# Electronic Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2012 data_global _journal_name_full Chem.Commun. _journal_coden_cambridge 0182 _journal_year ? _journal_volume ? _journal_page_first ? loop_ _publ_author_name _publ_author_address I.A.Gass ; School of Chemistry, Monash University, PO Box 23, VIC 3800, Australia ; B.Moubaraki ; School of Chemistry, Monash University, PO Box 23, VIC 3800, Australia ; S.Langley ; School of Chemistry, Monash University, PO Box 23, VIC 3800, Australia ; S.R.Batten ; School of Chemistry, Monash University, PO Box 23, VIC 3800, Australia ; K.S.Murray ; School of Chemistry, Monash University, PO Box 23, VIC 3800, Australia ; _publ_contact_author_address ; School of Chemistry, 171 Monash university, Vic 3800, Australia ; _publ_contact_author_email Keith.murray@sci.monash.edu.au _publ_contact_author_fax +61-3-9905-4597 _publ_contact_author_phone +61-3-9905-4512 #========================================================================== # SUBMISSION DETAILS _publ_contact_author_name 'Keith. S. Murray' _publ_contact_letter ; ; _publ_requested_category ? _publ_section_title ; A p-p 3D network of tetranuclear \m2 /\m 3-carbonato Dy(III) bis-pyrazolylpyridine clusters showing single molecule magnetism features. ; data_Dy4 _database_code_depnum_ccdc_archive 'CCDC 853161' #TrackingRef '- Complex 1 Corrected Dy4.CIF' #========================================================================== _audit_creation_method SHELXL-97 _audit_creation_date '9 November 2005' _publ_section_abstract ; ; _publ_section_comment ; ; _publ_section_exptl_prep ; ; _publ_section_exptl_refinement ; The asymmetric unit contains a third of the tetranuclear complex. All the non-hydrogen atoms are refined anisotropically and all hydrogen atoms are placed in calculated positions.There was diffuse electron density associated with disordered solvent in the voids which could not be modelled appropriately. SQUEEZE was applied and the electron count of 373e per Dy4 complex could correspond to a large number of possible combinations of solvent, likely to be DMSO and water. Hence the molecular weight and formula remain for the complex only with no solvent. ; _publ_section_references ;Bruker (1997) SMART (Version 5.054) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2001) XCIF (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. and Taylor, R. (2002) Acta Cryst., B58, 389--397. Farrugia, L. J. (1997) J. Appl. Cryst., 30, 565--565. Sheldrick, G. M. (1990) Acta Cryst., A46, 467--473. Sheldrick, G. M. (1997) SHELXL97., University of Gottingen, Germany. Sheldrick, G. M. (1996) SADABS., University of Gottingen, Germany. ; _publ_section_figure_captions ; ; _publ_section_table_legends ; ; _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ; C39 H27 Dy4 N15 O21 ; _chemical_formula_sum 'C39 H27 Dy4 N15 O21' _chemical_formula_weight 1691.76 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Dy Dy -0.1892 4.4098 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting trigonal _symmetry_space_group_name_H-M P31c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' 'y, x, z+1/2' 'x-y, -y, z+1/2' '-x, -x+y, z+1/2' _cell_length_a 21.3354(3) _cell_length_b 21.3354(3) _cell_length_c 11.5428(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 4550.33(15) _cell_formula_units_Z 2 _cell_measurement_temperature 123(2) _cell_measurement_reflns_used 12399 _cell_measurement_theta_min 1.9052 _cell_measurement_theta_max 32.3006 _exptl_crystal_description hexagonal-prism _exptl_crystal_colour colourless _exptl_crystal_size_max 0.4 _exptl_crystal_size_mid 0.1 _exptl_crystal_size_min 0.1 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.235 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1596 _exptl_absorpt_coefficient_mu 3.298 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.680 _exptl_absorpt_correction_T_max 0.719 _exptl_absorpt_process_details ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 123(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Oxford Gemini ultra' _diffrn_measurement_method 'scans in phi and omega' _diffrn_detector_area_resol_mean 10.3389 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 29294 _diffrn_reflns_av_R_equivalents 0.0446 _diffrn_reflns_av_sigmaI/netI 0.0402 _diffrn_reflns_limit_h_min -27 _diffrn_reflns_limit_h_max 27 _diffrn_reflns_limit_k_min -27 _diffrn_reflns_limit_k_max 26 _diffrn_reflns_limit_l_min -13 _diffrn_reflns_limit_l_max 14 _diffrn_reflns_theta_min 1.91 _diffrn_reflns_theta_max 27.50 _reflns_number_total 6772 _reflns_number_gt 5892 _reflns_threshold_expression >2sigma(I) _computing_data_collection ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) ; _computing_cell_refinement ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) ; _computing_data_reduction ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) ; _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics X-SEED _computing_publication_material 'XCIF V6.12 (BrukerAXS, 2001)' loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 -0.003 -0.002 -0.038 2462 746 ' ' _platon_squeeze_details ; This could amount to a large number of possible combinations of DMSO and water and hence can not be specified. ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The asymmetric unit contains a third of the tetranuclear complex. All the non-hydrogen atoms are refined anisotropically and all hydrogen atoms are placed in calculated positions. There was diffuse electron density associated with disordered solvent in the voids which could not be modelled appropriately. SQUEEZE was applied and the electron count of 373e per Dy4 complex could correspond to a large number of possible combinations of solvent, likely to be DMSO and water. Hence the molecular weight and formula remain for the complex only with no solvent. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0466P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.005(13) _refine_ls_number_reflns 6772 _refine_ls_number_parameters 238 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0427 _refine_ls_R_factor_gt 0.0348 _refine_ls_wR_factor_ref 0.0808 _refine_ls_wR_factor_gt 0.0775 _refine_ls_goodness_of_fit_ref 1.017 _refine_ls_restrained_S_all 1.017 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Dy1 Dy 0.3333 0.6667 0.75863(3) 0.03239(10) Uani 1 3 d S . . Dy2 Dy 0.476496(13) 0.641306(13) 0.58911(2) 0.03498(7) Uani 1 1 d . . . O1 O 0.3787(2) 0.5567(2) 0.4668(4) 0.0421(10) Uani 1 1 d . . . O2 O 0.2634(2) 0.5265(2) 0.5024(4) 0.0412(9) Uani 1 1 d . . . O3 O 0.35415(18) 0.5987(2) 0.6219(3) 0.0346(8) Uani 1 1 d . . . O4 O 0.2265(2) 0.5466(2) 0.7642(3) 0.0398(9) Uani 1 1 d . . . O5 O 0.2283(2) 0.4530(2) 0.8459(4) 0.0547(12) Uani 1 1 d . . . O6 O 0.3155(2) 0.5678(2) 0.8804(4) 0.0453(10) Uani 1 1 d . . . O7 O 0.5888(2) 0.7249(2) 0.6691(4) 0.0502(11) Uani 1 1 d . . . N1 N 0.4083(3) 0.5175(3) 0.8192(5) 0.0501(13) Uani 1 1 d . . . H1N H 0.3795 0.5334 0.8420 0.060 Uiso 1 1 calc R . . N2 N 0.4494(3) 0.5412(3) 0.7267(5) 0.0423(12) Uani 1 1 d . . . N3 N 0.5461(3) 0.5734(3) 0.5579(4) 0.0398(11) Uani 1 1 d . . . N4 N 0.5521(3) 0.6740(3) 0.4129(5) 0.0502(13) Uani 1 1 d . . . N5 N 0.5659(3) 0.7229(3) 0.3319(6) 0.0627(17) Uani 1 1 d . . . H5N H 0.5440 0.7484 0.3254 0.075 Uiso 1 1 calc R . . C1 C 0.4152(4) 0.4664(4) 0.8747(7) 0.0594(18) Uani 1 1 d . . . H1 H 0.3886 0.4403 0.9410 0.071 Uiso 1 1 calc R . . C2 C 0.4669(4) 0.4584(4) 0.8195(6) 0.0605(18) Uani 1 1 d . . . H2 H 0.4850 0.4275 0.8416 0.073 Uiso 1 1 calc R . . C3 C 0.4876(4) 0.5033(3) 0.7266(7) 0.0578(19) Uani 1 1 d . . . C4 C 0.5384(4) 0.5225(4) 0.6339(6) 0.0533(16) Uani 1 1 d . . . C5 C 0.5783(4) 0.4868(4) 0.6219(7) 0.065(2) Uani 1 1 d . . . H5 H 0.5709 0.4489 0.6733 0.078 Uiso 1 1 calc R . . C6 C 0.6301(5) 0.5087(5) 0.5308(7) 0.067(2) Uani 1 1 d . . . H6 H 0.6591 0.4868 0.5213 0.081 Uiso 1 1 calc R . . C7 C 0.6369(4) 0.5614(4) 0.4583(7) 0.0573(18) Uani 1 1 d . . . H7 H 0.6712 0.5772 0.3970 0.069 Uiso 1 1 calc R . . C8 C 0.5937(3) 0.5929(3) 0.4730(6) 0.0490(15) Uani 1 1 d . . . C9 C 0.5980(3) 0.6480(3) 0.3936(6) 0.0453(14) Uani 1 1 d . . . C10 C 0.6408(4) 0.6818(4) 0.2979(7) 0.0630(19) Uani 1 1 d . . . H10 H 0.6776 0.6744 0.2655 0.076 Uiso 1 1 calc R . . C11 C 0.6183(4) 0.7283(5) 0.2603(7) 0.075(3) Uani 1 1 d . . . H11 H 0.6366 0.7592 0.1948 0.090 Uiso 1 1 calc R . . C12 C 0.3307(3) 0.5597(3) 0.5277(5) 0.0332(11) Uani 1 1 d . . . C13 C 0.2556(3) 0.5197(3) 0.8318(6) 0.0434(14) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Dy1 0.03098(14) 0.03098(14) 0.0352(2) 0.000 0.000 0.01549(7) Dy2 0.02955(13) 0.03264(13) 0.04543(14) 0.00374(11) 0.00178(11) 0.01755(11) O1 0.031(2) 0.046(2) 0.053(3) -0.0077(19) 0.0030(18) 0.0211(19) O2 0.033(2) 0.042(2) 0.045(2) -0.0081(17) 0.0034(17) 0.0163(18) O3 0.0293(18) 0.039(2) 0.039(2) -0.0013(16) 0.0019(15) 0.0198(16) O4 0.036(2) 0.038(2) 0.047(2) 0.0099(18) 0.0086(17) 0.0198(18) O5 0.048(3) 0.043(2) 0.076(3) 0.022(2) 0.012(2) 0.025(2) O6 0.044(2) 0.043(2) 0.046(2) 0.0105(18) -0.0002(18) 0.020(2) O7 0.036(2) 0.039(2) 0.072(3) 0.001(2) -0.0074(19) 0.0159(19) N1 0.052(3) 0.052(3) 0.054(3) 0.015(2) 0.003(3) 0.031(3) N2 0.038(3) 0.033(2) 0.061(3) 0.010(2) 0.002(2) 0.022(2) N3 0.036(2) 0.032(2) 0.057(3) 0.002(2) -0.001(2) 0.021(2) N4 0.041(3) 0.044(3) 0.066(4) 0.013(3) 0.018(2) 0.022(2) N5 0.063(4) 0.054(3) 0.089(5) 0.027(3) 0.032(3) 0.043(3) C1 0.065(4) 0.054(4) 0.070(5) 0.019(3) 0.005(4) 0.038(4) C2 0.069(5) 0.062(4) 0.065(5) 0.024(4) 0.006(4) 0.043(4) C3 0.048(4) 0.031(3) 0.086(5) -0.005(3) 0.021(4) 0.013(3) C4 0.057(4) 0.054(4) 0.066(4) -0.002(3) -0.001(3) 0.041(3) C5 0.089(6) 0.060(4) 0.077(5) -0.004(4) 0.001(4) 0.060(4) C6 0.081(5) 0.076(5) 0.068(5) 0.000(4) 0.017(4) 0.057(5) C7 0.065(4) 0.059(4) 0.071(5) 0.000(3) 0.013(4) 0.048(4) C8 0.039(3) 0.044(3) 0.069(4) -0.010(3) -0.002(3) 0.024(3) C9 0.033(3) 0.052(4) 0.053(4) 0.001(3) 0.010(3) 0.023(3) C10 0.073(5) 0.066(5) 0.069(5) 0.009(4) 0.023(4) 0.049(4) C11 0.075(5) 0.076(5) 0.092(6) 0.036(4) 0.048(5) 0.050(5) C12 0.026(3) 0.036(3) 0.036(3) -0.007(2) 0.005(2) 0.014(2) C13 0.036(3) 0.039(3) 0.055(4) 0.016(3) 0.014(3) 0.019(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Dy1 O3 2.331(4) 3_565 ? Dy1 O3 2.331(4) 2_665 ? Dy1 O3 2.331(4) . ? Dy1 O6 2.402(4) 3_565 ? Dy1 O6 2.402(4) 2_665 ? Dy1 O6 2.402(4) . ? Dy1 O4 2.434(4) 3_565 ? Dy1 O4 2.434(4) . ? Dy1 O4 2.434(4) 2_665 ? Dy1 C13 2.845(6) 3_565 ? Dy1 C13 2.845(6) . ? Dy1 C13 2.845(6) 2_665 ? Dy2 O2 2.302(4) 2_665 ? Dy2 O3 2.326(3) . ? Dy2 O4 2.327(4) 2_665 ? Dy2 O7 2.345(4) . ? Dy2 O1 2.416(4) . ? Dy2 N4 2.469(5) . ? Dy2 N2 2.487(5) . ? Dy2 N3 2.566(4) . ? Dy2 C12 2.792(5) . ? O1 C12 1.270(6) . ? O2 C12 1.277(6) . ? O2 Dy2 2.302(4) 3_565 ? O3 C12 1.307(6) . ? O4 C13 1.296(7) . ? O4 Dy2 2.327(4) 3_565 ? O5 C13 1.250(7) . ? O6 C13 1.299(8) . ? N1 N2 1.312(7) . ? N1 C1 1.334(8) . ? N1 H1N 0.8800 . ? N2 C3 1.406(8) . ? N3 C8 1.321(8) . ? N3 C4 1.340(8) . ? N4 N5 1.320(8) . ? N4 C9 1.365(8) . ? N5 C11 1.348(9) . ? N5 H5N 0.8800 . ? C1 C2 1.357(10) . ? C1 H1 0.9500 . ? C2 C3 1.356(10) . ? C2 H2 0.9500 . ? C3 C4 1.428(10) . ? C4 C5 1.406(9) . ? C5 C6 1.424(11) . ? C5 H5 0.9500 . ? C6 C7 1.351(10) . ? C6 H6 0.9500 . ? C7 C8 1.396(8) . ? C7 H7 0.9500 . ? C8 C9 1.455(9) . ? C9 C10 1.385(9) . ? C10 C11 1.370(10) . ? C10 H10 0.9500 . ? C11 H11 0.9500 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O3 Dy1 O3 79.17(14) 3_565 2_665 ? O3 Dy1 O3 79.17(14) 3_565 . ? O3 Dy1 O3 79.17(14) 2_665 . ? O3 Dy1 O6 81.14(13) 3_565 3_565 ? O3 Dy1 O6 118.16(13) 2_665 3_565 ? O3 Dy1 O6 150.58(13) . 3_565 ? O3 Dy1 O6 150.58(13) 3_565 2_665 ? O3 Dy1 O6 81.14(13) 2_665 2_665 ? O3 Dy1 O6 118.16(13) . 2_665 ? O6 Dy1 O6 89.21(15) 3_565 2_665 ? O3 Dy1 O6 118.16(14) 3_565 . ? O3 Dy1 O6 150.58(13) 2_665 . ? O3 Dy1 O6 81.14(13) . . ? O6 Dy1 O6 89.21(15) 3_565 . ? O6 Dy1 O6 89.21(15) 2_665 . ? O3 Dy1 O4 74.50(13) 3_565 3_565 ? O3 Dy1 O4 64.75(12) 2_665 3_565 ? O3 Dy1 O4 138.40(13) . 3_565 ? O6 Dy1 O4 53.56(14) 3_565 3_565 ? O6 Dy1 O4 77.40(14) 2_665 3_565 ? O6 Dy1 O4 139.94(14) . 3_565 ? O3 Dy1 O4 64.75(12) 3_565 . ? O3 Dy1 O4 138.40(13) 2_665 . ? O3 Dy1 O4 74.50(13) . . ? O6 Dy1 O4 77.40(14) 3_565 . ? O6 Dy1 O4 139.94(14) 2_665 . ? O6 Dy1 O4 53.56(14) . . ? O4 Dy1 O4 119.930(11) 3_565 . ? O3 Dy1 O4 138.40(13) 3_565 2_665 ? O3 Dy1 O4 74.50(13) 2_665 2_665 ? O3 Dy1 O4 64.75(12) . 2_665 ? O6 Dy1 O4 139.94(14) 3_565 2_665 ? O6 Dy1 O4 53.56(14) 2_665 2_665 ? O6 Dy1 O4 77.40(14) . 2_665 ? O4 Dy1 O4 119.930(11) 3_565 2_665 ? O4 Dy1 O4 119.930(9) . 2_665 ? O3 Dy1 C13 72.72(16) 3_565 3_565 ? O3 Dy1 C13 91.19(16) 2_665 3_565 ? O3 Dy1 C13 151.56(17) . 3_565 ? O6 Dy1 C13 27.02(17) 3_565 3_565 ? O6 Dy1 C13 86.10(16) 2_665 3_565 ? O6 Dy1 C13 115.96(17) . 3_565 ? O4 Dy1 C13 27.00(16) 3_565 3_565 ? O4 Dy1 C13 96.87(15) . 3_565 ? O4 Dy1 C13 138.38(15) 2_665 3_565 ? O3 Dy1 C13 91.19(16) 3_565 . ? O3 Dy1 C13 151.56(16) 2_665 . ? O3 Dy1 C13 72.72(16) . . ? O6 Dy1 C13 86.10(16) 3_565 . ? O6 Dy1 C13 115.96(17) 2_665 . ? O6 Dy1 C13 27.02(17) . . ? O4 Dy1 C13 138.38(15) 3_565 . ? O4 Dy1 C13 27.00(16) . . ? O4 Dy1 C13 96.87(15) 2_665 . ? C13 Dy1 C13 111.58(13) 3_565 . ? O3 Dy1 C13 151.56(17) 3_565 2_665 ? O3 Dy1 C13 72.72(17) 2_665 2_665 ? O3 Dy1 C13 91.19(16) . 2_665 ? O6 Dy1 C13 115.96(17) 3_565 2_665 ? O6 Dy1 C13 27.02(17) 2_665 2_665 ? O6 Dy1 C13 86.10(16) . 2_665 ? O4 Dy1 C13 96.87(15) 3_565 2_665 ? O4 Dy1 C13 138.38(15) . 2_665 ? O4 Dy1 C13 27.00(16) 2_665 2_665 ? C13 Dy1 C13 111.58(13) 3_565 2_665 ? C13 Dy1 C13 111.58(13) . 2_665 ? O2 Dy2 O3 83.91(13) 2_665 . ? O2 Dy2 O4 87.67(14) 2_665 2_665 ? O3 Dy2 O4 66.56(13) . 2_665 ? O2 Dy2 O7 88.12(14) 2_665 . ? O3 Dy2 O7 138.83(14) . . ? O4 Dy2 O7 72.82(14) 2_665 . ? O2 Dy2 O1 90.68(15) 2_665 . ? O3 Dy2 O1 54.71(13) . . ? O4 Dy2 O1 121.05(13) 2_665 . ? O7 Dy2 O1 166.02(15) . . ? O2 Dy2 N4 72.24(15) 2_665 . ? O3 Dy2 N4 133.71(16) . . ? O4 Dy2 N4 147.07(15) 2_665 . ? O7 Dy2 N4 80.52(18) . . ? O1 Dy2 N4 85.85(16) . . ? O2 Dy2 N2 160.30(15) 2_665 . ? O3 Dy2 N2 80.05(15) . . ? O4 Dy2 N2 75.52(15) 2_665 . ? O7 Dy2 N2 96.46(15) . . ? O1 Dy2 N2 89.34(15) . . ? N4 Dy2 N2 127.38(16) . . ? O2 Dy2 N3 136.04(15) 2_665 . ? O3 Dy2 N3 130.95(14) . . ? O4 Dy2 N3 127.33(14) 2_665 . ? O7 Dy2 N3 79.97(15) . . ? O1 Dy2 N3 91.34(14) . . ? N4 Dy2 N3 64.14(16) . . ? N2 Dy2 N3 63.64(16) . . ? O2 Dy2 C12 85.78(16) 2_665 . ? O3 Dy2 C12 27.73(13) . . ? O4 Dy2 C12 94.27(14) 2_665 . ? O7 Dy2 C12 165.95(15) . . ? O1 Dy2 C12 27.03(13) . . ? N4 Dy2 C12 109.49(17) . . ? N2 Dy2 C12 85.32(17) . . ? N3 Dy2 C12 113.02(15) . . ? O2 Dy2 Dy1 73.95(10) 2_665 . ? O3 Dy2 Dy1 33.48(9) . . ? O4 Dy2 Dy1 36.21(9) 2_665 . ? O7 Dy2 Dy1 105.69(11) . . ? O1 Dy2 Dy1 87.32(9) . . ? N4 Dy2 Dy1 145.38(12) . . ? N2 Dy2 Dy1 86.38(11) . . ? N3 Dy2 Dy1 150.01(11) . . ? C12 Dy2 Dy1 60.42(10) . . ? C12 O1 Dy2 93.2(3) . . ? C12 O2 Dy2 132.4(3) . 3_565 ? C12 O3 Dy2 96.4(3) . . ? C12 O3 Dy1 145.9(3) . . ? Dy2 O3 Dy1 113.13(15) . . ? C13 O4 Dy2 140.8(4) . 3_565 ? C13 O4 Dy1 94.5(3) . . ? Dy2 O4 Dy1 109.42(15) 3_565 . ? C13 O6 Dy1 95.8(3) . . ? N2 N1 C1 112.4(6) . . ? N2 N1 H1N 123.8 . . ? C1 N1 H1N 123.8 . . ? N1 N2 C3 104.3(5) . . ? N1 N2 Dy2 132.4(4) . . ? C3 N2 Dy2 122.7(4) . . ? C8 N3 C4 120.3(5) . . ? C8 N3 Dy2 119.8(4) . . ? C4 N3 Dy2 119.6(4) . . ? N5 N4 C9 106.4(5) . . ? N5 N4 Dy2 131.6(4) . . ? C9 N4 Dy2 121.3(4) . . ? N4 N5 C11 110.5(6) . . ? N4 N5 H5N 124.7 . . ? C11 N5 H5N 124.7 . . ? N1 C1 C2 107.8(6) . . ? N1 C1 H1 126.1 . . ? C2 C1 H1 126.1 . . ? C3 C2 C1 106.2(6) . . ? C3 C2 H2 126.9 . . ? C1 C2 H2 126.9 . . ? C2 C3 N2 109.2(6) . . ? C2 C3 C4 136.7(7) . . ? N2 C3 C4 114.2(6) . . ? N3 C4 C5 120.8(7) . . ? N3 C4 C3 119.4(6) . . ? C5 C4 C3 119.7(7) . . ? C4 C5 C6 118.4(7) . . ? C4 C5 H5 120.8 . . ? C6 C5 H5 120.8 . . ? C7 C6 C5 118.3(7) . . ? C7 C6 H6 120.9 . . ? C5 C6 H6 120.9 . . ? C6 C7 C8 120.2(7) . . ? C6 C7 H7 119.9 . . ? C8 C7 H7 119.9 . . ? N3 C8 C7 121.8(6) . . ? N3 C8 C9 116.7(5) . . ? C7 C8 C9 121.4(6) . . ? N4 C9 C10 109.8(6) . . ? N4 C9 C8 117.2(5) . . ? C10 C9 C8 133.0(6) . . ? C11 C10 C9 104.6(6) . . ? C11 C10 H10 127.7 . . ? C9 C10 H10 127.7 . . ? N5 C11 C10 108.7(6) . . ? N5 C11 H11 125.7 . . ? C10 C11 H11 125.7 . . ? O1 C12 O2 123.8(5) . . ? O1 C12 O3 115.5(4) . . ? O2 C12 O3 120.7(4) . . ? O1 C12 Dy2 59.8(3) . . ? O2 C12 Dy2 175.5(4) . . ? O3 C12 Dy2 55.9(2) . . ? O5 C13 O4 121.9(6) . . ? O5 C13 O6 123.9(6) . . ? O4 C13 O6 114.3(5) . . ? O5 C13 Dy1 167.6(5) . . ? O4 C13 Dy1 58.5(3) . . ? O6 C13 Dy1 57.1(3) . . ? _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 27.50 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 1.567 _refine_diff_density_min -0.743 _refine_diff_density_rms 0.103