHF.

Figure S23. Corrected emission spectra of the zinc(II) porphyrins (5 and 8) at the different excitation wavelength at 298 K in 2-MeTHF.

Figure S24. Corrected emission spectra of the zinc(II) porphyrins (7) at the different excitation wavelength at 77 K in 2-MeTHF.

Complex	$\lambda_{abs}(nm) (\epsilon \times 10^{-3} \text{ M}^{-1} \text{ cm}^{-1})^{a}$						
	Tru	[Pt]	Soret	Q			
5	308 (192)	334(75)	412(580), 434(512)	540(21.7), 560(38.2), 608(19.2)			
7	296 (97), 308 (120)		432(533)	564 (19.9), 605 (10.5)			
8	307(202.7)	334(138.8)	412(932), 434(832)	540(56.4), 560(46.5), 608(24.7)			
9	296 (172), 308 (195)	342 (84.8)	434 (975)	562 (40.7), 604 (32.3)			

Table S1. UV-vis absorption data for the target zinc(II) porphyrins in 2-MeTHF at 298 K.

^{*a*}The absorption band is assigned to the truxene (**Tru**), $[(p-C_6H_4)C \equiv CPt(P(n-Bu)_3)_2C \equiv C(p-C_6H_4)]$ [**Pt**], or zinc(II) porphyrin (Soret band and Q band).

Table S2. Emission data for all target zinc(II) porphyrins in 2-MeTHF.

Compound	chrom ^a	$\lambda_{em}(nm)^{b}$	$\lambda_{em}(nm)^{b}$	$\Phi_{\rm F}^{\ \rm c}$
		298 K	77 K	298 K
5	Tru and [Pt]	359, 379, 398, 446	360, 378, 399, 427, 452,	0.047
	ZnP2	614, 661	616, 674, 803	
	ZnP1	579	575	
7	Tru	440	360, 380, 401, 424, 450, 502,	0.019
	ZnP2	610, 661	610, 671, 797	
8	Tru and [Pt]	367, 441	360, 379, 399, 424, 479, 502	0.027
	ZnP2	615, 661	617, 645, 677, 710, 806	
	ZnP1	578	575	
9	Tru and [Pt]	442	358, 376, 397, 450, 522,	0.036
	ZnP2	615, 662	615, 673, 803	

^{*a*}**Tru:** chromophore = truxene; **ZnP2**: chromophore = meso-aryl-substituted zinc(II) porphyrin. **ZnP1**: chromophore = β -pyrrole-alkyl-substituted zinc(II) porphyrin. [**Pt**]: chromophore = $[(p-C_6H_4)C\equiv CPt(P(n-Bu)_3)_2C\equiv C(p-C_6H_4)]$. ^{*b*}The emission spectra was recorded using λ_{exc} = 310 nm under the inert atmosphere at 298 K and 77 K. ^{*c*}Fluorescence quantum yields (Φ_F) of the samples in 2MeTHF were measured by using zinc-tetraphenylporphyrin (**ZnTPP**, $\Phi_F = 0.033$ in THF) as standards using the excitation of 560 nm.

Reference

- 1. B. Li, J. Li, Y. Fu and Z. Bo, J. Am. Chem. Soc. 2004, 126, 3430-3431.
- (a) S.M. Aly, C. Ayed, C. Stern, R. Guilard, A. S. Abd-El-Aziz and P. D. Harvey, *Inorg. Chem.* 2008, 47, 9930; (b) R.O. Loutfy and K.Y. Law, *J. Phys. Chem.* 1980, 84, 2803-2808.
- 3. W. B. Austin, N. Bilow, W. J. Kelleghan and K. S. Y. Lau, J. Org. Chem. 1981, 46, 2280-2287.
- 4. B. Du, D. Fortin and P. D. Harvey, Inorg. Chem. 2011, ASAP.
- 5. L. Liu, D. Fortin and P. D. Harvey, Inorg. Chem. 2009, 48, 5891–5900.
- 6. (a) K. Kilså, J. Kajanus, A. N. Macpherson, J. Mårtensson and B. Albinsson, J. Am. Chem. Soc. 2001, 123, 3069; (b) D. Bellows, S.M. Aly, C. P. Gros, M. E. Ojaimi, J.-M. Barbe, R. Guilard and P. D. Harvey, *Inorg. Chem.* 2009, 48, 7613.