Supporting Information for

A robust Zirconium *N*-heterocyclic carbene complex for the living and highly stereoselective ring-opening polymerization of *rac*-lactide

Charles Romain, Benoît Heinrich, Stéphane Bellemin Laponnaz, Samuel Dagorne

Laboratoire DECOMET and Service de Radiocristallographie, Institut de Chimie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg

IPCMS (Institut de Physique et Chimie des Matériaux de Strasbourg), CNRS-Université de Strasbourg, 23 rue du Loess BP 43, F-67034 Strasbourg, France

Chemical Communications

General Procedures. All experiments were carried out under $N_2\ using\ standard\ Schlenk$ techniques or in a Mbraun Unilab glovebox. Toluene, pentane and tetrahydrofuran were collected after going through drying columns (SPS apparatus, MBraun) and stored over activated molecular sieves (4 Å) for 24h in a glovebox prior to use. Tetrahydrofuran was distilled over Na/benzophenone and stored over activated molecular sieves (4 Å) for 24h in a glovebox prior to use. CH₂Cl₂, CD₂Cl₂, and C₆D₆ were distilled from CaH₂, degassed under a N₂ flow and stored over activated molecular sieves (4 Å) in a glovebox prior to use. Anhydrous BnOH (99.8%) was purchased from Aldrich and stored over activated molecular sieves (4 Å) for 24h in a glovebox prior to use. All deuterated solvents were obtained from Eurisotop (CEA, Saclay, France). rac-lactide (98% purity) was purchased from Aldrich and was either used as is or sublimed once prior to use. All other chemicals were purchased from Aldrich and were used as received, with the exception of trimethylene carbonate purchased from either T.C.I. Europe Corporation or Boehringer: it was recrystallized twice from dry Et₂O prior to use. The NMR spectra were recorded on Bruker AC 300 or 400 MHz NMR spectrometers in Teflon-valved J-Young NMR tubes at ambient temperature. ¹H and ¹³C chemical shifts are reported vs. SiMe₄ and were determined by reference to the residual ¹H and ¹³C solvent peaks. Elemental analysis for all compounds were performed at the Service de Microanalyse of the Université de Strasbourg (Strasbourg France). GPC analyses were performed either on a system equipped with a Shimadzu RID10A refractometer detector using HPLC-grade THF as an eluant (with molecular weights and polydispersity indices (PDIs) calculated using polystyrene standards). In the case of molecular weight number (M_n) , these were corrected with appropriate correcting factors for the M_n values. Some SEC analysis of polymers were performed at the Institut Charles Sadron (Strasbourg, France) on a system equipped with a Shimadzu RID10A refractometer detector and a TREOS (WYATT Techn.) multiple angles light scattering detector, allowing direct access to the real masses of the synthesized polymers. MALDI-TOF mass spectroscopic analyses were performed at the Service de Spectrométrie de Masse de l'Institut de Chimie de Strasbourg and run in a positive mode: samples were prepared by mixing a solution of the polymers in CH₂Cl₂ with a 0.5 mg/100 mL concentration; 2,5-dihydroxybenzoic acid (DHB) was used as the matrix in 5:1 volume ratio. A TA Instruments Q-1000 DSC was used for standard DSC and TMDSC analysis. All measurements were carried out with ca. \sim 5 mg samples from -40°C to 180 °C under a nitrogen environment. In the standard DSC analysis, a heating rate of 2 °C/min was used unless indicated. The TMDSC measurements were performed with a heating rate of 0.1 °C/min having an oscillation period of 40 s and amplitude of 0.106 °C for samples

previously heated 2 h above the glass transition temperature. The T_g was taken as the midpoint of the glass transition step in the heat capacity curve.

[^{fBu}(OCO)]**Z**r(O^{*i*}Pr)(Cl)(THF) (2). In a nitrogen-filled glovebox, a THF solution (5 mL) of Zr(O^{*i*}Pr)₄, ⁱPrOH (752.6 mg, 1.94 mol) was added at room temperature via a pipette to a stirring THF solution (100 mL) of the imidazolium chloride salt 1 (1.0 g, 1.94 mmol). The initial colorless solution slowly turned yellow/green after addition of the zirconium reagent. The reaction mixture was stirred overnight at room temperature and evaporated to dryness to quantitatively yield L¹Zr(Cl)(O^{*i*}Pr)(THF) an yellow/green solid residue. **Elemental Analysis**: Anal. Calcd. (%) : C, 62.13; H, 8.09; N, 3.81. Found : C,62.17; H, 8.10; N, 3.81. ¹H NMR (**300 MHz, CD₂Cl₂)** 7.21 (d, J = 2 Hz, 2H, aryl-*H*), 6.98 (d, J = 2 Hz, 2H, aryl-*H*), 4.48-4.21 (m, 4H, NC*H*₂), 4.18 (hept, *J* = 6 Hz, 1H, O^{*i*}Pr), 3.76-3.63 (m, 4H, THF), 1.77-1.69 (m, 4H, THF), 1.56 (s, 18H, ^{*i*}Bu), 1.37 (s, 18H, ^{*i*}Bu), 0.94 (d, *J* = 6 Hz, 6H, CH₃-O^{*i*}Pr). ¹³C NMR (**75MHz, CD₂Cl₂)** 200.0 (NCN), 149.1 (*C_{ipso}*, O-aryl), 139.8 (C_{quat}, aryl), 138.2 (C_{quat}, aryl), 130.6 (C_{quat}, aryl), 112.7 (CH, aryl), 73.9 (CH, O^{*i*}Pr), 70.2 (CH₂, THF), 48.1 (CH₂, NCH₂), 36.0 (C_{quat}, ^{*i*}Bu), 34.8 (C_{quat}, ^{*i*}Bu), 31.9 (CH₃, ^{*i*}Bu), 30.2 (CH₃, ^{*i*}Bu), 26.6 (CH₃, O^{*i*}Pr), 25.7 (CH₂, THF).

Typical polymerization procedure. In a glovebox, the initiator (complex **2**) was charged in a vial equipped with a TeflonTM-tight screw-cap and a monomer solution ($[M]_0$ = 1 M, THF or CH₂Cl₂) was added *via* a syringe all at once. The solution was vigorously stirred the appropriate time and at the chosen temperature conditions. When the desired time was reached, aliquots were taken and analyzed by ¹H NMR spectroscopy to estimate the conversion. The reaction mixture was quenched with cold MeOH provoking the precipitation of the polymer, which was then washed several times with MeOH, dried in *vacuo* until constant weight and subsequently analyzed by ¹H NMR and SEC. In some cases, a MALDI-TOF-MS analysis was performed.

"Immortal" polymerization conditions. An identical procedure to that above was used but with the addition of a monomer solution ($[M]_0 = 1$ M, THF or CH₂Cl₂) containing the desired quantities of benzylic alcohol (BnOH) onto complex **2**.

Figure S1. Dependence of M_n (•) and polydispersity index (M_w/M_n •) of PLA on monomer (M) conversion for *rac*-lactide polymerization by the Zr complex **2** 100 (M_n and PDI determined by GPC). Conditions: CH₂Cl₂, r.t., $M_0/I = 100$.

Figure S2. Plot $[\ln(M_0/M)]$ vs. time (showing the ROP of *rac*-lactide initiated complex **2** to be first order in monomer). Conditions: CH₂Cl₂, r.t., M₀/I = 100.

Figure S3. MALDI-TOF mass spectrum of linear PLA prepared *via* the ROP of *rac*-lactide initiated by complex **10-THF**. Reaction conditions: $M_0/I = 10$, r.t., CH_2Cl_2 (100% conv.).

Figure S4. ¹H NMR spectrum (500 MHz, CDCl₃) of highly heterotactic PLA ($P_r = 0.97$) *via* ROP of *rac*-lactide initiated by complex **2**. Reaction conditions: M₀/I = 100, r.t., CH₂Cl₂, 15h, 91% conv. to PLA (table 1, entry 1).

Figure S5. Decoupled ¹H NMR spectrum (500 MHz, CDCl₃) of highly heterotactic PLA ($P_r = 0.97$) via ROP of *rac*-lactide initiated by complex **2**. Reaction conditions: M₀/I = 100, r.t., CH₂Cl₂, 15h, 91% conv. to PLA (table 1, entry 1).

Figure S6. Decoupled ¹H NMR spectrum (500 MHz, CDCl₃) of highly heterotactic PLA ($P_r = 0.96$) via ROP of **commercial** *rac*-lactide (**used as is**) initiated by complex **2**. Reaction conditions: $M_0/I = 300$, r.t., CH₂Cl₂, 15h, 90% conv. to PLA (table 1, entry 4).

Figure S7. DSC analysis of heterotactic PLA (prepared by ROP of *rac*-LA carried out in THF and subsequent precipitation of the reaction mixture with MeOH). Reaction conditions: THF, r.t., 15h, $M_0/I = 100$, $M_0 = 1$ M, 95% conv., $M_n = 10900$ g/mol, $M_w/M_n = 1.10$ (table 1, entry 5).

Figure S8. XRD analysis of heterotactic PLA (prepared by ROP of *rac*-LA carried out in THF and subsequent precipitation of the reaction mixture with MeOH). Reaction conditions: THF, r.t., 15h, $M_0/I = 100$, $M_0 = 1$ M, 95% conv., $M_n = 10900$ g/mol, $M_w/M_n = 1.10$ (table 1, entry 5).

Figure S9. Plot of M_n (•) and of the PTMC polydispersity index (M_w/M_n •) versus TMC (M) conversion in the ROP of TMC initiated by complex 2 (M_n and PDI determined by GPC). Conditions: CH₂Cl₂, r.t., $M_0/I = 100$.

Figure S10. Plot $[\ln(M_0/M)]$ vs. time (showing the ROP of TMC initiated by complex 2 to be first order in monomer). Conditions: CH₂Cl₂, r.t., M₀/I = 100.

Figure S11. ¹H NMR spectrum (400 MHz, CDCl₃) of isolated poly-TMC (PTMC) *via* ROP of TMC initiated by complex **2**. Reaction conditions: $M_0/I = 100$, r.t., CH₂Cl₂, 15h, 97% conv. to PTMC.

Figure S12. ¹H NMR spectrum (400 MHz, CDCl₃) of isolated (heterotactic)-PLA-*b*-PTMC via sequential ROP of TMC and *rac*-lactide initiated by complex **2**. Reaction conditions: $M_0/I = 40$ (for *rac*-lactide) and $M_0/I = 60$ (for TMC), r.t., CH₂Cl₂, quantitative conversion.

Figure S13. Methine region of the decoupled ¹H NMR spectrum (500 MHz, CDCl₃) of isolated (heterotactic)-PLA-*b*-PTMC via sequential ROP of TMC and *rac*-lactide initiated by complex **2** (consistent with Pr > 0.95).

==== Shimadzu LCsolution GPC Analysis Report ====

Acquired by	: Admın
Sample Name	: CRIII-156
Sample ID	:
Vail#	:
njection Volume	: 100 uL
Data Filename	: CRIII156-TMC-LA.lcd
Method Filename	: Etalon PS.lcm
Batch Filename	:
Report Filename	: Default.lcr
Date Acquired	: 26/11/2010 14:20:20
Data Processed	: 26/11/2010 19:05:06

Chromatogram & Calibration Curve

GPC Calculation Results

Peak#:1 (Detector A Ch1) [Peak Information] Time(min) Volume(mL) Molecular Weight Height 13.850 Start 13.850 94366 Тор 14.989 14.989 25098 16.983 16.983 2468 End Area: 505181 Area%: 100.0000 [Average Molecular Weight] Number Average Molecular Weight(Mn) 19679 Weight Average Molecular Weight(Mw) 24354 28831 Z Average Molecular Weight(Mz) 33259 Z+1 Average Molecular Weight(Mz1) Mw/Mn 1.23754 Mv/Mn 0.00000 Mz/Mw 1.18380 Detector A Ch1 [Average Molecular Weight(Total)] Number Average Molecular Weight(Mn) 19679 24354 Weight Average Molecular Weight(Mw) Z Average Molecular Weight(Mz) 28831 Z+1 Average Molecular Weight(Mz1) 33259 1.23754 Mw/Mn Mv/Mn 0.00000 Mz/Mw 1.18380

Molecular Weight Distribution Curve

Figure S14. GPC traces of isolated (heterotactic)-PLA-*b*-PTMC *via* sequential ROP of TMC and *rac*-lactide initiated by complex **2**.

183

9346

351

Figure S15. DSC analysis of isolated (heterotactic)-PLA-*b*-PTMC, consistent with an amorphous material with no phase separation.

Entry	t (h)	conv. ^b (%)	$M_{n(calc.)}^{c}$ (g/mol.)	$M_{n(GPC)}^{d}$ (g/mol)	PDI ^d
1	3	14	1440	1546	1.09
2	6	24	2469	2163	1.13
3	16	48	4939	6800	1.11
4	19	67	6894	8590	1.14
5	43	97	9991	13177	1.34

Table S1. Reaction conditions for the ROP of trimethylene carbonate (TMC) using the Zr-NHC complex 2.^a

a) Conditions: $M_0 = 1$ M, CH_2Cl_2 , $M_0/I=100$; b) determined by ¹H NMR spectroscopy; c) calculated using the following formula $M_n = \text{conv. x } M_0/I \text{ x } 102.09$; d) determined by gel permeation chromatography (GPC) with polystyrene standards and corrected by the corresponding factor.

X-ray crystallographic characterization of complex 2 (CCDC number : 847683)

A single crystal of complex **2** was mounted on glass fibers and data collected on a Nonius Kappa-CCD or Bruker APEX II DUO Kappa-CCD area detector diffractometer ($MoK_a l = 0.71073$ Å). The complete conditions of data collection (Denzo software)¹ and structure refinements are in appendix section. The structure was solved using direct methods (SHELXS97) and refined against F^2 using the SHELXL97 software.² All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were generated according to stereochemistry and refined using a riding model in SHELXL97.

	2
Chemical formula	C ₃₈ H ₅₉ ClN ₂ O ₄ Zr
Formula Mass	734.54
Crystal system	Monoclinic
a/Å	15.7565(5)
b/\AA	13.8949(3)
c/Å	19.2220(7)
α/°	90.00
β/°	110.9160(10)
$\gamma/^{\circ}$	90.00
Unit cell volume/ \AA^3	3931.1(2)
Temperature/K	173(2)
Space group	P21/c
No. of formula units per unit cell, Z	4
Radiation type	ΜοΚα
Absorption coefficient, μ/mm^{-1}	0.386
No. of reflections measured	23159
No. of independent reflections	8890
R _{int}	0.1371
Final R_1 values ($I > 2\sigma(I)$)	0.0777
Final wR(F^2) values ($I > 2\sigma(I)$)	0.2000
Final R_1 values (all data)	0.0878
Final $wR(F^2)$ values (all data)	0.2142
Goodness of fit on F^2	1.082

Table S2. Crystal data and structure refinement for complex 2 (CCDC number : 847683)

¹ Kappa CCD Operation Manual, Nonius B. V., Ed.; Delft: The Netherlands, 1997.

² G.-M. Sheldrick, *SHELXL97, Program for the refinement of Crystal Structures*; University of Göttingen: Göttingen, Germany, 1997.