Supporting information

Asymmetric [3+2] Annulation of Allenes with Maleimides Catalyzed by Dipeptide-Derived Phosphines: Facile Creation of Functionalized Bicyclic Cyclopentenes Containing two Tertiary Stereogenic Centers

Qian-Yi Zhao, ^a Xiaoyu Han, ^b Yin Wei, ^c Min Shi, ^{a,c*} Yixin Lu^{a,b*}

 ^aSchool of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
 ^bDepartment of Chemistry & Medicinal Chemistry Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Republic of Singapore, 117543 <u>chmlyx@nus.edu.sg</u>
 ^cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032 China. <u>Mshi@mail.sioc.ac.cn</u>

Contents:

1. General methods	S2
2. General procedure for the synthesis of 3 (Tables S1, S2, S3 and Figure S1)	S3
3. General procedure for the synthesis of 4	S 8
4. General procedure for the synthesis of 5	S 8
5. General procedure for the synthesis of 6	S9
6. Determination of absolute configuration and the X-ray structure of 3fa	S10
7. Determination of relative configuration and the X-ray structure of <i>rac</i> -5	S10
8. Determination of relative configuration and the X-ray structure of $3t$	S11
9. References	S13
10. Characterization and spectra charts containing HPLC for products	S14

1. General Methods: ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz or 300 and 75 MHz, respectively. Low- and high-resolution mass spectra were recorded by EI or ESI method. The used organic solvents were dried by standard methods if it was necessary. Optical rotations were determined at 589 nm (sodium D line) by using a Perkin-Elmer-341 MC digital polarimeter; $[\alpha]_D$ -values are given in unit of 10 deg⁻¹ cm² g⁻¹. Chiral HPLC was performed on a SHIMADZU SPD-10A *vp* series with chiral columns (Chiralpak AD-H, OD-H and IC-H columns 4.6 x 250 mm, (Daicel Chemical Ind., Ltd.)). Commercially obtained reagents were used without further purification. All these reactions were monitored by TLC with silica-gel-coated plates. Flash column chromatography was carried out by using silica gel at increased pressure.

Allenoates $2b-2d^1$ and allenic ketone $2e^2$ were prepared according to the previously reported procedures.

Cat. 1-Cat. 5 were purchased from J&K Chemical Ltd. and used directly without further purification. **Cat. 6**,³ **Cat. 7**,⁴ **Cat. 8**,⁵ **Cat. 9**,⁶ **Cat. 10**,⁷ and **Cat. 11**,⁸ were prepared according to the previously reported procedures.

2. General procedure for the PPh₃- or Cat. 11-catalyzed [3+2] annulation of maleimide 1 with electron-deficient allene 2: maleimide 1 (0.15 mmol), allene 2 (0.30 mmol), PPh₃ (0.0075 mmol) or Cat. 11 (0.015 mmol), and toluene or toluene/CHCl₃ = 1:1 (v/v) (1.0 mL) were added into a Schlenk tube. The reaction mixture was stirred at room temperature for the time indicated in the Table. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (PE/EA = $4/1 \sim 2/1$).

Several phosphine-containing achiral Lewis bases were tested in the reaction of maleimide **1a** with ethyl allenoate **2a** in toluene at room temperature for 3 h. Triphenylphosphine (PPh₃) was the most effective catalyst, giving the corresponding racemic annulation product 3a in 99% vield (Table S1, entry 1). Another phosphine-containing Lewis base methyldiphenylphosphine (PPh₂Me) did not catalyze this reaction under the standard conditions, while dimethyl(phenyl)phosphine (PPhMe₂) gave the complex product mixture (Table S1, entries 3 and 4). Tributylphosphine (PBu₃), tris(4-methoxyphenyl)phosphine ($P(p-MeOC_6H_4)_3$), tri-*p*-tolylphosphine (P(p-MeC₆H₄)₃) and tris(4-fluorophenyl)phosphine (P(p-FC₆H₄)₃) could also promote the reaction smoothly to give the desired product in 10%-97% yields (Table S1, entries 2 and 5-7). Solvent effects were subsequently examined with the use of 20 mol% of PPh₃ as the catalyst. Tetrahydrofuran (THF), dichloromethane, acetonitrile and 1,4-dioxane were then tested and the desired product was obtained in a range of 15-97% yields (Table S1, entries 8-11). Decreasing the employed amount of PPh₃ from 20 mol% to 10 mol% and 5 mol% led to the formation of **3a** in the same yield (99%) in toluene by extending the reaction time to 4 h and 9 h, respectively (Table S1, entries 12 and 13). Therefore, the best reaction conditions have been identified as that using 5 mol% of PPh₃ as the catalyst and carrying out the reaction in toluene at room temperature for 9 h.

	0 √N−Bn + =● 0	⊂ CO₂Et	Lewis base (X moL%) solvent, r.t., t (l	h) EtO ₂ C H	H O N-Bn H O
	1a 2a			3	a
entry	Lewis base	Х	solvent	time (h)	yield (%) ^b
1	PPh ₃	20	toluene	3	99
2	PBu ₃	20	toluene	3	10
3	PPh ₂ Me	20	toluene	3	NR ^c
4	PPhMe ₂	20	toluene	3	complex
5	P(p-MeOC ₆ H ₄) ₃	20	toluene	3	25
6	$P(p-MeC_6H_4)_3$	20	toluene	3	97
7	P(<i>p</i> -FC ₆ H ₄) ₃	20	toluene	3	75
8	PPh ₃	20	THF	3	85
9	PPh ₃	20	CH ₂ Cl ₂	3	97
10	PPh ₃	20	CH₃CN	3	15
11	PPh ₃	20	dioxane	3	96
12	PPh ₃	10	toluene	4	99
13	PPh ₃	5	toluene	9	99

Table S1. Optimization of the Reaction Conditions for the Phosphine-Catalyzed Reactions ofEthyl Allenoate 2a with Maleimide $1a^a$

^a The reaction was carried out on a 0.15 mmol scale with X mol% catalyst under Ar in solvent (1.0 mL) at rt, and the ratio of **1a/2a** was 1.0/2.0. ^b Isolated yield. ^c NR = No reaction.

Having identified the optimal reaction conditions, we next set out to examine the scope and limitations of this reaction by using various maleimides **1** and allenes **2a-2e**, and the results are summarized in Table S2. It was found that all of these *N*-alkyl, *N*-aryl, and *N*-benzyl substituted maleimides **1** could react with **2a-2e** smoothly to give the corresponding [3+2] cycloaddition products **3** in excellent yields (90-99%) under the standard conditions (Table S2, entries 1-19).

 Table S2. Substrate Scope of the Reactions of Maleimide 1 with Electron Deficient Allenes 2

 Catalyzed by PPh₃^a

O O	I-R ¹ +	PPh ₃ (10 mol%) toluene, r.t., 9 h	H $R^{2}OC$ H O
1	2		3
entry	R ¹	R ²	yield (%) ^b
1	1a , Bn	2a , OEt	3a , 98
2	1b, 1-naphthalenemethyl	2a , OEt	3b , 99
3	1c , 4-MeOC ₆ H ₄ CH ₂	2a , OEt	3c , 99
4	1d , 3-MeOC ₆ H ₄ CH ₂	2a , OEt	3d , 99
5	1e, 3,4-(MeO) ₂ C ₆ H ₃ CH ₂	2a , OEt	3e , 99
6	1f, 4-BrC ₆ H ₄ CH ₂	2a , OEt	3f , 98
7	1g , 4-FC ₆ H ₄ CH ₂	2a , OEt	3g , 99
8	1h , 2-thienylmethyl	2a , OEt	3h , 97
9	1i,	2a , OEt	3i , 99
10	1i,	2b , O ⁱ Pr	3j , 99
11	1i,	2c , O ^t Bu	3k , 99
12	1i,	2d , OBn	3I , 98
13	1i,	2e , Me	3m , 99
14	1j , Me	2a , OEt	3n , 99
15	1k , H	2a , OEt	30 , 96 ^d
16	1I , Ph	2a , OEt	3p , 96
17	1m , 4-MeOC ₆ H ₄	2a , OEt	3q , 99
18	1n , 3,5-(MeO) ₂ C ₆ H ₃	2a , OEt	3r , 99
19	1o , 2,4,6-Br ₃ C ₆ H ₂	2a , OEt	3s , 95
20	1p , 2-NO ₂ C ₆ H ₄	2a , OEt	3t , 90 ^e

^a The reaction was carried out on a 0.15 mmol scale with 5 mol% catalyst under Ar in toluene (1.0 mL) at rt for 9 h, and the ratio of **1/2** was 1.0/2.0. ^b Isolated yield. ^d The ratio of **1/2** was 1.0/3.0, and R¹ = (*E*)-CH₂CH=CHCO₂Et in the annulation product **3o**, *E/Z* > 20/1. ^e dr = 3:2. An axial chirality caused by the nitro substituent at the *ortho* position of the phenyl ring was discovered and confirmed by X-ray structure (see Figure SI-3)

S5

The reactions were initially carried out on a 0.15 mmol scale with 10 mol% chiral phosphine catalysts under Ar in toluene (1.0 mL) at room temperature for 24 h and the ratio of 1a/2a was 1.0/2.0 (Figure S1). First, chiral bidentate phosphine catalysts Cat. 1-Cat. 4 were tested in this asymmetric [3+2] cycloaddition of 1a with 2a. We found that Cat. 1, Cat. 2 and Cat. 3 led to the formation of the desired products 3aa in high yields along with 5%-50% ee values and Cat. 4 almost had no catalytic activity in this reaction. Using monodentate chiral phosphine such as the eight-membered spirocyclic phosphine Cat. 5 as the catalyst, the reaction nearly could not proceed. We then turned to test some bifunctional phosphine catalysts involving some substitutes, such as OH group, NH group, which could provide good opportunity to form a hydrogen bond. Catalyst 1,1'-bi-2-naphthol-derived chiral phosphine Cat. 6 bearing a phenolic hydroxy group developed by our group⁹ led to the formation of **3aa** in high yield (95%) with 15% ee. Chiral binaphthyl-derived bifunctional thiourea-phosphine catalysts Cat. 7-Cat. 9 did not improve the ee value of **3aa** either, affording the product **3aa** in 60-98% yields with 13-23% ee values. L-valine-derived bifunctional thiourea-phosphine Cat. 10 was also examined but gave a racemic product. Gratifyingly, it was found that D-threonine-L-tert-leucine-derived bifunctional phosphine **Cat. 11** developed by Lu's group¹⁰ was the most effective catalyst in this reaction, giving **3aa** in 97% yield and 86% ee within 24 h.

Using **Cat. 11** (10 mol%) as the catalyst, we next examined the solvent effects and reaction temperature on the reaction outcome to further optimize the reaction conditions and the results are summarized in Table S3. In solvents such as CH_2Cl_2 , THF, CH_3CN , $CHCl_3$ and Et_2O , the desired product **3aa** was obtained in moderate to good yields (from 61% to 88%) but with lower ee values (from 18% to 86%) (Table S3, entries 2-7). Protic solvent such as methanol was not suitable media for this reaction, affording no product (Table S3, entry 8). Decreasing the reaction temperature from 25 °C to 0 °C, we found that **3aa** could be obtained in 97% yield with 88% ee in toluene (Table S3, entry 9). Further decreasing the reaction temperature from 0 °C to -20 °C or -40 °C did not improve the enantioselectivity (Table S3, entries 10 and 11). Fortunately, in the mixed solvent of toluene/CHCl₃ = 1:1 (v/v), **3aa** was given in 92% yield with 92% ee at 0 °C after 72 h (Table S3, entry 12). Changing the mixed solvent to fluorobenzene/CHCl₃ = 1:1 (v/v) and chlorobenzene/CHCl₃ = 1:1 (v/v), lower yields (87-89%) and enantiomeric excesses (89-90%) were observed in the reaction system (Table S3, entries 13

and 14). Reducing the catalyst loading from 10 mol% to 5 mol% resulted in the longer reaction time and lower yield (Table S3, entry 15). Therefore, the optimal reaction conditions have been identified as that using 10 mol% of **Cat. 11** as the catalyst and carrying out the reaction in toluene/CHCl₃ = 1:1 (v/v) at 0 °C for 72 h.

Figure S1. Chiral Phosphine Catalysts Screening for the Asymmetric [3+2] Cycloaddition.

O N- O 1a	Bn + CO ₂ Et	Cat. 1 ⁴ solvent, ⁻	<mark>Ι (10 mol%)</mark> Γ (^o C), time (h)	EtO ₂ C H	O N–Bn O
entry	solvent	T (°C)	time (h)	<u>yield (%)^b 3a</u>	<u>ee (%)^c</u> 3a
1	toluene	25	24	97	86
2	CH_2CI_2	25	24	64	80
3	THF	25	24	88	54
4	CH ₃ CN	25	24	68	18
5	Et ₂ O	25	24	80	47
6	CHCI ₃	25	24	61	86
7	chlorobenzene	25	24	85	85
8	MeOH	25	24	trace	-
9	toluene	0	24	97	88
10	toluene	-20	24	93	85
11	toluene	-40	48	98	80
12	toluene/CHCl ₃ = 1:1 (v/v)	0	72	92	92
13	fluorobenzene/CHCl ₃ = 1:1 (v/v)	0	72	87	89
14	chlorobenzene/CHCl ₃ = 1:1 (v/v)	0	72	89	90
15 ^e	toluene/CHCl ₃ = 1:1 (v/v)	0	96	79	90

Table S3. Optimization of the Reaction Conditions in the Asymmetric [3+2] Cycloaddition of1a with 2a Catalyzed by Cat. 11^[a]

^a Unless otherwise specified, reactions were performed with **1a** (0.15 mmol), **2a** (0.30 mmol), and **Cat. 11** (10 mol %). ^b Isolated yields. ^c Determined by chiral HPLC. ^d The catalyst loading was 5 mol %.

3. General procedure for the synthesis of 4

Compound **3id** (28 mg, 0.10 mmol) was stirred in anhydrous tetrahydrofuran (5.0 mL) in the presence of 10% palladium on carbon (11.0 mg) under an atmosphere of hydrogen for 7 h. After removal of the catalyst through Celite and concentration of the filtrate, the product **4** was obtained in over 99% yield.

4. General procedure for the synthesis of 5

Compound **4** (28 mg, 0.10 mmol) was added to a solution of *m*-bromoaniline (34 mg, 0.20 mmol), N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (58 mg, 0.30 mmol) and 1-hydroxy benzotriazole (HOBt) (54 mg, 0.40 mmol) in N,N-dimethylformamide (DMF) (5.0 mL). The resulted mixture was stirred for 12 h at room temperature (22 °C). Then, the solvent was removed from the flask under reduced pressure. The resulting residue was diluted with EtOAc, washed with saturated NaCl solution twice, and extracted by EtOAc. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulted pressure. The resulted pressure is compound **5**.

Compound **8** was also obtained according to the same procedure for the synthesis of **5** above (Scheme S1).

Scheme S1. Transformation of 4 to 8

5. General procedure for the synthesis of 6

Compound 4 (28 mg, 0.1 mmol) was dissolved in dry THF (10mL) and cooled to 0 °C. LiAlH₄ (38 mg, 1.0 mmol) was added in one portion. The reaction mixture was refluxed for 18 h, then cooled to 0 °C, and the excess lithium aluminum hydride was quenched by cautious addition of water. Filtration through a pad of celite and evaporation of the filtrate under reduced pressure gave the pure product **6**.

Figure S2. hepatitis C virus protease inhibitors telaprevir 7

6. Determination of absolute configuration and the X-ray structure of 3fa

Figure S3. ORTEP Drawing of 3fa.

Single crystal of $C_{17}H_{16}BrNO_4$ **3fa** was recrystallized from mixed solvents of dichloromethane and petroleum ether. Its absolute configuration has been identified as (*S*,*S*)-configuration.

The crystal data of **3fa** have been deposited in CCDC with number 783732. Empirical Formula: $C_{20}H_{18}BrF_2NO_2$; Formula Weight: 422.26; Crystal Color, Habit: colorless, prismatic; Crystal Dimensions: 0.485 x 0.451 x 0.397 mm; Crystal System: Monoclinic; Lattice Parameters: a = 9.2224(14)Å, b = 10.4748(16)Å, c = 10.2384(16)Å, $\alpha = 90^{\circ}$, $\beta = 104.482(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 957.6(3)Å³; Space group: P2(1); Z = 2; $D_{calc} = 1.464$ g/cm³; $F_{000} = 957.6(3)$; Diffractometer: Rigaku AFC7R; Residuals: R; Rw: 0.0402, 0.0880.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

7. Determination of relative configuration and the X-ray structure of rac-5

Figure S4. ORTEP Drawing of rac-5.

Single crystal of C₂₁H₂₅BrN₂O₃ rac-5 was recrystallized from chloroform-d.

The crystal data of *rac*-**5** have been deposited in CCDC with number 844461. Empirical Formula: $C_{21}H_{25}BrN_2O_3$; Formula Weight: 433.34; Crystal Color, Habit: colorless, Crystal Dimensions: 0.265 x 0.071 x 0.063 mm; Crystal System: Monoclinic; Lattice Parameters: a = 8.960(7)Å, b = 21.905(17)Å, c = 20.488(16)Å, $\alpha = 90^\circ$, $\beta = 98.968(17)^\circ$, $\gamma = 90^\circ$, V = 3972(5)Å³; Space group: P2(1)/c; Z = 8; D_{calc}= 1.449 g/cm³; F₀₀₀ = 1792; Final R indices [I>2sigma(I)] R1 = 0.0646, wR2 = 0.1571.

8. Determination of relative configuration and the X-ray structure of 3t

Figure S5. ORTEP Drawing of 3t.

Single crystal of $C_{17}H_{16}BrNO_4$ **3t** was recrystallized from mixed solvents of dichloromethane and petroleum ether.

The crystal data of **3t** have been deposited in CCDC with number 805801. Empirical Formula: $C_{16}H_{14}N_2O_6$; Formula Weight: 330.29; Crystal Color, Habit: colorless, Crystal Dimensions: 0.30 x 0.28 x 0.25 mm; Crystal System: Monoclinic; Lattice Parameters: a = 14.2927(11)Å, b = 6.5471(5)Å, c = 16.4441(14)Å, $\alpha = 90^\circ$, $\beta = 93.366(2)^\circ$, $\gamma = 90^\circ$, V = 1536.1(2)Å³; Space group: P2(1)/n; Z = 4; $D_{calc} = 1.428$ g/cm³; $F_{000} = 688$; Diffractometer: Rigaku AFC7R; Residuals: R; Rw: 0.0547, 0.1648.

9. References

- 1. X.-F. Zhu, A.-P. Schaffner, R. C. Li, O. Kwon, Org. Lett. 2005, 7, 2977.
- 2. G.-Li. Zhao, Y.-L. Shi, M. Shi, Org. Lett. 2005, 7, 4527.
- 3. Y.-Q. Jiang, Y.-L. Shi, M. Shi, J. Am. Chem. Soc. 2008, 130, 7202.
- 4. Y.-L. Yang, C.-K. Pei, M. Shi, Org. Biomol. Chem. 2011, 9, 3349.
- 5. Y.-L. Shi, M. Shi, Adv. Synth. Catal. 2007, 349, 2129.
- 6. H.-P. Deng, Y. Wei, M. Shi, Eur. J. Org. Chem. 2011, 1956.
- 7. J.-J. Gong, K. Yuan, X.-Y. Wu, Tetrahedron: Asymmetry 2009, 20, 2117.
- 8. X. Han, Y. Wang, F. Zhong, Y. Lu, J. Am. Chem. Soc. 2011, 133, 1726.
- (a) M. Shi, L.-H. Chen, Chem. Commun. 2003, 1310; (b) M. Shi, L.-H. Chen, C.-Q. Li, J. Am. Chem. Soc. 2005, 127, 3790.
- 10. X. Han, Y. Wang, F. Zhong, Y. Lu, J. Am. Chem. Soc. 2011, 133, 1726.

10. Characterization and spectra charts containing HPLC for products

Compound Cat. 11. This is a known compound.⁶ ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.97 (3H, d, *J* = 6.0 Hz), 1.04 (9H, s), 1.07 (9H, s), 1.93 (6H, s), 2.19 (1H, dd, *J* = 7.2, 13.6 Hz), 2.40 (1H, dd, *J* = 8.0, 13.6 Hz), 3.83-3.92 (2H, m), 4.19 (1H, t, *J* = 6.4 Hz), 5.68 (1H, d, *J* = 9.2 Hz), 5.98 (1H, d, *J* = 9.6 Hz), 7.22-7.28 (5H, m), 7.31-7.47 (11H, m), 7.63-7.69 (4H, m); ³¹P NMR (161 MHz, CDCl₃, 85% H₃PO₄): δ 23.8.

Compound 3aa. 41 mg, Yield: 92%, colorless oil; IR (neat): v 2979, 2925, 2854, 1780, 1708, 1631, 1491, 1440, 1372, 1272, 1183, 1092, 1039, 921, 829, 758, 735, 691, 625 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 1.32 (3H, t, J = 7.2 Hz) , 2.83-3.05 (2H, m), 3.53 (1H, ddd, J = 4.5, 8.4, 12.6 Hz), 4.17-4.22 (1H, m), 4.27 (1H, qd, J = 1.8, 7.2 Hz), 4.61 (2H, dd, J = 14.4, 15.6 Hz), 6.76 (1H, dd, J = 2.4, 4.5 Hz), 7.25-7.35 (5H, m); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 35.5, 42.4, 43.1, 51.6, 60.9, 127.9, 128.5, 128.6, 133.1, 135.5, 143.8, 163.1, 175.1, 178.5; MS (EI) *m/z* (%): 299 [M⁺] (100.0), 253 (19.6), 225 (81.1), 197 (10.1), 132 (15.9), 110 (13.8), 91 (67.2), 79 (27.6), 65 (68.8), 41 (6.4); HRMS (EI) Calcd. for C₁₇H₁₇NO₄ requires (M⁺) 299.1158, Found: 299.1162; [α]²⁰_D = +29.0 (c 0.5, CH₂Cl₂, 92% ee). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-PrOH = 70/30, 0.6 mL/min, 214 nm, *t_{minor}* = 18.57 min, *t_{major}* = 16.58 min).

Compound 3a (the racemate of 3aa). 44 mg, Yield: 98%, colorless oil.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	17.225	2588898	49.69	100227
2	2	18.788	2620838	50.31	90134

AD-H, *n*-hexane/*i*-PrOH = 70/30, 0.6 mL/min, 214 nm.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	16.580	6481333	96.05	210065
2	2	18.571	266602	3.95	8446

AD-H, *n*-hexane/*i*-PrOH = 70/30, 0.6 mL/min, 214 nm.

Compound 3ba. 44 mg, Yield: 84%, white solid, m.p. 140-141 °C; IR (neat): v 3048, 2987, 1776, 1698, 1437, 1347, 1292, 1276, 1274, 1113, 854, 773, 724, 682 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 1.32 (3H, t, J = 7.2 Hz) , 2.87-3.03 (2H, m), 3.52 (1H, td, J = 5.1, 8.7 Hz), 4.18-4.22 (1H, m), 4.28 (2H, q, J = 7.2 Hz), 5.09 (2H, s), 6.76 (1H, dd, J = 1.8, 3.6 Hz), 7.37-7.57 (4H, m), 7.82 (2H, dd, J = 7.8, 17.4 Hz), 8.26 (1H, d, J = 8.1 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 14.2, 35.5, 40.3, 43.1, 51.5, 61.0, 123.5, 125.2, 125.8, 126.5, 127.7, 128.6, 128.7, 130.5, 131.2, 133.1, 133.6, 143.8, 163.1, 175.3, 178.8; MS (EI) *m/z* (%): 349 [M⁺] (100.0), 275 (25.9), 259 (13.2), 182 (20.7), 131 (51.8), 115 (14.8), 57 (17.8), 43 (12.1); HRMS (EI) Calcd. for C₂₁H₁₉NO₄ requires (M⁺) 349.1314, Found: 349.1312; [α]²⁰_D = -5.7 (c 0.1, CH₂Cl₂, 85% ee). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 214 nm, *t_{minor}* = 19.27 min, *t_{major}* = 12.62 min). **Compound 3b** (the racemate of **3ba**). 52 mg, Yield: 99%, white solid, m.p. 131-132 °C.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	12.635	9971460	49.80	542337
2	2	19.163	10050409	50.20	348175

AD-H, *n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 214 nm.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	12.621	2784964	92.61	153560
2	2	19.273	222247	7.39	7946

AD-H, *n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 214 nm.

Compound 3ca. 39 mg, Yield: 80%, white solid, m.p. 52-53 °C; IR (neat): v 3053, 2962, 2861, 1724, 1615, 1556, 1453, 1362, 1298, 1173, 1122, 1038, 873, 806, 673, 629 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.33 (3H, t, J = 7.2 Hz) , 2.84-3.02 (2H, m), 3.52 (1H, ddd, J = 4.0, 8.4, 10.4 Hz), 3.77 (3H, s), 4.16-4.20 (1H, m), 4.22-4.33 (2H, m), 4.55 (2H, dd, J = 13.6, 16.0 Hz), 6.75 (1H, dd, J = 2.4, 4.4 Hz), 6.81 (2H, d, J = 8.8 Hz), 7.30 (2H, d, J = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 14.2, 35.5, 41.9, 43.1, 51.6, 55.2, 60.9, 113.9, 127.9, 130.2, 133.1, 143.8, 159.2, 163.1, 175.1, 178.5; MS (EI) *m/z* (%): 329 [M⁺] (100.0), 255 (72.3), 227 (13.6), 162 (16.2), 121 (70.1), 93 (10.8), 65 (13.2), 43 (6.0); HRMS (EI) Calcd. for C₁₈H₁₉NO₅ requires (M⁺) 329.1263, Found: 329.1260; [α]²⁰_D = +21.0 (c 0.1, CH₂Cl₂, 91% ee). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-PrOH = 50/50, 0.6 mL/min, 214 nm, *t_{minor}* = 9.14 min, *t_{major}* = 7.55 min).

Compound 3c (the racemate of 3ca). 49 mg, Yield: 99%, colorless oil.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	7.508	2702004	49.84	214227
2	2	9.085	2719684	50.16	198767

AD-H, *n*-hexane/*i*-PrOH = 50/50, 0.6 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	7.550	3614318	95.55	206154
2	2	9.141	168402	4.45	10640

AD-H, *n*-hexane/*i*-PrOH = 50/50, 0.6 mL/min, 214 nm

Compound 3da. 39 mg, Yield: 79%, white solid, m.p. 61-62 °C; IR (neat): v 3044, 2984, 2839, 1704, 1610, 1495, 1391, 1349, 1252, 1161, 1093, 1031, 869, 769, 730, 678 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.32 (3H, t, J = 6.8 Hz) , 2.87-3.03 (2H, m), 3.51-3.57 (1H, m), 3.77 (3H, s), 4.19-4.21 (1H, m), 4.25-4.30 (2H, m), 4.58 (2H, dd, J = 14.4, 16.8 Hz), 6.77-6.82 (2H, m), 6.87-6.92 (2H, m), 7.20 (1H, t, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 35.5, 42.3, 43.1, 51.6, 55.1, 60.9, 113.6, 113.8, 120.8, 129.6, 133.1, 136.9, 143.8, 159.6, 163.1, 175.1, 178.5; MS (EI) *m/z* (%): 329 [M⁺] (100.0), 283 (23.8), 255 (83.6), 227 (8.2), 163 (18.7), 121 (30.1), 93 (22.3), 65 (24.2), 49 (14.7); HRMS (EI) Calcd. for C₁₈H₁₉NO₅ requires (M⁺) 329.1263, Found: 329.1259; [α]²⁰_D = +32.0 (c 0.1, CH₂Cl₂, 92% ee). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 214 nm, *t_{minor}* = 17.97 min, *t_{major}* = 14.36 min).

Compound 3d (the racemate of 3da). 49 mg, Yield: 99%, white solid, m.p. 80-81 °C.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	13.579	7699647	50.14	396313
2	2	16.644	7655984	49.86	332345

AD-H, *n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	14.362	9895186	96.19	401504
2	2	17.969	391488	3.81	12021

AD-H, *n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 214 nm

Compound 3ea. 42 mg, Yield: 78%, white solid, m.p. 128-129 °C; IR (neat): v 3052, 2995, 2846, 1775, 1700, 1697, 1512, 1386, 1334, 1251, 1161, 1143, 1035, 866, 744, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.33 (3H, t, J = 6.8 Hz) , 2.86-3.03 (2H, m), 3.53 (1H, ddd, J = 3.2, 8.8, 10.4 Hz), 3.85 (6H, s), 4.18-4.21 (1H, m), 4.25-4.31 (2H, m), 4.55 (2H, dd, J = 13.6, 17.6 Hz), 6.75-6.79 (2H, m), 6.91-6.94 (2H, m); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 35.4, 42.2, 43.1, 51.5, 55.7, 55.8, 60.9, 110.9, 111.9, 121.3, 128.2, 133.1, 143.7, 148.6, 148.7, 163.0, 175.1, 178.5; MS (EI) *m/z* (%): 359 [M⁺] (100.0), 285 (21.4), 257 (5.1), 192 (5.5), 151 (22.3), 107 (6.0), 93 (6.8), 65 (8.8); HRMS (EI) Calcd. for C₁₉H₂₁NO₆ requires (M⁺) 359.1369, Found: 359.1366; [α]²⁰_D = +7.0 (c 0.1, CH₂Cl₂, 92% ee). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 214 nm, *t_{minor} = 19.50 min, <i>t_{major}* = 23.79 min).

Compound 3e (the racemate of 3ea). 53 mg, Yield: 99%, white solid, m.p. 108-109 °C.

AD-H, *n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 214 nm

AD-H, *n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 214 nm

Compound 3fa. 46 mg, Yield: 81%, white solid, m.p. 47-48 °C; IR (neat): v 3035, 2984, 2853, 1767, 1701, 1604, 1498, 1350, 1253, 1161, 1072, 1022, 821, 725, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.33 (3H, t, J = 7.2 Hz) , 2.85-3.04 (2H, m), 3.54 (1H, ddd, J = 4.0, 8.4, 10.8 Hz), 4.18-4.22 (1H, m), 4.23-4.32 (2H, m), 4.55 (2H, dd, J = 14.0, 16.4 Hz), 6.76 (1H, dd, J = 2.4, 4.4 Hz), 7.22 (2H, d, J = 8.4 Hz), 7.42 (2H, d, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 35.4, 41.8, 43.1, 51.6, 60.9, 122.0, 130.5, 131.7, 132.9, 134.5, 143.8, 163.0, 175.0, 178.4; MS (EI) *m/z* (%): 379 [M⁺²] (100.0), 378 [M⁺¹] (32.1), 378 [M⁺] (99.5), 333 (27.8), 305 (95.1), 169 (25.2), 110 (23.9), 93 (55.0), 79 (26.0), 65 (53.8), 43 (18.7); HRMS (EI) Calcd. for C₁₇H₁₆NO₄Br requires (M⁺) 377.0263, Found: 377.0261; [α]²⁰_D = +10.0 (c 0.2, CH₂Cl₂, 91% ee). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-PrOH = 80/20, 0.6 mL/min, 230 nm, *t_{minor}* = 28.36 min, *t_{major}* = 20.70 min). **Compound 3f** (the racemate of **3fa**). 55 mg, Yield: 98%, white solid, m.p. 57-58 °C.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	20.342	14560643	49.40	176198
2	2	28.462	14975217	50.71	70817

AD-H, *n*-hexane/*i*-PrOH = 80/20, 0.6 mL/min, 230 nm

110.				roroont	r oak loight
1	1	20.699	13916711	95.43	293406
2	2	28.361	667421	4.48	6605

Br

AD-H, *n*-hexane/*i*-PrOH = 80/20, 0.6 mL/min, 230 nm

Compound 3ga. 41 mg, Yield: 86%, colorless oil; IR (neat): v 3066, 2982, 2883, 1768, 1689, 1501, 1393, 1352, 1293, 1226, 1151, 1031, 906, 853, 735, 681, 625 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.33 (3H, t, J = 7.2 Hz) , 2.86-3.04 (2H, m), 3.51-3.57 (1H, m), 4.19-4.22 (1H, m), 4.25-4.32 (2H, m), 4.58 (2H, dd, J = 14.0, 16.4 Hz), 6.77 (1H, dd, J = 2.4, 5.2 Hz), 6.96-7.00 (2H, m), 7.34 (2H, dd, J = 5.6, 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 14.2, 35.5, 41.8, 43.2, 51.6, 61.0, 115.5 (d, J = 21.9 Hz), 130.7 (d, J = 8.4 Hz), 131.4 (d, J = 3.5 Hz), 133.1, 143.8, 162.4 (d, J = 245.2 Hz), 163.1, 175.1, 178.5; ¹⁹F NMR (376 MHz, CDCl₃, CFCl₃): δ -114.0 - -114.1 (1F, m); MS (EI) *m*/*z* (%): 317 [M⁺] (100.0), 271 (18.1), 243 (94.2), 109 (69.7), 93 (26.9), 79 (16.1), 65 (30.0), 49 (7.0); HRMS (EI) Calcd. for C₁₇H₁₆NO₄F requires (M⁺) 317.1063, Found: 317.1062; [α]²⁰_D = +21.0 (c 0.1, CH₂Cl₂, 90% ee). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-PrOH = 80/20, 0.6 mL/min, 214 nm, *t_{minor}* = 25.66 min, *t_{major}* = 18.80 min).

Compound 3g (the racemate of 3ga). 47 mg, Yield: 99%, colorless oil.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	20.342	14560643	49.40	176198
2	2	28.462	14975217	50.71	70817

AD-H, *n*-hexane/*i*-PrOH = 80/20, 0.6 mL/min, 214 nm

AD-H, *n*-hexane/*i*-PrOH = 80/20, 0.6 mL/min, 214 nm

Compound 3ha. 38 mg, Yield: 82%, colorless oil; IR (neat): v 3051, 2995, 2882, 1775, 1701, 1635, 1393, 1342, 1255, 1182, 1153, 1139, 1026, 885, 857, 733, 630 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.33 (3H, t, J = 7.2 Hz) , 2.86-3.04 (2H, m), 3.54 (1H, ddd, J = 4.0, 8.0, 10.4 Hz), 4.18-4.22 (1H, m), 4.24-4.34 (2H, m), 4.78 (2H, dd, J = 15.2, 18.4 Hz), 6.76 (1H, dd, J = 2.4, 4.4 Hz), 6.92 (1H, dd, J = 3.2, 5.2 Hz), 7.06-7.07 (1H, m), 7.20 (1H, dd, J = 1.4, 5.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 35.4, 36.6, 43.1, 51.6, 60.9, 125.9, 126.7, 127.9, 133.0, 137.0, 143.8, 163.0, 174.6, 178.0; MS (EI) *m/z* (%): 305 [M⁺] (79.1), 259 (20.7), 231 (100.0), 203 (13.6), 138 (10.8), 97 (61.1), 65 (15.4); HRMS (EI) Calcd. for C₁₅H₁₅NO₄S requires (M⁺) 305.0722, Found: 305.0726; $[\alpha]^{20}_{D}$ = +28.1 (c 0.1, CH₂Cl₂, 90% ee). Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 50/50, 0.6 mL/min, 214 nm, *t_{minor}* = 26.45 min, *t_{major}* = 32.74 min).

Compound 3h (the racemate of 3ha). 44 mg, Yield: 97%, colorless oil.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	25.729	1265319	49.86	29381
2	2	31.085	1272658	50.14	24585

IC-H, *n*-hexane/*i*-PrOH = 50/50, 0.6 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	26.450	384293	5.04	8224
2	2	32.740	7237552	94.96	120715

IC-H, *n*-hexane/*i*-PrOH = 50/50, 0.6 mL/min, 214 nm

Compound 3ia. 41 mg, Yield: 89%, white solid, m.p. 78-79 °C; IR (neat): v 2964, 2918, 2851, 1703, 1555, 1363, 1263, 1176, 1108, 863, 803, 680 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 0.86-0.97 (2H, m), 1.09-1.26 (3H, m), 1.34 (3H, t, *J* = 7.2 Hz) , 1.52-1.74 (6H, m), 2.87-3.07 (2H, m), 3.31 (2H, d, *J* = 7.2 Hz), 3.55 (1H, ddd, *J* = 3.9, 8.1, 9.9 Hz), 4.17-4.21 (1H, m), 4.24-4.34 (2H, m), 6.79 (1H, dd, *J* = 2.1, 4.2 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 14.1, 25.5, 26.1, 30.5, 35.6, 35.9, 42.9, 44.8, 51.4, 60.9, 133.3, 143.7, 163.1, 175.7, 179.2; MS (EI) *m/z* (%): 305 [M⁺] (12.1), 260 (10.2), 223 (49.6), 210 (100.0), 177 (25.5), 164 (55.0), 93 (20.1), 65 (17.9), 55 (17.2); HRMS (EI) Calcd. for C₁₇H₂₃NO₄ requires (M⁺) 305.1627, Found: 305.1630; [α]²⁰_D = +20.3 (c 0.2, CH₂Cl₂, 95% ee). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm, *t_{minor}* = 23.28 min, *t_{major}* = 10.35 min).

Compound 3i (the racemate of 3ia). 45 mg, Yield: 99%, white solid, m.p. 99-100 °C.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	9.932	501529	50.81	24664
2	2	21.283	485562	49.19	9899

OD-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	10.352	7334562	97.45	328457
2	2	23.281	192055	2.55	4188

OD-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

Compound 3ib. 38 mg, Yield: 80%, white solid, m.p. 131-132 °C; IR (neat): v 2955, 2913, 2847, 1714, 1557, 1364, 1264, 1176, 1109, 862, 804, 688 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 0.86-0.98 (2H, m), 1.09-1.25 (3H, m), 1.30 (3H, d, *J* = 6.6 Hz) , 1.33 (3H, d, *J* = 6.6 Hz) , 1.52-1.74 (6H, m), 2.86-3.06 (2H, m), 3.31 (2H, d, *J* = 7.5 Hz), 3.54 (1H, ddd, *J* = 4.2, 8.1, 9.9 Hz), 4.16-4.21 (1H, m), 5.14 (1H, sept, *J* = 6.0 Hz), 6.76 (1H, dd, *J* = 2.4, 4.2 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 21.7, 21.8, 25.5, 26.1, 30.4, 30.5, 35.6, 35.9, 43.0, 44.8, 51.4, 68.5, 133.8, 143.2, 162.7, 175.7, 179.2; MS (EI) *m/z* (%): 319 [M⁺] (13.1), 260 (30.2), 224 (73.1), 218 (100.0), 164 (55.6), 93 (31.2), 65 (29.6), 43 (44.9); HRMS (EI) Calcd. for C₁₈H₂₅NO₄ requires (M⁺) 319.1784, Found: 319.1786; $[\alpha]^{20}_{D}$ = +59.5 (c 0.1, CH₂Cl₂, 91% ee). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm, *t_{minor}* = 10.84 min, *t_{major}* = 8.60 min). **Compound 3j** (the racemate of **3ib**). 47 mg, Yield: 99%, white solid, m.p. 112-113 °C.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	8.161	13208915	49.49	712842
2	2	10.091	13479604	50.51	559179

OD-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	8.602	6136001	95.63	344722
2	2	10.844	280729	4.37	11640

OD-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

Compound 3ic. 41 mg, Yield: 82%, white solid, m.p. 76-77 °C; IR (neat): v 3051, 2923, 2857, 1709, 1698, 1410, 1356, 1304, 1263, 1128, 847, 803, 673 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.87-0.97 (2H, m), 1.10-1.25 (3H, m), 1.53 (9H, s) , 1.57-1.72 (6H, m), 2.84-3.00 (2H, m), 3.31 (2H, d, *J* = 7.2 Hz), 3.50 (1H, ddd, *J* = 4.0, 8.4, 9.6 Hz), 4.10-4.14 (1H, m), 6.68 (1H, dd, *J* = 2.4, 4.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 25.5, 26.1, 28.0, 30.5, 30.6, 35.4, 36.0, 43.1, 44.8, 51.6, 81.6, 135.0, 142.4, 162.6, 175.7, 179.3; MS (EI) *m/z* (%): 333 [M⁺] (5.1), 277 (35.1), 260 (35.5), 195 (38.3), 182 (100.0), 164 (49.1), 93 (16.9), 57 (36.8), 55 (18.9), 41 (17.1); HRMS (EI) Calcd. for C₁₉H₂₇NO₄ requires (M⁺) 333.1940, Found: 333.1938; [α]²⁰_D = +7.7 (c 0.1, CH₂Cl₂, 77% ee). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 214 nm, *t_{minor}* = 12.61 min, *t_{major}* = 11.34 min).

Compound 3k (the racemate of 3ic). 49 mg, Yield: 99%, white solid, m.p. 109-110 °C.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	11.081	2592995	50.42	116353
2	2	12.568	2549697	49.58	102603

OD-H, *n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	11.335	2823024	88.80	107283
2	2	12.608	356089	11.20	9416

OD-H, *n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 214 nm

Compound 3id. 54 mg, Yield: 98%, colorless oil; IR (neat): v 3013, 2985, 2858, 1769, 1746, 1699, 1450, 1362, 1375, 1277, 1242, 1158, 866, 801, 638 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 0.82-0.97 (2H, m), 1.09-1.20 (3H, m), 1.52-1.70 (6H, m), 2.85-3.05 (2H, m), 3.31 (2H, d, *J* = 7.5 Hz), 3.53 (1H, ddd, *J* = 4.2, 8.4, 9.9 Hz), 4.19-4.22 (1H, m), 5.25 (2H, s), 6.82 (1H, dd, *J* = 2.1, 4.2 Hz), 7.32-7.44 (5H, m); ¹³C NMR (CDCl₃, 75 MHz): δ 25.4, 26.0, 30.4, 35.6, 35.9, 42.9, 44.7, 51.3, 66.6, 128.1, 128.4, 132.9, 135.6, 144.4, 162.9, 175.6, 179.1; MS (EI) *m/z* (%): 367 [M⁺] (5.9), 261 (25.8), 233 (16.0), 166 (8.8), 138 (12.9), 91 (100.0), 65 (30.8), 55 (38.7), 41 (35.1); HRMS (EI) Calcd. for C₂₂H₂₅NO₄ requires (M⁺) 367.1784, Found: 367.1788; [α]²⁰_D = +20.7 (c 0.5, CH₂Cl₂, 87% ee). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-PrOH = 50/50, 0.6 mL/min, 214 nm, *t_{minor}* = 25.61 min, *t_{major}* = 13.00 min).

Compound 31 (the racemate of 3id). 54 mg, Yield: 98%, colorless oil.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	12.694	8927703	49.96	316064
2	2	23.494	8941225	50.04	156651

OD-H, *n*-hexane/*i*-PrOH = 50/50, 0.6 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	12.998	15023829	93.46	498577
2	2	25.609	1051734	6.54	17582

OD-H, *n*-hexane/*i*-PrOH = 50/50, 0.6 mL/min, 214 nm

Compound 3ie. 39 mg, Yield: 94%, white solid, m.p. 100-101 °C; IR (neat): v 3064, 2993, 2928, 2842, 1757, 1723, 1683, 1536, 1272, 1232, 1162, 1098, 1031, 906, 836, 777, 634 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.87-0.96 (2H, m), 1.09-1.22 (3H, m), 1.51-1.71 (6H, m), 2.41 (3H, s), 2.92-3.10 (2H, m), 3.26-3.35 (2H, m), 3.53 (1H, ddd, *J* = 4.2, 8.4, 10.4 Hz), 4.25-4.29 (1H, m), 6.71 (1H, dd, *J* = 2.8, 4.4 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 25.5, 26.1, 27.6, 30.5, 35.9, 36.0, 42.7, 44.8, 51.1, 141.6, 143.2, 175.9, 179.1, 194.4; MS (EI) *m/z* (%): 275 [M⁺] (18.7), 242 (12.6), 193 (40.5), 180 (100.0), 135 (21.1), 108 (16.6), 93 (22.9), 57 (20.6), 43 (51.8), 41 (19.4); HRMS (EI) Calcd. for C₁₆H₂₁NO₃ requires (M⁺) 275.1521, Found: 275.1524; [α]²⁰_D = +75.3 (c 0.1, CH₂Cl₂, 70% ee). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm, *t_{minor}* = 16.55 min, *t_{major}* = 11.25 min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	11.255	3118935	50.29	129267
2	2	16.496	3083162	49.71	81446

OD-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	11.253	3147238	85.03	130980
2	2	16.548	554081	14.97	15468

OD-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

Compound 3ja. 28 mg, Yield: 85%, colorless oil; IR (neat): v 2990, 2953, 2923, 2852, 1768, 1685, 1625, 1434, 1374, 1291, 1206, 1122, 1095, 1020, 973, 819, 785, 721, 627 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.34 (3H, t, J = 7.2 Hz) , 2.89-3.05 (5H, m), 3.57 (1H, ddd, J = 3.6, 8.0, 10.4 Hz), 4.20-4.32 (3H, m), 6.78 (1H, dd, J = 2.8, 4.4 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 14.0, 24.8, 35.3, 43.0, 51.5, 60.7, 133.0, 143.6, 162.9, 175.4, 178.9; MS (EI) *m/z* (%): 223 [M⁺] (85.9), 178 (54.3), 151 (24.2), 138 (100.0), 110 (34.7), 93 (55.8), 79 (79.4), 66 (66.5), 49 (11.8); HRMS (EI) Calcd. for C₁₁H₁₃NO₄ requires (M⁺) 223.0845, Found: 223.0849; [α]²⁰_D = -10.7 (c 0.1, CH₂Cl₂, 80% ee). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 230 nm, *t_{minor}* = 16.32 min, *t_{major}* = 12.28 min).

Compound 3n (the racemate of 3ja). 33 mg, Yield: 99%, white solid, m.p. 65-66 °C.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1		12.334	3994315	52.11	198710
2		16.372	3670214	47.89	143787

OD-H, *n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 230 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	12.279	4752949	90.07	238713
2	2	16.319	523745	9.93	20774

OD-H, *n*-hexane/*i*-PrOH = 60/40, 0.5 mL/min, 230 nm

Compound 3o. 46 mg, Yield: 96%, colorless oil; IR (neat): v 2991, 2924, 2854, 1777, 1703, 1417, 1390, 1272, 1172, 1092, 1037, 906, 858, 731, 620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 1.27 (3H, t, J = 7.2 Hz) , 1.33 (3H, t, J = 7.2 Hz) , 2.90-3.08 (2H, m), 3.60 (1H, ddd, J = 3.6, 8.0, 10.4 Hz), 4.15-4.33 (7H, m), 5.83 (1H, dt, J = 1.6, 15.6 Hz), 6.76 (1H, dt, J = 6.0, 15.6 Hz), 6.81 (1H, dd, J = 2.0, 4.8 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 35.5, 39.0, 43.2, 51.6, 60.6, 61.0, 123.8, 133.1, 139.4, 143.9, 162.9, 165.4, 174.5, 178.0; MS (EI) *m/z* (%): 321 [M⁺] (12.8), 275 (99.5), 247 (38.5), 201 (16.7), 165 (100.0), 138 (23.9), 119 (28.0), 93 (38.3), 79 (24.2), 43 (10.6); HRMS (EI) Calcd. for C₁₆H₁₉NO₆ requires (M⁺) 321.1212, Found: 321.1208.

Compound 3la. 32 mg, Yield: 76%, white solid, m.p. 105-106 °C; IR (neat): v 2923, 2851, 1704, 1635, 1595, 1495, 1459, 1379, 1272, 1192, 1150, 1092, 1038, 916, 841, 760, 626 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.33 (3H, t, J = 7.2 Hz) , 3.00-3.13 (2H, m), 3.72 (1H, td, J = 5.2, 8.8 Hz), 4.24-4.33 (2H, m), 4.34-4.37 (1H, m), 6.86 (1H, dd, J = 2.4, 4.8 Hz), 7.25-7.27 (2H, m), 7.36-7.40 (1H, m), 7.43-7.47 (2H, m); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 35.8, 43.2, 51.6, 61.0, 126.4, 128.5, 129.0, 131.6, 133.2, 144.1, 163.0, 174.2, 178.0; MS (EI) *m/z* (%): 635 [M⁺] (7.6), 285 (100.0), 240 (9.3), 138 (89.0), 119 (25.3), 110 (27.1), 93 (23.4), 79 (44.4), 66 (50.7), 49 (7.2); HRMS (EI) Calcd. for C₁₆H₁₅NO₄ requires (M⁺) 285.1001, Found: 285.1000; $[\alpha]^{20}_{D} = -23.0$ (c 0.1, CH₂Cl₂, 68% ee). Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm, *t_{minor}* = 25.30 min, *t_{major}* = 17.87 min).

Compound 3p (the racemate of 3la). 41 mg, Yield: 96%, white solid, m.p. 98-99 °C.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	18.046	3740972	49.96	88038
2	2	25.401	3746755	50.04	60972

IC-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

IC-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

Compound 3ma. 41 mg, Yield: 87%, white solid, m.p. 128-129 °C; IR (neat): v 3067, 2926, 2842, 1779, 1708, 1631, 1512, 1384, 1249, 1185, 1093, 1031, 914, 830, 731, 616 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.33 (3H, t, J = 7.2 Hz) , 3.00-3.11 (2H, m), 3.70 (1H, td, J = 4.8, 8.4 Hz), 3.81 (3H, s), 4.23-4.35 (3H, m), 6.85 (1H, dd, J = 2.4, 4.4 Hz), 6.95 (2H, d, J = 8.8 Hz), 7.17 (2H, d, J = 8.8 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 14.1, 35.8, 43.1, 51.5, 55.4, 60.9, 114.3, 124.2, 127.6, 133.2, 144.0, 159.4, 163.1, 174.5, 178.2; MS (EI) *m/z* (%): 315 [M⁺] (100.0), 270 (4.2), 149 (60.6), 134 (11.2), 106 (5.6), 84 (10.8), 79 (5.4), 65 (8.3), 49 (10.5); HRMS (EI) Calcd. for C₁₇H₁₇NO₅ requires (M⁺) 315.1107, Found: 315.1112; [α]²⁰_D = -12.3 (c 0.1, CH₂Cl₂, 64% ee). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm, *t_{minor}* = 19.10 min, *t_{major}* = 14.85 min). **Compound 3q** (the racemate of **3ma**). 47 mg, Yield: 99%, white solid, m.p. 133-134 °C.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	14.942	5082461	50.04	231722
2	2	19.167	5073621	49.96	180451

AD-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	14.847	1951629	81.95	90721
2	2	19.099	441680	18.05	16140

AD-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

Compound 3na. 43 mg, Yield: 83%, white solid, m.p. 58-59 °C; IR (neat): v 3099, 2927, 2849, 2841, 1782, 1709, 1597, 1474, 1334, 1286, 1203, 1154, 1094, 1058, 921, 825, 731, 641 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.33 (3H, t, J = 6.8 Hz) , 3.01-3.12 (2H, m), 3.70 (1H, td, J = 4.8, 8.4 Hz), 3.77 (6H, s), 4.24-4.36 (3H, m), 6.39 (2H, d, J = 2.4 Hz), 6.47 (1H, t, J = 2.4 Hz), 6.87 (1H, dd, J = 2.4, 4.4 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 14.1, 35.8, 43.2, 51.5, 55.4, 61.0, 101.1, 104.8, 133.0, 133.1, 144.1, 160.9, 163.1, 174.1, 177.8; MS (EI) *m/z* (%): 345 [M⁺] (100.0), 299 (11.3), 273 (6.3), 179 (62.9), 150 (12.7), 138 (9.0), 93 (14.8), 79 (10.0), 65 (13.6); HRMS (EI) Calcd. for C₁₈H₁₉NO₆ requires (M⁺) 345.1212, Found: 345.1218; [α]²⁰_D = -17.0 (c 0.1, CH₂Cl₂, 61% ee). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm, *t_{minor}* = 35.49 min, *t_{major}* = 20.46 min). **Compound 3r** (the racemate of **3na**). 51 mg, Yield: 99%, colorless oil.

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	20.800	22423104	49.95	599454
2	2	35.623	22466326	50.05	332533

AD-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	20.640	6615181	80.53	189822
2	2	35.489	1598974	19.47	24370

AD-H, *n*-hexane/*i*-PrOH = 60/40, 0.6 mL/min, 214 nm

Compound 3oa. 64 mg, Yield: 83%, colorless oil; v 3071, 2984, 2901, 1706, 1683, 1544, 1455, 1363, 1274, 1171, 1082, 1029, 924, 867, 749, 650 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 1.33 (3H, t, *J* = 7.2 Hz) , 3.10-3.13 (2H, m), 3.76-3.83 (1H, m), 4.23-4.36 (2H, m), 4.41-4.44 (1H, m), 6.91 (1H, dd, *J* = 1.8, 4.2 Hz), 7.77 (1H, d, *J* = 3.2 Hz), 7.81 (1H, d, *J* = 3.2 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 14.2, 35.8, 43.8, 52.1, 61.1, 124.5, 124.6, 133.1, 135.0, 135.1, 144.2, 162.9, 172.1, 175.9; MS (EI) *m/z* (%): 519 [M⁺] (1.9), 442 (55.9), 287 (12.9), 242 (13.3), 155 (13.1), 138 (78.0), 99 (28.1), 71 (64.7), 57 (100.0), 43 (59.1), 41 (22.4); HRMS (EI) Calcd. for C₁₆H₁₂NO₄Br₃ requires (M⁺) 518.8316, Found: 518.8320; [α]²⁰_D = +4.4 (c 0.4, CH₂Cl₂, 38% ee). Enantiomeric excess was determined by HPLC with a Chiralcel IC-H column (*n*-hexane/*i*-PrOH = 70/30, 0.5 mL/min, 230 nm, *t_{minor}* = 10.71 min, *t_{major}* = 20.39 min). **Compound 3s** (the racemate of **3oa**). 74 mg, Yield: 95%, colorless oil.

S86

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	18.872	5791902	50.10	192777
2	2	20.616	5769117	49.90	168203

IC-H, *n*-hexane/*i*-PrOH = 70/30, 0.5 mL/min, 230 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	18.705	1900173	30.98	61882
2	2	20.392	4232900	69.02	120872

IC-H, *n*-hexane/*i*-PrOH = 70/30, 0.5 mL/min, 230 nm

Compound 3t. 45 mg, Yield: 90%, white solid, m.p. 168-169 °C; IR (neat): v 2976, 2923, 2851, 1778, 1710, 1628, 1435, 1381, 1292, 1202, 1091, 969, 861, 788, 724, 655 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.32 (3H+2H, t, J = 7.2 Hz) , 3.06-3.11 (2H+1.3H, m), 3.72-3.85 (1H+0.67H, m), 4.22-4.36 (2H+1.3H, m), 4.42-4.44 (1H+0.67H, m), 6.90-6.94 (1H+0.67H, m), 7.33 (0.67H, d, J = 8.0 Hz), 7.42 (1H, d, J = 8.0 Hz), 7.58-7.62 (1H+0.67H, m), 7.71-7.77 (1H+0.67H, m), 8.17 (1H+0.67H, d, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 35.5, 35.7, 43.5, 43.8, 52.0, 60.9, 61.0, 125.8, 130.0, 130.3, 130.5, 132.1, 133.0, 134.2, 144.4, 144.7, 145.1, 162.8, 173.3, 173.4, 177.0, 177.2; MS (EI) *m/z* (%): 330 [M⁺] (19.3), 284 (100.0), 210 (6.5), 138 (29.5), 110 (13.6), 93 (17.9), 79 (24.0), 66 (22.9), 49 (6.5); HRMS (EI) Calcd. for C₁₆H₁₄N₂O₆ requires (M⁺) 330.0852, Found: 330.0855.

The isomers of racemic [3+2] cycloaddition product **3t** could not be separated by HPLC, thus we did not further synthesize its chiral product **3pa**.

Compound 4. 41 mg, Yield: >99%, white solid, m.p. 147-148 °C; IR (neat): v 3374, 2993, 2948, 2831, 1757, 1693, 1526, 1283, 1262, 1142, 1091, 1044, 906, 826, 777, 634 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.86-0.97 (2H, m), 1.11-1.20 (3H, m), 1.58-1.80 (7H, m), 1.93-2.03 (2H, m), 2.23-2.28 (1H, m), 3.08-3.14 (1H, m), 3.25-3.29 (1H, m), 3.32 (2H, d, J = 7.2 Hz), 3.50 (1H, t, J = 8.4 Hz), 8.24 (1H, bs); ¹³C NMR (CDCl₃, 100 MHz): δ 25.4, 25.5, 26.1, 28.1, 28.6, 29.5, 30.4, 30.5, 35.9, 45.1, 47.1, 47.3, 176.3, 177.2, 179.7; MS (EI) *m/z* (%): 279 [M⁺] (5.2), 197 (34.6), 184 (62.4), 179 (65.4), 166 (100.0), 151 (25.2), 95 (31.5), 67 (91.5), 55 (29.4), 41 (32.4); HRMS (EI) Calcd. for C₁₅H₂₁NO₄ requires (M⁺) 279.1471, Found: 279.1473; [α]²⁰_D = +40.0 (c 0.2, CH₂Cl₂, for a 87% ee sample).

Compound race-4. 41 mg, Yield: >99%, white solid, m.p. 158-159 °C.

NOESY spectrum of Compound 4

Compound 5. 49 mg, Yield: 76%, white solid, m.p. 207-208 °C; IR (neat): v 3414, 2987, 2928, 2841, 1747, 1702, 1693, 14796, 1382, 1255, 1162, 1091, 1031, 907, 829, 779, 636 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.88-0.97 (2H, m), 1.11-1.24 (3H, m), 1.62-1.70 (6H, m), 1.93-2.06 (3H, m), 2.31-2.35 (1H, m), 3.10-3.13 (1H, m), 3.23-3.29 (1H, m), 3.32 (2H, d, *J* = 7.2 Hz), 3.41 (1H, t, *J* = 8.4 Hz), 7.14 (1H, t, *J* = 8.0 Hz), 7.21 (1H, d, *J* = 8.0 Hz), 7.39 (1H, d, *J* = 8.0 Hz), 7.75 (1H, s), 8.24 (1H, s); ¹³C NMR (CDCl₃, 100 MHz): δ 25.5, 25.6, 26.2, 28.3, 29.6, 30.2, 30.6, 30.7, 36.1, 45.3, 45.9, 47.4, 118.7, 122.5, 123.1, 127.4, 130.2, 139.0, 169.6, 177.8, 179.3; MS (EI) *m/z* (%): 432 [M⁺] (15.9), 262 (34.4), 171 (14.0), 95 (20.4), 67 (100.0), 55 (15.3), 41 (11.2); HRMS (EI) Calcd. for C₂₁H₂₅N₂O₃Br requires (M⁺) 432.1049, Found: 432.1052; [α]²⁰_D = +21.5 (c 0.6, CH₂Cl₂, 87% ee). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane/*i*-PrOH = 90/10, 0.7 mL/min, 214 nm, *t_{minor}* = 18.82 min, *t_{major}* = 25.05 min).

Compound race-5. 49 mg, Yield: 76%, white solid, m.p. 198-199 °C.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

No	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
•					
1	1	18 380	1330680	10.06	38287
1	1	10.009	1330000	49.90	50207
2	2	24.691	1332909	50.04	31522

AD-H, *n*-hexane/*i*-PrOH = 90/10, 0.7 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	18.817	206157	6.54	5542
2	2	25.046	2947394	93.46	58179

AD-H, *n*-hexane/*i*-PrOH = 90/10, 0.7 mL/min, 214 nm

Compound 8. 46 mg, Yield: 71%, white solid, m.p. 198-199 °C; ¹H NMR (300 MHz, CDCl₃, TMS): δ 0.86-0.98 (2H, m), 1.10-1.25 (3H, m), 1.61-1.70 (6H, m), 1.90-2.03 (3H, m), 2.27-2.36 (1H, m), 3.05-3.13 (1H, m), 3.22-3.28 (1H, m), 3.32 (2H, d, *J* = 6.9 Hz), 3.40 (1H, t, *J* = 8.7 Hz), 7.38 (4H, s), 8.18 (1H, s); ¹³C NMR (CDCl₃, 75 MHz): δ 25.5, 26.1, 28.3, 30.1, 30.6, 30.7, 36.1, 45.3, 45.9, 47.4, 49.6, 117.0, 121.8, 131.8, 136.7, 169.5, 177.8, 179.3; $[\alpha]^{20}_{D}$ = +11.3 (c 1.1, CH₂Cl₂, for a 87% ee sample).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Compound 6. 24 mg, Yield: 99%, colorless oil; IR (neat): v 3345, 2984, 2931, 2856, 1489, 1243, 1259, 1102, 1073, 1011, 899, 835, 755, 634 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, TMS): δ 0.80-0.92 (3H, m), 1.14-1.21 (3H, m), 1.38-1.48 (1H, m), 1.60-1.90 (10H, m), 2.05 (1H, dd, J = 5.1, 11.7 Hz), 2.21-2.27 (2H, m), 2.38 (1H, dd, J = 9.3, 11.7 Hz), 2.58-2.65 (3H, m), 2.89 (1H, d, J = 10.2 Hz), 3.59 (1H, dd, J = 3.9, 11.1 Hz), 3.90 (1H, dd, J = 2.7, 11.1 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 25.9, 26.1, 26.6, 30.4, 31.2, 31.9, 33.2, 36.6, 43.1, 43.7, 44.1, 57.3, 60.6, 62.9, 64.2; MS (EI) *m/z* (%): 237 [M⁺] (2.5), 155 (10.2), 154 (100.0), 124 (6.9), 95 (4.4), 57 (5.9), 55 (11.4), 41 (12.1); HRMS (EI) Calcd. for C₁₅H₂₇NO requires (M⁺) 237.2093, Found: 237.2094; [α]²⁰_D = +11.2 (c 0.4, CH₂Cl₂, 87% ee). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane/*i*-PrOH = 98/02, 0.7 mL/min, 214 nm, *t_{minor}* = 12.16 min, *t_{maior}* =11.34 min).

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	11.052	4022406	49.68	309316
2	2	12.028	4073460	50.32	263998

OD-H, *n*-hexane/*i*-PrOH = 98/02, 0.7 mL/min, 214 nm

No.	PeakNo	R. Time	PeakArea	PerCent	PeakHeight
1	1	11.342	7001561	93.49	591385
2	2	12.158	487004	6.50	32771

OD-H, *n*-hexane/*i*-PrOH = 98/02, 0.7 mL/min, 214 nm