Electronic Supporting Information for

Efficient generation of stable adducts of Si(II) dihydride using a donor-acceptor approach

S. M. Ibrahim Al-Rafia, Adam C. Malcolm, Robert McDonald, Michael J. Ferguson and Eric Rivard*

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Contents

S2
S 7
S14
S23

Tables and Figures

Table S1: Crystallographic experimental details for IPr•SiH ₂ •BH ₃ (2).	S7
Table S2: Crystallographic experimental details for IPr•SiH ₂ •W(CO) ₅ (3).	S9
Table S3: Crystallographic experimental details for	S11
trans-[(IPr•SiCl ₂) ₂ Rh(CO) ₂] cis -[Rh(CO) ₂ Cl ₂] (4).	
Table S4: Comparison of experimental and calculated bond lengths and angles	S15
for 2 and the model complex [ImMe ₂ •SiH ₂ •BH ₃] with selected Wiberg	
bond indices included.	
Table S5: Comparison of experimental and calculated bond lengths and angles	S18
for 3 and the model complex $[ImMe_2 \cdot SiH_2 \cdot W(CO)_5]$, with Wiberg	
bond indices included.	
Figure S1: Full structural representation of	S13
trans-[(IPr•SiCl ₂) ₂ Rh(CO) ₂] cis -[Rh(CO) ₂ Cl ₂] (4).	
Figure S2: Relevant molecular orbitals for [ImMe ₂ •SiH ₂ •BH ₃].	S16
Figure S3: Relevant molecular orbitals for [ImMe ₂ •SiH ₂ •W(CO) ₅].	S19

Experimental Section

General. All reactions were performed using standard Schlenk line techniques under an atmosphere of nitrogen or in an inert atmosphere glove box (Innovative Technology, Inc.). Solvents were dried using Grubbs-type solvent purification system¹ manufactured by Innovative Technology, Inc., degassed (freeze-pump-thaw method) and stored under atmosphere of nitrogen prior to use. Li[BH₄], Li[AlH₄], Li[AlD₄] and [Rh(CO)₂Cl]₂ were purchased from Aldrich and used as received. W(CO)₆ was obtained from Aldrich and sublimed under vacuum (0.05 torr) and stored under nitrogen atmosphere prior to use. IPr•SiCl₂,² IPr•SiCl₂•BH₃³ were prepared following literature procedures. ¹H, ²H{¹H}, ¹³C{¹H} and ²⁹Si NMR spectra were recorded on a Varian iNova-400 spectrometer and referenced externally to SiMe₄ (¹H, ¹³C{¹H} and ²⁹Si) and Si(CD₃)₄ (²H{¹H}). Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta. Infrared spectra were recorded on a Nicolet IR100 FTIR instrument manufactured by Thermo Electron Corporation. Melting point apparatus and were uncorrected.

X-ray Crystallography. Crystals suitable for X-ray diffraction studies were removed from a vial (in glove box) and immediately coated with thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was then mounted on glass fiber, and quickly placed in a low temperature stream of nitrogen on the X-ray diffractometer.⁴ All data were collected using a Bruker APEX II CCD detector/D8 diffractometer using Mo K α (2 and 3) or Cu K α (4) radiation, with the crystals cooled to -100 °C. The data were corrected for absorption⁵ through Gaussian integration from the indexing of the crystal faces. Crystal structures were solved using direct (2: SHELXS-97; 3:

SHELXD)^{6,7} or Patterson (**4**: DIRDIF 2008)⁸ methods, and refined using SHELXS-97.⁶ The assignment of hydrogen atoms positions were based on the sp² or sp³ hybridization geometries of their attached carbon atoms, and were give thermal parameters 20% greater than those of their parent atoms.

Synthetic Procedures.

Synthesis of IPr•SiH₂•BH₃(2) To mixture of IPr•SiCl₂•BH₃(102 mg, 0.204 mmol) and Li[AlH₄] (5.42 mg, 0.143 mmol) was added 8 mL of toluene and the reaction was stirred at room temperature for 1 h to give a cloudy mixture. Afterwards, 3 mL of Et₂O was added and the mixture was stirred for another 30 minutes. The reaction mixture was then filtered through Celite and removal of the volatiles from the pale yellow filtrate afforded 2 as a white powder (47 mg, 55 %). Crystals suitable for X-ray crystallography (colorless blocks) were grown by cooling a saturated Et₂O solution layered with hexanes to -35 °C for 2 days. ¹H NMR (300 MHz, C_6D_6): δ = 0.96 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 12H, CH(CH₃)₂), 1.38 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 12H, CH(CH₃)₂), 2.63 (septet, ${}^{3}J_{\text{HH}} = 6.9 \text{ Hz}, 4\text{H}, CH(CH_{3})_{2}), 3.76 \text{ (q, }{}^{3}J_{\text{HH}} = 5.6 \text{ Hz}, 2\text{H}, -\text{Si}H_{2}$ -, assignment made by ${}^{29}\text{Si}{}^{-1}\text{H}$ gHSQC experiment), 6.40 (s, 2H, N-CH-), 7.05 (d, ${}^{3}J_{HH} = 7.8$ Hz, 4H, ArH) and 7.19 (t, ${}^{3}J_{HH} =$ 7.8 Hz, 2H, ArH). ¹³C{¹H} NMR (125 MHz, C_6D_6): $\delta = 22.9$ (CH(CH₃)₂), 25.5 (CH(CH₃)₂), 29.2 (CH(CH₃)₂), 124.6 (-N-CH-), 124.7 (ArC), 131.4 (ArC), 133.5 (ArC), 145.6 (ArC) and 168.8 (N-*C*-N). ¹¹B{¹H}NMR (128 MHz, C₆D₆): $\delta = -46.2$ (s). ¹¹B NMR (128 MHz, C₆D₆): $\delta = -46.2$ (quartet, ${}^{1}J_{BH} = 93$ Hz). ${}^{29}Si\{{}^{1}H\}$ NMR (80 MHz, $C_{6}D_{6}$): $\delta = -55.6$ (q, ${}^{1}J_{SiB} = 46$ Hz). IR (Nujol/cm⁻¹): 2096 (s, vSi-H), 2238 (w, vB-H), 2304 (m, vB-H) and 2345 (w, vB-H). Mp (°C): 233-235. Anal. Calcd. for: C₂₇H₄₁BN₂Si: C, 74.98; H, 9.55; N, 6.48. Found: C, 73.92; H, 9.50; N, 6.16.

Synthesis of IPr-SiD₂-BH₃ (2D) To mixture of IPr-SiCl₂-BH₃ (100 mg, 0.204 mmol) and Li[AlD₄] (5.9 mg, 0.141 mmol) was added 8 mL of toluene and the reaction was stirred at room temperature for 1 h to give a cloudy mixture. Afterwards, 3 mL of Et₂O was added and the reaction was stirred for another 30 minutes. The mixture was then filtered through Celite and removal of the volatiles from the pale yellow filtrate afforded **2D** as a white powder (45 mg, 52 %). ¹H NMR (300 MHz, C₆D₆): All the peaks were identical as for compound **2**, except the -SiH₂- resonance was absent. ¹³C{¹H} NMR (125 MHz, C₆D₆): essentially same as for the compound **2**. ²H{¹H} NMR (61.4 MHz, C₆H₆): $\delta = 3.75$ (-SiD₂-). IR (Nujol/cm⁻¹): 1522 (m, vSi-D), 2236 (w, vB-H), 2302 (m, vB-H) and 2344 (w, vB-H).

Synthesis of IPr•SiH₂•W(CO)₅ (3) W(CO)₆ (49 mg, 0.14 mmol) was suspended in 12 mL of THF and irradiated with a 450 W mercury lamp for 2 h to give a bright yellow solution. A solution of IPr•SiH₂•BH₃ (60 mg, 0.14 mmol) in 5 mL of THF was then added dropwise *in situ* generated W(CO)₅•THF and the reaction was heated overnight at 40 °C, resulting in the formation of a pale orange solution. The volatiles were removed and the resulting solid was washed with 3 mL of hexanes to afford **3** as a yellow solid (83 mg, 66 %). X-ray quality crystals of **3** were grown by cooling a saturated Et₂O solution layered with hexanes at - 35 °C for 3 days. ¹H NMR (300 MHz, C₆D₆): $\delta = 0.88$ (d, ³*J*_{HH} = 6.9 Hz, 12H, CH(CH₃)₂), 1.35 (d, ³*J*_{HH} = 6.9 Hz, 12H, CH(CH₃)₂), 2.62 (septet, ³*J*_{HH} = 6.9 Hz, 4H, CH(CH₃)₂), 4.16 (s, 2H, -SiH₂-, satellites: ¹*J*_{SiH} = 164 Hz), 6.40 (s, 2H, N-CH-), 7.08 (d, ³*J*_{HH} = 7.2 Hz, 4H, Ar*H*) and 7.20 (t, ³*J*_{HH} = 7.2 Hz, 2H, Ar*H*). ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 22.4$ (CH(CH₃)₂), 25.9 (CH(CH₃)₂), 29.1 (CH(CH₃)₂), 124.9 (-N-CH-), 125.2 (ArC), 131.5 (ArC), 133.5 (ArC), 145.1 (ArC), 168.7 (N-C-

N), 201.4 (s, ${}^{1}J_{WC} = 122.2$ Hz, equatorial CO) and 203.1 (axial, CO). ²⁹Si NMR (99 MHz, C₆D₆): $\delta = -71.6$ (t, ${}^{1}J_{Si-H} = 164$ Hz). IR (Nujol/cm⁻¹): 1876 (s, vCO), 1919 (s, vCO), 1949 (w, vCO), 2044 (s, vCO), 2086 (m, vSi-H) and 2108 (m, vSi-H). Mp (°C): 157-159 (dec., turns gray), 186-188 (melts). Anal. Calcd. for: C₃₂H₃₈N₂O₅SiW: C, 51.76; H, 5.16; N, 3.77. Found: C, 52.69; H, 5.99; N, 3.77.

Reaction of IPr•SiCl₂ with [Rh(CO)₂Cl]₂: Synthesis of [trans-(IPr•SiCl₂)₂Rh(CO)₂][cis- $Rh(CO)_2Cl_2$ (4). To a mixture of IPr•SiCl₂ (103 mg, 0.211 mmol) and [Rh(CO)₂Cl]₂ (82 mg, 0.222 mmol) was added 10 mL of toluene. The reaction mixture was stirred at room temperature for 20 min. to give a bright yellow-orange slurry. The reaction was allowed to settle and the precipitate was isolated by filtration. Removal of the volatiles from the precipitate afforded 4 as an orange powder (131 mg, 87 %). Crystals suitable for the X-ray crystallography (orange needles) were grown by cooling a saturated CH₂Cl₂ solution of 4 layered with hexanes at -35 °C. ¹H NMR (500 MHz, CD₂Cl₂): $\delta = 1.11$ (d, ³J_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 1.32 (d, ³J_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 2.47 (septet, ${}^{3}J_{HH} = 7.0$ Hz, 4H, CH(CH₃)₂), 7.30 (d, ${}^{3}J_{HH} = 8.0$ Hz, 4H, ArH), 7.44 (s, 2H, N-CH-), 7.52 (t, ${}^{3}J_{HH} = 8.0$ Hz, 2H, ArH). ${}^{13}C{}^{1}H$ NMR (125 MHz, CD₂Cl₂): $\delta =$ 23.1 (CH(CH₃)₂), 26.2 (CH(CH₃)₂), 29.9 (CH(CH₃)₂), 125.2 (-N-CH-), 137.6 (ArC), 132.4 (ArC), 132.5 (ArC), 145.8 (ArC), 153.9 (N-C-N, ${}^{2}J_{RhC} = 4.9$ Hz), 182.6 (cis-[Rh(CO)₂Cl₂]⁻, ${}^{1}J_{RhC} = 71.9$ Hz) and 191.6 ([(IPr•SiCl₂)₂Rh(CO)₂]⁺, ${}^{1}J_{RhC} = 63.4$ Hz). ${}^{29}Si{}^{1}H$ NMR (79 MHz, CD₂Cl₂): $\delta =$ 27.9 (d, ${}^{1}J_{\text{Si-Rh}} = 69$ Hz). Mp (°C): 167-170. IR (Nujol/cm⁻¹): 1993 (s, vCO), 2009 (s, vCO), 2066 (s, vCO), 2090 (w, vCO). Anal. Calcd. for C₅₈H₇₂Cl₆N₄O₄Rh₂Si₂: C, 51.08; H, 5.32; N, 4.11. Found: C, 51.27; H, 5.60; N, 4.26.

Reaction of IPr•SiH₂•BH₃ with Cy₃P: To a mixture of **2** (26 mg, 0.049 mmol) and Cy₃P (14 mg, 0.049 mmol) was added 6 mL of toluene. The reaction mixture was stirred for 24 h. No sign of reaction was observed by NMR spectroscopy. The solution was heated at 35 °C for 48 h at which time the volatiles were removed and ¹H and ³¹P NMR spectroscopic analysis revealed ~ 15 % decomposition of IPr•SiH₂•BH₃ into IPr•BH₃⁹ and [(HCNAr)₂CH₂],¹⁰ while a similar conversion (*ca.* 15 %) of Cy₃P into Cy₃P•BH₃¹¹ was also noted.

Reaction of IPr•GeH₂•BH₃ with Cy₃P: To a mixture of IPr•GeH₂•BH₃ (19 mg, 0.040 mmol) and Cy₃P (11 mg, 0.030 mmol) was added 4 mL of toluene. After stirring the reaction for 24 h, the volatiles were removed and ¹H, ¹¹B and ³¹P NMR analysis revealed ~ 25 % decomposition of IPr•GeH₂•BH₃ into IPr•BH₃ and [(HCNAr)₂CH₂], while a similar conversion (*ca.* 20 %) of Cy₃P into Cy₃P•BH₃ was also noted.

Table S1. Crystallographic experimental details for IPr•SiH₂•BH₃ (2).

A. Crystal Data	
formula	C ₂₇ H ₄₁ BN ₂ Si
formula weight	432.52
crystal dimensions (mm)	$0.43 \times 0.14 \times 0.08$
crystal system	monoclinic
space group	$P2_1/n$ (an alternate setting of $P2_1/c$ [No. 14])
unit cell parameters ^a	
<i>a</i> (Å)	11.2366 (7)
<i>b</i> (Å)	13.7989 (8)
<i>c</i> (Å)	17.9086 (11)
β (deg)	97.2660 (10)
$V(Å^3)$	2754.5 (3)
Ζ	4
ρ_{calcd} (g cm ⁻³)	1.043
μ (mm ⁻¹)	0.100

B. Data Collection and Refinement Conditions

diffractometer	Bruker PLATFORM/APEX II CCD ^b
radiation (λ [Å])	graphite-monochromated Mo K α (0.71073)
temperature (°C)	-100
scan type	ω scans (0.3°) (20 s exposures)
data collection 2θ limit (deg)	52.80
total data collected	21777 (-14 $\leq h \leq$ 14, -17 $\leq k \leq$ 17, -22 $\leq l \leq$
22)	
independent reflections	5649 ($R_{\text{int}} = 0.0404$)
number of observed reflections (NO)	$4146 [F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	direct methods (SHELXD ^c)
refinement method	full-matrix least-squares on F ² (SHELXL-
97 ^d)	
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.9918-0.9584
data/restraints/parameters	5649 / 0 / 300
goodness-of-fit (S) ^E [all data]	1.026
final R indices ^{F}	
$R_1 [F_0^2 \ge 2\sigma(F_0^2)]$	0.0418
wR_2 [all data]	0.1161
largest difference peak and hole	0.296 and -0.258 e Å ⁻³

*a*Obtained from least-squares refinement of 6903 reflections with $4.56^{\circ} < 2\theta < 44.82^{\circ}$.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

^cSchneider, T. R.; Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772-1779.

dSheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.

 ${}^{e}S = [\Sigma w (F_0{}^2 - F_c{}^2)^2 / (n - p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^2 (F_0{}^2) + (0.0483P)^2 + 0.8772P]^{-1} \text{ where } P = [\text{Max}(F_0{}^2, 0) + 2F_c{}^2]/3).$

 $f_{R_1} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ w_{R_2} = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

A. Crystal Data	
formula	C35H45N2O5SiW
formula weight	785.67
crystal dimensions (mm)	$0.23 \times 0.15 \times 0.12$
crystal system	orthorhombic
space group	<i>Pbca</i> (No. 61)
unit cell parameters ^a	
<i>a</i> (Å)	14.2434 (15)
<i>b</i> (Å)	18.594 (2)
<i>c</i> (Å)	27.175 (3)
$V(Å^3)$	7196.9 (13)
Ζ	8
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.450
$\mu (\text{mm}^{-1})$	3.284

B. Data Collection and Refinement Conditions

diffractometer	Bruker PLATFORM/APEX II CCD ^b
radiation (λ [Å])	graphite-monochromated Mo K α (0.71073)
temperature (°C)	-100
scan type	ω scans (0.3°) (15 s exposures)
data collection 2θ limit (deg)	51.00
total data collected	$50262 (-17 \le h \le 17, -22 \le k \le 22, -32 \le l \le 17)$
32)	
independent reflections	$6703 \ (R_{\text{int}} = 0.1106)$
number of observed reflections (NO)	$4839 [F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	Patterson/structure expansion (DIRDIF-
2008 ^c)	
refinement method	full-matrix least-squares on F^2 (SHELXL-
97d)	
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.6901-0.5201
data/restraints/parameters	6703 / 7 ^e / 413
goodness-of-fit $(S)^{f}$ [all data]	1.162
final <i>R</i> indices ^g	
$R_1 [F_0^2 \ge 2\sigma(F_0^2)]$	0.0850
wR_2 [all data]	0.2254
largest difference peak and hole	4.579 and -4.960 e Å ⁻³

^{*a*}Obtained from least-squares refinement of 9403 reflections with $4.38^{\circ} < 2\theta < 47.06^{\circ}$. ^{*b*}Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker

^cBeurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M.; Garcia-Granda, S.; Gould, R. O. (2008). The *DIRDIF-2008* program system. Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.

dSheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.

- e(a) The Si-H1 and Si-H2 distances were constrained to be equal (within 0.01 Å) during refinement.
 (b) The C-C distances within the disordered solvent n-hexane molecule were restrained during refinement: d(C1SA-C1SA') = d(C1SA-C2SA) = d(C2SA-C3SA) = d(C1SB-C1SB') = d(C1SB-C2SB) = d(C2SB-C3SB) = 1.52(1) Å (primed atoms are related to unprimed ones via the crystallographic inversion center (¹/₂, 0, ¹/₂)).
- $fS = [\Sigma w(F_0^2 F_c^2)^2 / (n p)]^{1/2} (n = \text{number of data}; p = \text{number of parameters varied}; w = [\sigma^2(F_0^2) + (0.0781P)^2 + 163.3664P]^{-1} \text{ where } P = [\text{Max}(F_0^2, 0) + 2F_c^2]/3).$
- $gR_1 = \Sigma ||F_0| |F_c|| / \Sigma |F_0|; wR_2 = [\Sigma w (F_0^2 F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Table S3.	Crystallographic	experimental	details	for	trans-[(IPr•SiCl ₂) ₂ Rh(CO) ₂]cis-
[Rh(CO)	$_{2}Cl_{2}](4).$				

A. Crystal Data			
formula	C ₆₁ H ₇₈ Cl ₁₂ N ₄ O ₄ Rh ₂ Si ₂		
formula weight	1618.67		
crystal dimensions (mm)	$0.22 \times 0.16 \times 0.14$		
crystal system	monoclinic		
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)		
unit cell parameters ^a			
<i>a</i> (Å)	13.2122 (2)		
<i>b</i> (Å)	21.2410 (3)		
<i>c</i> (Å)	13.2241 (2)		
β (deg)	97.4269 (6)		
$V(Å^3)$	3680.08 (9)		
Z	2		
ρ_{calcd} (g cm ⁻³)	1.461		
μ (mm ⁻¹)	8.308		

B. Data Collection and Refinement Conditions

D. Dulu concerton and heymement condition	
diffractometer	Bruker D8/APEX II CCD ^b
radiation (λ [Å])	graphite-monochromated Cu K α (1.54178)
temperature (°C)	-100
scan type	ω scans (0.8°) (5 s exposures)
data collection 2θ limit (deg)	140.08
total data collected	24802 (-15 $\leq h \leq$ 14, -25 $\leq k \leq$ 25, -15 $\leq l \leq$
15)	
independent reflections	$6813 (R_{\text{int}} = 0.0170)$
number of observed reflections (NO)	$6390 \ [F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	direct methods (SHELXS–97 ^c)
refinement method	full-matrix least-squares on F ² (SHELXL-
97 ^c)	
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.3979–0.2682
data/restraints/parameters	6813 / 6 ^d / 446
goodness-of-fit (S) ^e [all data]	1.077
final <i>R</i> indices ^{<i>f</i>}	
$R_1 [F_0^2 \ge 2\sigma(F_0^2)]$	0.0452
wR_2 [all data]	0.1316
largest difference peak and hole	1.203 and -0.869 e Å ⁻³

*a*Obtained from least-squares refinement of 9846 reflections with $6.74^{\circ} < 2\theta < 139.22^{\circ}$.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

^cSheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122.

- ^{*d*}Bond distances within the disordered solvent CH₂Cl₂ molecules were restrained during refinement: d(Cl1S-C1S) = d(Cl2S-C1S) = d(Cl3S-C2S) = d(Cl4S-C2S) = d(Cl5S-C3S) = d(Cl6S-C3S) = 1.75(1) Å.
- ${}^{e}S = [\Sigma w (F_0{}^2 F_c{}^2)^2 / (n p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^2 (F_0{}^2) + (0.0712P)^2 + 5.0144P]^{-1} \text{ where } P = [\text{Max}(F_0{}^2, 0) + 2F_c{}^2]/3).$
- $fR_1 = \Sigma ||F_0| |F_c|| / \Sigma |F_0|; \ wR_2 = [\Sigma w (F_0^2 F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Figure S1. Full structural representation of *trans*-[(IPr•SiCl₂)₂Rh(CO)₂]*cis*-[Rh(CO)₂Cl₂] (4) with hydrogen atoms and CH₂Cl₂ solvate omitted for clarity. Selected bond lengths [Å] and angles [deg] for the *cis*-[Rh(CO)₂Cl₂] anion: Rh(2)-Cl(3) 2.357(2), Rh(2)-Cl)4) 2.372(3), Rh(2)-C(50) 1.809(10), Rh(2)-C(60) 1.8457(14), O(50)-C(50) 1.103(13), O(60)-C(60) 1.117(15); C(50)-Rh-C(60) 88.7(6), Cl(3)-Rh-Cl(4) 92.42(8).

Theoretical Studies

Calculations of geometry optimization, frequency and energy were performed using Gaussian 09, Revision B01 software,¹² using DFT methods and the B3LYP functional with default spin parameters. Two sets of basis sets were used in the calculations: the cc-pVDZ-pp basis set was used for W, while cc-pVDZ was used for all other atoms.¹³ Optimizations were done with tight convergence criteria, and no restrictions or constraints were placed on any of the calculated structures. The NHC fragment was simplified by replacing the 2,6-diisopropylphenyl groups with methyl substituents in order to expedite the calculations. Due to the large number of electrons on W, the INT=ULTRAFINE keyword was used to generate the grid for electron density. Default parameters were used for all other options. Molecular orbitals and natural bonding orbital (NBO) analyses were done with the built in MO and NBO suites of Gaussian 09 and GaussView3. Theoretical IR frequencies for Si-H were obtained using the spectrum generator in Gaussian.

Results from Theoretical Work

ImMe₂•SiH₂•BH₃

The following compound was used as a model for $IPr \cdot SiH_2 \cdot BH_3$ (2), with the 2,6-ⁱ $Pr_2C_6H_3$ groups replaced by methyl substituents:

IR Spectroscopy

Calculated Si-H stretches for $[ImMe_2 \cdot SiH_2 \cdot BH_3]$ were 2108.77 cm⁻¹ (v_{asym.}) and 2105.85 cm⁻¹ (v_{sym}). Both bands are calculated to have similar intensities, but due to their close proximity, it is predicted that only one band will be observed in the experimental spectrum; consequently, a single Si-H stretching band for **2** was located at 2096 cm⁻¹.

Table S4: Comparison of experimental and calculated bond lengths and angles for **2** and the model complex [ImMe₂•SiH₂•BH₃] with selected Wiberg bond indices included.

	d. exp (Å)	d. calc. (Å)	θ exp.	θ calc.	Wiberg
					Bond Index
Si-B	1.992(2)	2.022	-	-	0.989
Si– H	1.409(18)	1.512	-	-	0.914
Si-C	1.9284(15)	1.953	-	-	0.708
B-Si-C	-	-	112.11(8)	105.22	-
$\mathrm{H} - \mathrm{Si} - \mathrm{H}$	-	-	102.0(10)	103.21	-

Figure S2: Relevant molecular orbitals for [ImMe₂•SiH₂•BH₃].

MO Description:

LUMO	-0.129 a.u.	ImMe ₂ π^* / Si-H σ^*
HOMO	-0.312 a.u.	Si LP σ donation into a p-orbital of BH ₃ / ImMe ₂ π -bonding
HOMO-1	-0.342 a.u.	ImMe ₂ π -bonding
HOMO-2	-0.355 a.u.	Si-B/Si-H/B-H σ-bonding
HOMO-3	-0.370 a.u.	Si-H σ-bonding
HOMO-4	-0.393 a.u.	ImMe ₂ (C)-Si σ -bonding / B-H bonding
HOMO-5	-0.421 a.u.	Si-H/B-H bonding
HOMO-6	-0.426 a.u.	Si-H/B-H bonding
HOMO-15	-0.531 a.u.	SiH ₂ symmetric bonding combination
HOMO-16	-0.591 a.u.	BH ₃ symmetric bonding combination
HOMO-17	-0.612 a.u.	symmetric bonding combination within SiH ₂ -BH ₃ unit
HOMO-18	-0.651 a.u.	symmetric bonding combination within ImMe ₂ – SiH ₂ –
		BH ₃ array

NBO Output/Analysis using the cc-pVDZ-cc/cc-pVDZ basis sets

SiH₂ fragment

1.	(1.97137)	BD (1) H (59.23%) (40.77%)	1 -Si 18 0.7696* Н 0.6385*Si	1 s(99.87%)p 0.00(0.13%) 18 s(22.58%)p 3.40(76.86%)d 0.02(0.56%)
2.	(1.97137)	BD (1) H (59.23%) (40.77%)	2 -si 18 0.7696* н 0.6385*si	2 s(99.87%)p 0.00(0.13%) 18 s(22.58%)p 3.40(76.86%)d 0.02(0.56%)

SiH₂-BH₃ fragment

21.	(1.93097)	BD (1)Si	18 - В 2	2					
	(54.05%)	0.7352*Si	18 s(39.48%)p	1.53(60.44%)d	0.00(0.09%)
	(45.95%)	0.6778* в	22 s(20.78%)p	3.81(79.15%)d	0.00(0.07%)

ImMe₂-SiH₂ fragment

20.	(1.96115)	BD (1)	C 17 -Si	18				
	(77.40%)	0.8797*	C 17 s	(45.27%)p	1.21(54.72%)d 0.00(0.01%)
	(22.60%)	0.4754*	Si 18 s	(15.38%)p	5.43(83.54%)d 0.07(1.07%)

ImMe₂•SiH₂•W(CO)₅

The following compound was used as a model for **3** [IPr•SiH₂•W(CO)₅], with the 2,6- ${}^{i}Pr_{2}C_{6}H_{3}$ groups replaced by methyl substituents:

IR Spectroscopy

Calculated Si-H stretches for $[ImMe_2 \cdot SiH_2 \cdot W(CO)_5]$ were 2086.08 cm⁻¹ (v_{asym.}) and 2093.13 cm⁻¹ (v_{sym}). Two Si-H stretching bands for **3** were observed in the IR spectrum at 2086 cm⁻¹ and 2107 cm⁻¹.

Table S5: Comparison of experimental and calculated bond lengths and angles for **3** and the model complex $[ImMe_2 \cdot SiH_2 \cdot W(CO)_5]$, with selected Wiberg bond indices included.

	d. exp (Å)	d. calc. (Å)	θ exp.	θ calc.	Wiberg
					Bond Index
Si-W	2.573(4)	2.628	-	-	0.791
Si– H	1.32(9)*	1.513	-	-	0.915
S: C	1.029(12)	1.066			0.725
SI - C	1.928(13)	1.900	-	-	0.723
$W - S_1 - C$	-	-	121.4(4)	113.59	-
H - Si - H	-	-	88(8)*	101.82	-

* = Si-H bond lengths constrained to be equal during the refinement.

Figure S3: Relevant molecular orbitals for [ImMe₂•SiH₂•W(CO)₅].

MO Descriptions:

LUMO	-0.139 a.u.	ImMe ₂ -Si slipped π -interaction / C-O σ^*
HOMO	-0.292 a.u.	ImMe ₂ π -bonding/ W(d _{xz/yz})-CO π -backbonding
HOMO-1	-0.293 a.u.	$W(d_{yz/xz})$ -CO π -backbonding
HOMO-2	-0.300 a.u.	Si(p) – W(d _{z2}) σ -bonding / ImMe ₄ π -bonding
HOMO-3	-0.300 a.u.	$W(d_{x2-y2})$ -CO π -backbonding
HOMO-4	-0.330 a.u.	Si(p) donation into W(d_{z2})-C σ^* orbital
HOMO-6	-0.373 a.u.	Si– H σ-bonding
HOMO-7	-0.397 a.u.	ImMe ₂ LP \rightarrow Si (p) σ -bonding
HOMO-29	-0.522 a.u.	ImMe ₂ π -system mixed with SiH ₂ bonding interaction /
		$W(s)$ - $C(p) \sigma$ -bonding
HOMO-32	-0.543 a.u.	symmetric bonding combination in SiH ₂
HOMO-37	-0.614 a.u.	symmetric combination W(s)-C(s) bonding

NBO Output/Analysis using the cc-pVDZ-cc/cc-pVDZ basis sets

SiH₂ fragment

22. (1.96546) BD (1) H 12 -Si 29 (58.79%) 0.7668* H 12 s(99.88%)p 0.00(0.12%) (41.21%) 0.6419*Si 29 s(22.59%)p 3.40(76.91%)d 0.02(0.50%) 23. (1.96546) BD (1) H 13 -Si 29 (58.79%) 0.7668* H 13 s(99.88%)p 0.00(0.12%) (41.21%) 0.6419*Si 29 s(22.59%)p 3.40(76.91%)d 0.02(0.50%)

SiH₂-W(CO)₅ fragment

6. (1.79876) BD (1) W 1 -Si 29 (39.02%) 0.6247* W 1 s(15.31%)p 3.61(55.20%)d 1.93(29.47%) f 0.00(0.02%) (60.98%) 0.7809*Si 29 s(37.90%)p 1.64(62.07%)d 0.00(0.03%)

ImMe₂-SiH₂ fragment

41. (1.96162)	BD (1) C	28 -Si 29				
	(76.67%)	0.8756* C	28 s(44.97%)p 1.22	(55.03%)d 0.00(0.01%)
	(23.33%)	0.4830*Si	29 s(16.96%)p 4.84	(82.11%)d 0.05(0.93%)

Calculation Summary (Optimized Geometry and Frequencies)

Gaussian 09 Input Parameters and Coordinates for [ImMe₂•SiH₂•BH₃]:

opt=(calcall,tight) freq b3lyp geom=connectivity gen int=ultrafine

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	1	0	0.00000	0.000000	0.00000		
2	1	0	0.00000	0.00000	2.694809		
3	6	0	4.761297	0.00000	2.028062		
4	6	0	4.761298	0.00000	0.666750		
5	1	0	5.566780	-0.152782	2.738713		
6	1	0	5.566780	-0.152783	-0.043902		
7	7	0	3.455434	0.236036	0.269090		
8	7	0	3.455432	0.236037	2.425721		
9	6	0	3.034939	0.364705	-1.126734		
10	1	0	3.103946	1.413668	-1.448811		
11	1	0	3.684344	-0.261132	-1.753002		
12	1	0	1.998014	0.020166	-1.222734		
13	6	0	3.034936	0.364707	3.821545		
14	1	0	1.998014	0.020161	3.917545		
15	1	0	3.684345	-0.261125	4.447814		
16	1	0	3.103937	1.413670	4.143619		
17	6	0	2.643287	0.385873	1.347404		
18	14	0	0.425197	1.035715	1.347404		
19	1	0	0.827118	3.352515	2.221054		
20	1	0	0.827120	3.352513	0.473751		
21	1	0	-0.684597	3.285321	1.347401		
22	5	0	0.339052	2.973802	1.347402		

Input orientation:

Gaussian 09 Input Parameters and Coordinates for [ImMe₂•SiH₂•W(CO)₅]:

opt=(calcall,tight) freq b3lyp geom=connectivity pseudo=read gen int=ultrafine

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	X	Y	Z		
1	74	0	0.00000	0.00000	0.00000		
2	6	0	0.00000	0.00000	2.064733		
3	8	0	0.004912	0.00000	3.218871		
4	6	0	0.231002	-1.994720	-0.049942		
5	8	0	0.370408	-3.144421	-0.084974		
6	6	0	-0.015507	0.104981	-2.040033		
7	8	0	-0.021310	0.189153	-3.198217		
8	6	0	-2.056287	-0.186514	0.003110		
9	8	0	-3.205674	-0.291215	-0.000043		
10	6	0	2.022130	0.289802	0.002890		
11	8	0	3.167955	0.478430	-0.000677		
12	1	0	0.214336	3.884751	1.341723		
13	1	0	-1.684808	3.712495	-0.562372		
14	6	0	2.100447	4.367065	-3.453373		
15	6	0	3.059821	4.454081	-2.491500		
16	1	0	2.139722	4.576364	-4.517244		
17	1	0	4.100746	4.754233	-2.551108		
18	7	0	2.462862	4.078071	-1.299281		
19	7	0	0.942994	3.940216	-2.823110		
20	6	0	3.171253	3.985912	-0.022024		
21	1	0	3.588892	2.977269	0.108496		
22	1	0	3.979719	4.728765	-0.009252		
23	1	0	2.470040	4.199747	0.793887		
24	6	0	-0.316007	3.669611	-3.518370		
25	1	0	-1.152529	3.871181	-2.838124		
26	1	0	-0.390252	4.332396	-4.390617		
27	1	0	-0.352331	2.619791	-3.842989		
28	6	0	1.157789	3.756477	-1.494614		
29	14	0	-0.298357	2.828282	0.041716		

Input orientation:

References:

- (1) A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, **15**, 1518.
- (2) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn and D. Stalke, *Angew. Chem. Int. Ed.*, 2009, **48**, 5683.
- (3) R. Azhakar, G. Tavcar, H. W. Roesky, J. Hey and D. Stalke, Eur. J. Inorg. Chem., 2011, 475.
- (4) H. Hope, Prog. Inorg. Chem., 1995, 43, 1.
- (5) R. H. Blessing, Acta Cryst., 1995, A51, 33.
- (6) G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- (7) T. R. Schneider, and Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772.

(8) P. T. Beurskens, G. Beurskens, R. de Gelder, J. M. M. Smits, S. Garcia-Granda and R. O. Gould, The *DIRDIF-2008* program system. Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.

- (9) Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie, R. B. King, H. F. Schaefer III, P. v. R. Schleyer and G. H. Robinson, *J. Am. Chem. Soc.* 2007, **129**, 12412.
- (10) S. M. I. Al-Rafia, A. C. Malcolm, S. K. Liew, M. J. Ferguson, R. McDonald and E. Rivard, J. Am. Chem. Soc., 2011, **133**, 777.
- (11) A. Blumenthal, P. Bissinger and H. Schmidbaur, J. Organomet. Chem. 1993, 462, 107.
- (12) Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
- A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,
- M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
- Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.

Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.
E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.
Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J.
B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
(13) (a) K.A. Peterson, J. Chem. Phys. 2003, 119, 1109; (b) K.A. Peterson, D. Figgen, E. Goll,
H. Stoll, and M. Dolg, J. Chem. Phys. 2003, 119, 11113; (c) K.A. Peterson and C. Puzzarini,
Theor. Chem. Acc. 2005, 114, 283; (d) K.A. Peterson, D. Figgen, M. Dolg, H. Stoll, J. Chem.
Phys. 2007, 126, 124101; (e) K. A. Peterson, B. C. Shepler, D. Figgen, H. Stoll, J. Phys. Chem.
A 2006, 110, 13877; (f) D. Figgen, K.A. Peterson, M. Dolg, and H. Stoll, J. Chem. Phys. 2009, 130, 164108.