takneNi(ClO₄)₂-Catalysed Regio- and Diastereoselctive

[3+2] Cycloadditon of Indoles and Aryl

Oxiranyl-dicarboxylates/Diketones: A Facile Access to

Furo[3,4-b]indoles.

Jieming Zhang, Zuliang Chen, Haihong Wu * and Junliang Zhang *

^aShanghai Key Laboratory of Green Chemistry and Chemical Processes,

Department of Chemistry, East China Normal University, 3663 N. Zhongshan

Road, Shanghai 200062 Fax:(+86)-021-6223-5039; e-mail : <u>hhwu@chem.ecnu.edu.cn</u> jlzhang@chem.ecnu.edu.cn

Supporting information

Contents

General information	S3
Typical procedure for Ni(ClO ₄) ₂ •6H ₂ O catalyzed cycloaddition reaction	S3
Procedure for competing experiment using 1a versus 1e with 2a	S17
Procedure for demethoxycarboxylatiaon of 3a	S18
Procedure for Ni(ClO ₄) ₂ •6H ₂ O /BOX catalyzed cycloaddition of oxirane	1a with
1,3-dimethyl-1H-indole 2d	S19
HPLC spectra	S20
ORTEP view of cis-isomers of 3a	S21
NMR spectra	S22

General information.

Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. ¹H NMR spectra, ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer in chloroform-d₃. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration). All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. ClCH₂CH₂Cl (DCE) and CH₂Cl₂ were freshly distilled from CaH₂; toluene was freshly distilled from sodium metal prior to use. Solid indoles were used directly. Lewis-acid purchased from Alfa, Acros or Aldrich were used directly. 4 Å molecular sieves purchased from Sinopharm Chemical Reagent Co.,Ltd were powdered and dried at 300 °C in muffle furnace for 8-10 hours prior to use.

Oxiranes are prepared according to the literature (R. Antonioletti, P. Bovicelli, S. Malancona, *Tetrahedron* **2002**, *58*, 589; E. Hasegawa, K. Ishiyama, T. Horaguchi, T. Shimizu, *J. Org. Chem.* **1991**, *56*, 1631.)

Indoles are prepared according to the procedure of the work reported (M. Amat, S. Hadida, S. Sathyanarayana, and J. Bosch, *Org. Syn.* **1998**, *9*, 417; M. B. Johansen and M. A. Kerr, *Org. Lett.* **2010**, *12*, 4965; F. Bellina, F. Benelli, and R. Rossi, *J. Org. Chem.* **2008**, *73*, 5529. A. K. Verma, J. Singh, R. C. Larock, *Tetrahedron* **2009**, *65*, 8434.)

Typical procedure for Ni(ClO₄)₂•6H₂O catalyzed [3+2] cycloaddition reaction.

1. Synthesis of 3a.

In an inert atmosphere glovebox, a flame-dried vial was charged with 5 mol % $Ni(ClO_4)_2 \cdot 6H_2O_5 60.0$ mg of activated 4Å molecular sieves (M.S.), and a magnetic stir

bar. Outside of the glovebox, the vial was placed under an N₂ atmosphere and charged with 1 mL of CH₂Cl₂ followed by the indole **2a** (65.3 mg, 0.45 mmol). Afterwards, **1a** (75.0 mg, 0.3 mmol) and 2 mL of CH₂Cl₂ were added. The reaction was stirred at room temperature for 2 hour. The reaction mixture was then passed over a short column of silica with 25 mL of Et₂O. The solvent was evaporated under reduced pressure and the residue was purified by flash chromatography, eluting with (hexanes:AcOEt = 10:1) to afford 110 mg (92%) of **3a** (exo:endo = 19:1), *exo*, white solid. M.p.: 168-170oC. IR (neat) 2917, 1765, 1742, 1603, 1082, 1052, 1014, 955, 779 cm-1. ¹H NMR (400 MHz, CDCl3): δ 1.00 (3H, s), 2.36 (3H, s), 2.87 (3H, s), 3.78 (3H, s), 3.92 (3H, s), 4.63 (1H, s), 5.24 (1H, s), 6.61 (1H, d, *J* = 8.0 Hz), 6.72-6.87 (2H, m), 7.09-7.30 (5H, m). ¹³C NMR (100 MHz, CDCl₃): δ 20.3, 21.1, 38.6, 52.4, 53.2, 56.6, 87.1, 90.0, 90.3, 109.7, 118.9, 122.8, 126.4, 128.6, 132.7, 133.3, 137.4, 152.4, 168.3, 168.5. MS (EI) m/z(%): 395[M⁺] (4.25), 144(100.00). HRMS (EI): calcd for C₂₃H₂₅NO₅ 395.1733, found 395.1734.

2. Synthesis of 3b.

The reaction of **1b** (83.5 mg, 0.3 mmol), **2a** (65.3 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 2 hours to afford 100.0 mg (79%) of **3b** (exo:endo = 18:1), *exo*, white solid. M.p.: 103-104 °C. IR (neat) 2980, 2862, 2810, 1761, 1739, 1600, 1516, 1486, 1464, 1370, 1279, 1254, 1218, 1152, 1134, 1109, 1076, 1051, 1000, 772, 753 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.00 (3H, s), 1.25 (3H, t, *J* = 6.4 Hz), 1.38 (3H, t, *J* = 6.4 Hz), 2.35 (3H, s), 2.88 (3H, s), 4.10-4.20 (1H, m), 4.25-4.50 (3H, m), 4.65 (1H, s), 5.28 (1H, s), 6.59 (1H, d, *J* = 7.6 Hz), 6.77 (1H, t, *J* = 6.4 Hz), 6.85

(1H, d, J = 6.4 Hz), 6.95-7.30 (5H, m). ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 20.5, 21.1, 38.6, 56.5, 61.6, 62.2, 86.8, 90.0, 90.2, 109.5, 118.8, 122.7, 126.4, 128.48, 128.51, 132.8, 133.5, 137.3, 152.4, 167.8, 168.0. MS (EI) m/z(%): 423[M⁺] (1.49), 144(100.00). HRMS (EI): calcd for C₂₅H₂₉NO₅ 423.2046, found 423.2045.

3. Synthesis of 3c.

The reaction of **1c** (90.7 mg, 0.3 mmol), **2a** (65.3 mg, 0.45mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 2 hours to afford 105.9 mg (79%) of **3c** (exo:endo = 20:1), *exo*, colourless oil. IR (neat) 2966, 2256, 1744, 1649, 1607, 1514, 1487, 1452, 1296, 1274, 1252, 1136, 1075, 1051, 991, 753, 730 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.01 (3H, s), 2.35 (3H, s), 2.86 (3H, s), 4.58 (1H, d, J = 13.2 Hz), 4.66 (1H, s), 4.70-4.91 (3H, m), 5.20 (1H, d, J = 10.0 Hz), 5.25-5.39 (3H, m), 5.43 (1H, d, J = 17.2 Hz), 5.79-5.90 (1H, m), 5.90-6.05 (1H, m), 6.59 (1H, d, J = 7.6 Hz), 6.71-6.82 (1H, m), 6.82-6.91 (1H, m), 7.09-7.33 (5H, m). ¹³C NMR (100 MHz, CDCl₃): δ 20.4, 21.1, 38.7, 56.6, 66.1, 66.5, 86.9, 90.1, 90.3, 109.6, 118.6, 118.7, 118.8, 122.7, 126.4, 128.5, 128.9, 131.2, 132.7, 133.4, 137.4, 152.4, 167.4, 167.6. MS (EI) m/z(%): 447[M⁺] (1.48), 39(100.00). HRMS (EI): calcd for C₂₇H₂₉NO₅ 447.2046, found 447.2047.

4. Synthesis of 3d.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

The reaction of **1d** (75.0 mg, 0.3 mmol), **2a** (65.3 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 16 hours to afford 79.4 mg (68%) of **3d** (exo:endo = 14:1), *exo*, white solid. M.p.: 157-159 °C. IR (neat) 2951, 1766, 1739, 1608, 1486, 1433, 1299, 1222, 1137, 1053, 992, 954, 750 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ 1.01 (3H, s), 2.36 (3H, s), 2.88 (3H, s), 3.78 (3H, s), 3.94 (3H, s), 4.65 (1H, s), 5.25 (1H, s), 6.62 (1H, d, *J* = 8.0 Hz), 6.72-6.92 (3H, m), 7.01-7.35 (5H, m). ¹³C NMR (100MHz, CDCl₃): δ 20.3, 21.5, 38.6, 52.4, 53.3, 56.6, 87.1, 90.0, 90.4, 109.7, 118.9, 122.8, 123.6, 127.0, 127.8, 128.6, 132.6, 136.2, 137.5, 152.5, 168.3, 168.4. MS (EI) m/z(%): 395[M⁺] (4.76), 144(100.00). HRMS (EI): calcd for C₂₃H₂₅NO₅ 395.1733, found 395.1735.

5. Synthesis of 3e.

The reaction of **1e** (78.3 mg, 0.29 mmol), **2a** (64.6 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 45 mins to afford 78.6 mg (65%) of **3e** (exo:endo = 18:1), *exo*, white solid. M.p.: 165-167 °C. IR (neat) 2952, 1765, 1742, 1605, 1284, 1097, 1081, 1054, 1035, 1081, 733 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.00 (3H, s), 2.87 (3H, s), 3.78 (3H, s), 3.81 (3H, s), 3.92 (3H, s), 4.64 (1H, s), 5.21 (1H, s), 6.61 (1H, d, *J* = 7.2 Hz), 6.70-6.87 (2H, m), 6.89 (2H, d, *J* = 7.2 Hz), 7.15-7.29 (3H, m).

¹³C NMR (100 MHz, CDCl₃): δ 20.2, 38.6, 52.4, 53.3, 55.1, 56.6, 87.0, 89.9, 90.3, 109.7, 113.3, 118.9, 122.7, 127.7, 128.3, 128.5, 132.7, 152.4, 159.3, 168.3, 168.4. MS (EI) m/z(%): 411[M⁺] (2.65), 144(100.00). HRMS (EI): calcd for C₂₃H₂₅NO₆ 411.1682, found 411.1680.

6. Synthesis of 3f.

The reaction of **1f** (79.8 mg, 0.3 mmol), **2a** (65.3 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 24 hours to afford 64.9 mg (53%) of **3f** (exo:endo = 10:1), *exo*, white solid. M.p.: 132-133 °C. IR (neat) 2954, 1770, 1746, 1603, 1485, 1462, 1435, 1299, 1280, 1252, 1221, 1140, 1113, 1096, 1079, 1048, 1024, 993, 944, 794, 768 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.03 (3H, s), 2.91 (3H, s), 3.64 (3H, s), 3.68 (3H, s), 3.92 (3H, s), 4.57 (1H, s), 5.86 (1H, s), 6.54 (1H, d, *J* = 7.2 Hz), 6.72 (1H, t, *J* = 6.8 Hz), 6.82-7.03 (3H, m), 7.15 (1H, t, 7.2 Hz), 7.22-7.35 (1H, m), 7.48 (1H, d, *J* = 7.2 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 22.0, 37.4, 52.4, 53.2, 54.5, 56.7, 84.9, 86.3, 90.0, 108.4, 109.9, 118.0, 120.1, 124.0, 125.6, 128.2, 128.2, 128.7, 133.6, 151.6, 156.3, 168.7, 168.8. MS (EI) m/z(%) 411 [M⁺] (1.97), 144(100.00). HRMS (EI): calcd for C₂₃H₂₅NO₆ 411.1682, found 411.1681.

7. Synthesis of 3g.

The reaction of **1g** (97.3 mg, 0.3 mmol), **2a** (65.3 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 30 mins to afford 97.4 mg (69%) of **3g** (exo:endo = 21:1), *exo*, white solid. M.p.: 170-172 °C. IR (neat) 2953, 1745, 1591, 1237, 1124, 1075, 1064, 1016, 1000, 957, 754 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.05 (3H, s), 2.88 (3H, s), 3.81 (3H, s), 3.84 (6H, s), 3.86 (3H, s), 3.94 (3H, s), 4.64 (1H, s), 5.20 (1H, s), 6.53 (2H, s), 6.64 (1H, d, *J* = 7.6 Hz), 6.75-6.85 (1H, m), 6.92 (1H, d, *J* = 6.8 Hz), 7.18-7.25 (1H, m). ¹³C NMR (100 MHz, CDCl₃): δ 19.9, 38.6, 52.4, 53.2, 56.0, 56.6, 60.7, 87.0, 89.8, 90.2, 103.6, 109.8, 118.6, 122.7, 128.7, 131.8, 132.3, 137.5, 152.5, 152.8, 168.1, 168.2. MS (EI) m/z(%): 471[M⁺] (2.96), 144(100.00). HRMS (EI): calcd for C₂₅H₂₉NO₈ 471.1893, found 471.1891.

8. Synthesis of 3h.

The reaction of **1h** (70.9 mg, 0.3 mmol), **2a** (65.3 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 10 mol % Ni(ClO₄)₂•6H₂O (0. 03 mmol, 11.0 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 38 hours to afford 80.8 mg (71%) of **3h** (exo:endo = 20:1), *exo*, white solid. M.p.: 167-169 °C. IR (neat) 2959, 1765, 1746, 1605, 1485, 1454, 1434, 1297, 1261, 1225, 1137, 1081, 1060, 1021, 758, 706 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.00 (3H, s), 2.88 (3H, s), 3.79 (3H, s), 3.93 (3H, s), 4.65 (1H, s), 5.28 (1H, s), 6.62 (1H, d, *J* = 8 Hz), 6.76-6.90 (2H, m), 7.21 (1H, t, *J* = 7.2 Hz), 7.28-7.45 (5H, m). ¹³C NMR (100 MHz, CDCl₃): δ 20.3, 38.6, 52.5, 53.3, 56.6, 87.0, 90.0, 90.4, 109.7, 118.9, 122.8, 126.5, 127.9, 127.9, 128.6, 132.5, 136.3, 152.4, 168.3, 168.4. MS (ESI) m/z(%): 382[M+H⁺] (100.00). HRMS (ESI): calcd for C₂₂H₂₄NO₅ [M+H⁺]382.1649, found 382.1646.

9. Synthesis of 3i.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

The reaction of **1i** (81.2 mg, 0.3 mmol), **2a** (65.3 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 10 mol % Ni(ClO₄)₂•6H₂O (0.03 mmol, 11.0 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 48 hours to afford 88.5 mg (71%) of **3i** (exo:endo = 12:1), *exo*, white solid. M.p.: 185-187 °C. IR (neat) 2910, 1766, 1743, 1604, 1485, 1331, 1290, 1253, 1152, 1084, 1053, 1015, 996, 757 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.99 (3H, s), 2.87 (3H, s), 3.80 (3H, s), 3.93 (3H, s), 4.65 (3H, s), 5.24 (1H, s), 5.62 (1H, d, *J* = 7.6 Hz), 6.75-6.88 (2H, m), 7.18-7.40 (5H, m). ¹³C NMR (100 MHz, CDCl₃): δ 20.0, 38.6, 52.5, 53.3, 56.6, 87.0, 89.3, 90.4, 109.9, 119.0, 122.6, 127.8, 128.1, 128.8, 132.1, 133.6, 134.9, 152.4, 168.1, 168.2. MS (EI) m/z(%): 417[M⁺+2] (0.58), 415[M⁺] (1.75), 144(100.00). HRMS (EI): calcd for C₂₂H₂₂ClNO₅ 415.1187, found 415.1187.

10. Synthesis of 3j.

The reaction of **1j**(99.3 mg, 0.3 mmol), **2a** (65.3 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 20 mol % Ni(ClO₄)₂•6H₂O (0.06 mmol, 22.0 mg) in CH₂Cl₂ (3 mL) was carried out in a sealed tube at 60 °C. for 4 days to afford an inseparable mixture 96.5 mg (69%) of **3j** (exo:endo = 10:1), colourless oil. IR (neat) 2954, 1744, 1607, 1487, 1372, 1273, 1250, 1152, 1078, 1023, 995, 955, 910, 751, 730, 682 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.12 (3H, s), 2.91 (3H, s), 2.35 (3H, s), 3.71 (3H, s), 3.91 (3H, s), 4.61 (1H, s), 5.91 (1H, s), 6.55 (1H, d, *J* = 8.0 Hz), 6.73 (1H, t, *J* = 6.4

Hz), 6.99 (1H, d, J = 6.8 Hz), 7.10-7.23 (2H, m), 7.34 (1H, t, J = 7.2 Hz), 7.54 (2H, d, J = 5.2 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 21.4, 37.5, 52.5, 53.3, 57.0, 86.1, 88.0, 89.8, 108.7, 118.5, 122.8, 124.3, 126.8, 128.6, 129.5, 130.0, 132.2, 133.0, 136.1, 151.5, 168.2, 168.4. MS (EI) m/z(%): 461[M⁺+2] (14.49), 459[M⁺] (15.01), 158(100.00). HRMS (EI): calcd for C₂₂H₂₂BrNO₅ 459.0681, found 459.0682.

11. Synthesis of 3k.

The reaction of **1k** (61.3 mg, 0.3 mmol), **2a** (65.3 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 24 hours to afford 53.3 mg (51%) of **3k** and 19.0 mg (18%) of **3k'**. **3k**, *exo*, white solid. M.p.: 137-138 °C IR (neat) 2970, 2868, 1729, 1701, 1607, 1484, 1452, 1348, 1296, 1253, 1206, 1153, 1129, 1081, 1053, 1021, 903, 883, 747, 697 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ 0.87 (3H, s), 2.37 (3H, s), 2.42 (3H, s), 2.72 (3H, s), 4.57 (1H, s), 5.26 (1H, s), 6.66 (1H, d, *J* = 7.6 Hz), 6.82 (1H, t, *J* = 6.8Hz), 6.87 (1H, d, *J* = 7.2 Hz), 7.20-7.32 (3H, m), 7.32-7.48 (3H, m). ¹³C NMR (100MHz, CDCl₃): δ 18.4, 26.2, 27.5, 38.3, 56.2, 86.0, 90.6, 98.1, 110.2, 119.1, 122.8, 126.2, 128.1, 128.2, 128.8, 132.6, 136.7, 152.3, 201.1, 207.5. MS (EI) m/z(%): 349[M⁺] (22.33), 158(100.00). HRMS (EI): calcd for C₂₂H₂₃NO₃ 349.1678, found 349.1679.

3k', *endo*, colourless oil. IR (neat) 2961, 2869, 1726, 1707, 1603, 1489, 1454, 1353, 1300, 1200, 1154, 1132, 1068, 1025, 911, 887, 755, 732, 700 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.44 (3H, s), 2.20 (3H, s), 2.36 (3H, s), 2.75 (3H, s), 4.62 (2H, s), 5.58 (1H, d, *J* = 7.2 Hz), 6.31 (1H, t, *J* = 7.2 Hz), 6.46 (1H, d, *J* = 7.6 Hz), 7.02 (1H, t, *J* = 7.6 Hz), 7.15 (2H, d, *J* = 6.4 Hz), 7.25-7.35 (3H, m). ¹³C NMR (100 MHz,

CDCl₃): δ 25.4, 25.9, 38.4, 58.9, 81.6, 90.0, 98.1, 108.3, 117.9, 125.4, 126.9, 127.9, 128.3, 128.4, 131.0, 136.4, 152.9, 203.7, 206.4. MS (EI) m/z(%): 349[M⁺] (13.12), 158(100.00). HRMS (EI): calcd for C₂₂H₂₃NO₃ 349.1678, found 349.1681.

12. Synthesis of 3m.

The reaction of **1a** (75.0 mg, 0.3 mmol), **2b** (77.0 mg, 0.33 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 2 hours to afford 110.2 mg (77%) of **3m** (exo:endo = 20:1), *exo*, white solid. M.p.: 137-139 °C. IR (neat) 2951, 1767, 1742, 1605, 1515, 1486, 1453, 1437, 1310, 1294, 1217, 1150, 1085, 1056, 751, 736, 702 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.94 (3H, s), 2.36 (3H, s), 3.43 (3H, s), 3.91 (3H, s), 4.32 (1H, d, *J* = 16.0 Hz), 4.64 (1H, d, *J* = 16.0 Hz), 4.91 (1H, s), 5.42 (1H, s), 6.48 (1H, d, *J* = 7.6 Hz), 6.78 (1H, t, *J* = 6.8 Hz), 6.86 (1H, d, *J* = 6.4 Hz), 7.10 (1H, t, 7.2 Hz), 7.15-7.40 (9H, m). ¹³C NMR (100MHz, CDCl₃): δ 20.3, 21.2, 52.7, 53.3, 55.0, 56.6, 84.5, 90.0, 90.3, 110.4, 119.1, 122.8, 126.5, 126.9, 127.3, 128.4, 128.5, 128.6, 133.2, 133.4, 137.5, 138.0, 151.6, 168.4, 168.5. MS (ESI) m/z(%): 472[M+H⁺](100.00). HRMS (ESI): calcd for C₂₉H₂₉NO₅Na [M+Na⁺] 494.1938, found 494.1939.

13. Synthesis of 3n.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

The reaction of **1a** (75.0 mg, 0.3 mmol), **2c** (77.9 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 2 hours to afford 89.7 mg (70%) of **3n** (exo:endo = 20:1), *exo*, white solid. M.p.: 89-90 °C. IR (neat) 2954, 1744, 1604, 1516, 1483, 1436, 1279, 1248, 1224, 1152, 1082, 1055, 1016, 911, 754, 731 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ 0.98 (3H, s), 2.36 (3H, s), 3.66-3.73 (1H, m), 3.75 (3H, s), 3.91 (3H, s), 4.01 (1H, d, *J* = 16.4Hz), 4.87 (1H, s), 5.23 (1H, d, *J* = 11.2 Hz), 5.31 (1H, d, *J* = 6.4 Hz), 5.70-5.86 (1H, m), 6.69 (1H, d, *J* = 7.6 Hz), 6.72-6.81 (1H, m), 6.81-6.87 (1H, m), 7.09-7.30 (5H, m). ¹³C NMR (100 MHz, CDCl₃): δ 20.5, 21.2, 52.7, 53.0, 53.2, 56.4, 83.6, 90.1, 90.6, 110.4, 118.2, 119.0, 122.8, 126.4, 128.4, 128.6, 132.9, 133.3, 133.4, 137.4, 151.1, 168.4, 168.6. MS (EI) m/z(%): 421[M⁺] (0.55), 139(100.00). HRMS (EI): calcd for C₂₅H₂₇NO₅ 421.1889, found 421.1885.

14. Synthesis of 3o.

The reaction of **1a** (75.0 mg, 0.3 mmol), **2d** (59.0 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 24 hours to afford 75.5 mg (66%) of **3o**, pale yellow solid. M.p.: 73-75 °C. IR (neat) 3362, 2953, 1744, 1610, 1516, 1485, 1436, 1279, 1250, 1226, 1136, 1079, 1041, 943, 751 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.02

(3H, s), 2.35 (3H, s), 3.84 (3H, s), 3.90 (3H, s), 4.29 (1H, s), 5.10 (1H, d, J = 2.4 Hz), 5.16 (1H, s), 6.67 (1H, d, J = 7.6 Hz), 6.72-6.86 (2H, m), 7.09-7.20 (5H, m). ¹³C NMR (100 MHz, CDCl₃) δ 18.1, 21.2, 52.8, 53.4, 57.4, 78.9, 89.6, 90.3, 110.2, 119.2, 123.3, 126.3, 128.5, 128.6, 132.0, 133.2, 137.4, 148.8, 168.1, 168.7. MS (ESI) m/z(%): 404[M+Na⁺] (93.00), 382(100.00). HRMS (ESI): calcd for C₂₂H₂₃NO₅Na [M+Na⁺] 404.1468, found 404.1467.

15. Synthesis of 3p.

The reaction of **1a** (75.0 mg, 0.3 mmol), **2e** (77.9 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 2 hours to afford 98.2 mg (81%) of **3p** (exo:endo = 17:1), *exo*, white solid. M.p.: 155-157 °C. IR (neat) 2963, 2919, 1767, 1743, 1607, 1486, 1460, 1440, 1294, 1250, 1221, 1128, 1114, 1084, 1054, 1022, 997, 952, 747, 671 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 0.60 (3H, t, *J* = 7.5 Hz), 1.07-1.43 (2H, m), 2.36 (3H, s), 2.87 (3H, s), 3.77 (3H, s), 3.92 (3H, s), 4.76 (1H, s), 5.31 (1H, s), 6.59 (1H, d, *J* = 8.1 Hz), 6.75-6.87 (2H, m), 7.09-7.21 (5H, m). ¹³C NMR (75 MHz, CDCl₃): δ 9.4, 21.2, 23.9, 38.5, 52.4, 53.2, 61.4, 82.0, 90.8, 90.9, 109.6, 118.9, 123.0, 126.6, 128.4, 128.6, 130.3, 133.3, 137.4, 153.1, 168.5, 168.6. MS (EI) m/z(%): 409[M⁺] (29.52), 135(100.00). HRMS (EI): calcd for C₂₄H₂₇NO₅ 409.1888, found 409.1889.

16. Synthesis of 3q.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

The reaction of **1a** (75.0 mg, 0.3 mmol), **2f** (65.3 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 38 hours to afford 88.8 mg (75%) of **3q**, pale brown solid. M.p.: 77-79 °C. IR (neat) 3375, 3055, 2928, 2852, 1769, 1730, 1610, 1517, 1485, 1466, 1436, 1284, 1245, 1221, 1113, 1076, 1042, 1019, 954, 921, 826, 751, 681 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 0.71 (3H, t, *J* = 7.5 Hz), 1.10-1.30 (1H, m), 1.30-1.52 (1H, m), 2.34 (3H, s), 3.84 (3H, s), 3.89 (3H, s), 4.25 (1H, d, *J* = 5.1 Hz), 5.20 (1H, s), 5.31 (1H, d, *J* = 5.1 Hz), 6.67 (1H, d, *J* = 7.8 Hz), 6.70-6.85 (2H, m), 7.00-7.21 (5H, m). ¹³C NMR (75 MHz, CDCl₃): δ 9.3, 21.1, 21.8, 52.6, 53.2, 62.2, 73.7, 90.4, 90.6, 110.0, 119.0, 123.3, 126.4, 128.3, 128.4, 129.4, 133.0, 137.3, 149.3, 168.1, 168.7. MS (EI) m/z(%): 395[M⁺] (17.83), 135(100.00). HRMS (EI): calcd for C₂₃H₂₅NO₅ 395.1733, found 395.1735.

17. Synthesis of 3r.

The reaction of **1a** (75.0 mg, 0.3 mmol), **2g** (70.8 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 24 hours to afford 96.4 mg (79%) of **3r**, white solid. M.p.: 148-149 °C. IR (neat) 2959, 1773, 1738, 1642, 1607, 1253, 1111, 1076, 1017, 926, 755 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.95-2.10 (1H, m), 2.10-2.20 (1H, m), 2.35 (3H, s), 3.83 (3H, s), 3.89 (3H, s), 4.23 (1H, d, *J* = 4.0 Hz), 4.91-5.10 (2H, m),

5.22 (1H, s), 5.29 (1H, d, J = 4.0 Hz), 5.36-5.49 (1H, m), 6.65 (1H, d, J = 7.6 Hz), 6.77 (1H, t, J = 7.2 Hz), 6.85 (1H, d, J = 7.2 Hz), 7.09-7.25 (5H, m). ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 34.2, 52.6, 53.2, 61.3, 74.3, 90.2, 90.7, 110.2, 118.5, 119.1, 123.5, 126.4, 128.5, 128.6, 129.3, 132.8, 134.3, 137.5, 149.2, 168.0, 168.6. MS (EI) m/z(%): 407[M⁺] (19.61), 135(100.00). HRMS (EI): calcd for C₂₄H₂₅NO₅ 407.1733, found 407.1734.

18. Synthesis of 3s

The reaction of **1a** (50.0 mg, 0.2 mmol), **2h** (61.7 mg, 0.3 mmol), 40.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.01 mmol, 3.7 mg) in CH₂Cl₂ (2 mL) was carried out at r.t. for 8 hours to afford 61.2 mg (67%) of **3s** (exo:endo > 20:1), white solid. M.p.: 147-148 °C. IR (neat) 2971, 2878, 1743, 1595, 1499, 1480, 1453, 1435, 1271, 1245, 1137, 1088, 1072, 1047, 1021, 964, 765, 702 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.07 (3H, s), 2.37 (3H, s), 3.14 (3H, s), 3.90 (3H, s), 5.51 (1H, s), 5.73 (1H, s), 6.78-6.88 (2H, m), 6.92 (1H, d, *J* = 6.8 Hz), 7.07-7.25 (6H, m), 7.35-7.45 (4H, m). ¹³C NMR (100 MHz, CDCl₃): δ 19.6, 21.2, 51.9, 53.3, 56.3, 81.8, 89.0, 90.3, 108.9, 119.7, 123.1, 124.3, 126.5, 128.3, 128.6, 129.0, 132.5, 133.5, 137.6, 143.2, 148.4, 167.6, 168.5. MS (EI) m/z(%): 457[M⁺] (39.51), 135(100.00). HRMS (EI): calcd for C₂₈H₂₇NO₅ 457.1889, found 457.1890.

19. Synthesis of 3t.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

The reaction of **1a** (74.7 mg, 0.3 mmol), **2i** (93.2 mg, 0.45 mmol), 60.0 mg of activated 4Å M.S. and 5 mol % Ni(ClO₄)₂•6H₂O (0.015 mmol, 5.5 mg) in CH₂Cl₂ (3 mL) was carried out at r.t. for 48 hours to afford 52.5 mg (38%) of **3t** (exo : endo = 4:1), white solid. M.p.: 171-173 °C. IR (neat) 3030, 2897, 1752, 1607, 1556, 1493, 1438, 1405, 1372, 1336, 1231, 1219, 1170, 1107, 1022, 935, 808, 752, 703 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.36 (3H, s), 3.53 (3H, s), 3.55 (6H, s), 4.42 (1H, s), 6.01 (1H, s), 7.18 (3H, d, *J* = 8.4 Hz), 7.28-7.45 (9H, m), 7.67 (1H, d, *J* = 8.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 31.2, 52.6, 52.7, 75.0, 76.2, 109.3, 119.92, 119.94, 121.0, 123.0, 126.0, 126.4, 126.7, 128.5, 129.2, 130.0, 130.9, 133.9, 136.1, 137.5, 138.0, 166.4, 167.1. MS (EI) m/z(%): 457[M⁺] (65.36), 310(100.00). HRMS (EI): calcd for C₂₈H₂₇NO₅ 457.1889, found 457.1887.

3t', *endo*, 13.6 mg, white solid. ¹H NMR (400 MHz, CDCl₃): δ 2.22 (3H, s), 2.94 (3H, s), 3.74 (3H, s), 3.96 (3H, s), 5.12 (1H, s), 5.71 (1H, s), 6.64 (1H, d, J = 8.0 Hz), 6.88 (1H, td, ⁴J = 0.6 Hz, ³J = 7.4 Hz), 6.94 (2H, d, J = 8.0 Hz), 7.04-7.19 (7H, m), 7.23-7.28 (1H, m), 7.34 (1H, d, J = 7.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 37.6, 52.5, 53.5, 65.4, 87.4, 91.5, 92.2, 109.6, 118.6, 126.2, 126.4, 127.1, 127.6, 127.8, 128.2, 128.8, 130.0, 133.2, 137.0, 141.1, 152.3, 168.3, 168.5. MS (EI) m/z(%): 457[M⁺] (10.91), 207(100.00). HRMS (EI): calcd for C₂₈H₂₇NO₅ 457.1889, found 457.1889.

In an inert atmosphere glovebox, a flame-dried vial was charged with 5 mol % $Ni(ClO_4)_2 \cdot 6H_2O_160.0$ mg of activated 4Å molecular sieves (M.S.), and a magnetic stir bar. Outside of the glovebox, the vial was placed under an N₂ atmosphere and charged with 1 mL of CH₂Cl₂ followed by the indole **2a** (43.8 mg, 0.3 mmol). Afterwards, **1a** (75.0 mg, 0.3 mmol), **1e** (79.6 mg, 0.3 mmol) and 2 mL of CH₂Cl₂ were added. The reaction was stirred at room temperature for 30 mins until **2a** disappeared monitored by TLC. After standard work-up, this experiment gave the products **3a** and **3e** in 15% and 78% ¹H NMR yield, respectively.

Procedure for competing experiment using 1a versus 1e with 2a

Procedure for demethoxycarboxylatiaon of 3a

The solution of **3a** (79.1 mg, 0.2 mmol) and NaCl (14.7 mg, 0.25 mmol) in DMSO/H₂O (20:1) was heated to 160 °C under N₂. The mixture was allowed to cool to room temperature after 5 hours, then it was poured into 5 ml water, extracted with ethyl ether (3*5 mL), washed with water (2*5 mL). The solvent was removed in vacuo. The residue was purified by flash chromatography, eluting with (hexanes:AcOEt = 20:1) to afford 32.0 mg (45%) of **5a** (dr = 30:1). **5a**, colourless oil. IR (neat) 2953, 2867, 1759, 1735, 1608, 1486, 1451, 1376, 1301, 1200, 1117, 1087, 1038, 1020, 996, 858, 797, 741 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.98 (3H, s), 2.36 (3H, s), 2.90 (3H, s), 3.88 (4H, s), 4.74 (1H, s), 4.88 (1H, s), 6.56 (1H, d, *J* = 7.6 Hz), 6.73 (1H, t, *J* = 7.2 Hz), 6.84 (1H, d, *J* = 7.2 Hz), 7.10-7.21 (3H, m), 7.24-7.35 (2H, m). ¹³C NMR (100 MHz, CDCl₃): δ 18.7, 21.2, 34.3, 52.3, 55.6, 81.6, 86.2, 88.5, 107.4, 118.1, 123.0, 126.4, 128.5, 128.6, 132.4, 134.2, 137.2, 150.9, 171.6. MS (EI) m/z(%): 337[M⁺] (28.24), 158(100.00). HRMS (EI): calcd for C₂₁H₂₃NO₃ 337.1678, found 337.1676.

5a', ¹H NMR (400 MHz, CDCl₃): δ 1.02 (3H, s), 2.36 (3H, s), 2.82 (3H, s), 3.78 (3H, s), 4.15(1H, d, *J* = 6.0 Hz), 5.06 (1H, s), 5.11 (1H, d, *J* = 6.0 Hz), 6.60 (1H, d, *J* = 7.6 Hz), 6.77 (1H, t, *J* = 7.2 Hz), 6.84 (1H, d, *J* = 7.2 Hz), 7.12-7.24 (5H, m). ¹³C NMR (100MHz, CDCl₃): δ 19.8, 21.2, 38.2, 51.8, 56.8, 80.4, 84.4, 88.0, 109.4, 118.7, 122.9, 126.5, 128.5, 128.6, 132.4, 134.0, 137.3, 152.5, 171.4. MS (EI) m/z(%): 337[M⁺] (27.67), 158(100.00). HRMS (EI): calcd for C₂₁H₂₃NO₃ 337.1678, found 337.1680.

Procedure for Ni(ClO₄)₂•6H₂O /BOX catalyzed cycloaddition of oxirane 1a with 1,3-dimethyl-1H-indole 2d

In an inert atmosphere, a flame-dried vial was charged with a maganetic stir bar, 60.0 mg of activated 4Å molecular sieves (M.S.), Ni(ClO₄)₂•6H₂O (8.1 mg, 5 mol%), BOX **4** (6.5 mg, 5.5 mol%) and 2.0 mL of DCM. The mixture was allowed to stir for 3 h at room temperature. Then, indole **2d** (69.8 mg, 0.52 mmol,) was added, followed by oxirane **1a** (110.5 mg, 0.44 mmol) and 1.0 mL of DCM. The mixture was continued to stir at room temperature for further 5 d. The products were obtained by flash chromatography providing isolated yield of 72%. The enantiomeric excess of product was determined by chiral HPLC. HPLC analysis: Chiralcel AD-H (hexane/*i*-PrOH = 80/20, 0.8 mL/min), t_{minor} = 7.66 min, t_{major} = 8.27 min, ee = 19%.

HPLC spectra

Racemic of product of 30

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	7.73	n.a.	102.975	27.193	50.37	n.a.	BMB
2	8.55	n.a.	96.752	26.793	49.63	n.a.	BMB
总和:			199.728	53.986	100.00	0.000	

Enantioenriched product of 30

NMR spectra

3a

3b

3e

3f

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

3f

3g

3h

3j

3k

3k'

3m

3m

3n

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

30

30

3p

3q

3r

3s

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

3t'

3t'

5a

