Cascade Reactions in Crystals through Cation-π-Controlled Reorientation on Exposure to HCl Gas

Shinji Yamada,* Yoko Tokugawa, Yuka Nojiri, and Eri Takamori

Department of Chemistry, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan

Supplementary Information

- 1. General procedures
- 2. General procedure for the exposure of 4-azachalcones 1 to hydrochloric acid
- 3. General procedure for irradiation of 4-azachalcone hydrochlorides 2
- 4. Thermogravimetric analysis of **2a** (Fig. S1)
- 5. ¹H NMR spectra for 2a, 2b, 3a and 3b before prurification (Fig. S2)
- 6. ¹H NMR spectrum for **3b** after the cascade reaction before workup (Fig. S3)
- 7. Schematic possible process for the orientation change from 1b to 2b (Fig. S4)
- 8. Photomicrographs of a single crystal of **2b** before and after irradiation (Fig. S5)

1. General procedures.

¹H NMR spectra were recorded on JEOL EX-400 and Bruker 600 spectrometers as dilute solution in CDCl₃, and the chemical shifts were reported relative to internal TMS. Powder X-ray diffraction profiles were recorded using a Regaku Ultima IV with monochromated Cu-Ka radiation ($\lambda = 1.54184$ A, 50 kV, 40 mA, scan speed 2.0°/min, scan range 4 - 60°) equipped with a cross-beam optics system consisting of a PSA100U parallel slip analyzer. Thermogravimetric Analyses were carried out using a TG-DTA200SA instrument manufactured by Bruker. Three to five milligrams of the crystal samples were heated from 22 to 170 °C in aluminum pans that were 5 mm in diameter. A ramping rate of 10 °C/min was used with a nitrogen purge rate of 150 mL/min.

2. General procedure for the exposure of 4-azachalcone to hydrochloric acid.

The HCl gas was generated by addition of conc hydrosulfonic acid in dropping funel to conc hydrochloric acid in two-necked flask under stirring. The evolved gas was collected to a balloon through a conc H_2SO_4 trap and a CaCl₂ tube. The collected dried HCl gas was introduced into a desiccator, in which the powdered crystal of **1** was placed. The powder was kept in a desiccator for 10 min. The obtained hydrochloric salt **2** was used for PXRD measurment and ¹H NMR analysis.

3. General procedure for irradiation of 4-azachalcone hydrochlorides.

The powdered crystals of 4-azachalcone hydrochloride **2** (30 mg) placed between two glass plates were irradiated with 250W high-pressure mercury lamp for 24h. The product was collected and was neutralized with saturated NaHCO₃ solution. This was extracted with CH_2Cl_2 and dried over anhydrous MgSO₄. Evaporation of the organic solvent gave only *syn*HT dimer **3**, the structure of which was confirmed by comparison with the ¹H NMR spectra with those reported.

4. TG-DTA chart for 2a

TG -DTA measurement of 2a

Fig. S1 Thermogravimetric analysis of 2a.

5. ¹H NMR spectra for 2a and 2b (in CD₃OD), and 3a and 3b (in CDCl₃) before purification

7. Schematic possible process for the orientation change from 1b to 2b.

Fig. S4 Possible process for the orientation change from 1b (a) to 2b (b) on exposure to HCl gas.

8. Photomicrographs of a single crystal of 2b (a) before and (b) after irradiation for 24h.

Fig. S5 Photomicrographs of a single crystal of 2b (a) before and (b) after irradiation for 24h.