Chiral bicyclic [2.2.2] octadiene ligands for Rh-catalysed catalytic asymmetric conjugate additions to acyclic enones: A quantitative structure-property relationship
 Yunfei Luo, Neil G. Berry and Andrew J. Carnell

Table of Contents S1

1. General Experimental S2
2. Rh-diene-catalyzed asymmetric conjugate additions reactions S3
3. Ligand Synthesis S3
4. Chiral Analysis of Asymmetric Conjugate Addition Products S11
5. QSPR Modelling S21
6. NMR Spectra S24

1. General

All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen. NMR spectra were recorded on a Bruker AMX400 MHz spectrometer. Chemical shifts are reported in $\delta \mathrm{ppm}$ referenced to an internal SiMe_{4} standard for ${ }^{1} \mathrm{H}$ NMR and chloroform- d ($\delta 77.05$) for ${ }^{13} \mathrm{C}$ NMR. Enantiomeric excess was measured by normal phase HPLC on a Waters 2695 separation module equipped with a Waters 996 photo diode array detector. Separations were carried out using Chiracel AD, AD-H, AS-H and OD-H chiral column provided by Diacel company (columns and conditions under each compound later). The optical rotation data were recorded on Perkin Elmer Polarimeter 343 Plus. All solvents and reagents were used without further purification if not specified in the procedures. Ligands $\mathbf{4 a - g}, \mathbf{5 a}, \mathbf{5 f}$, 6a and $\mathbf{9 a}$ were made according to previously published procedures. ${ }^{1,2}$

2. Rh-diene-catalyzed asymmetric conjugate additions reactions

These reactions were carried out according to a modification of the published procedure ${ }^{2}$:
To a reaction tube was added $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}(1.8 \mathrm{mg}, 9 \mu \mathrm{~mol} \mathrm{Rh}), 10 \mu \mathrm{~mol}$ chiral diene $(1.1 \mathrm{eq})$ and dioxane $(0.3 \mathrm{~mL})$. This mixture was stirred at room temperature for 30 min and then extra dioxane $(0.7 \mathrm{~mL})$, phenylboronic acid ($72 \mathrm{mg}, 0.6 \mathrm{mmol}$) and 3-nonen-2-one ($42 \mathrm{mg}, 0.3 \mathrm{mmol}$) were added. To the resulting mixture KOH solution $(0.1 \mathrm{~mL}, 1.5 \mathrm{M})$ was added in one portion. The reaction was stirred at room temperature for 3 hrs and then filtered through a short silica pad and washed with diethyl ether. After removal of solvents and the product was purified by using preparative TLC (Hexane : EtOAc 10: 1) to give the pure product.

3. Ligand Synthesis

Scheme S1: Preparation of 1,4-disubstututed bicyclo[2.2.2]ligands from (S,S)-enol ester S1. a) $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}(99 \%)$; b) LHMDS, $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{THF},-78^{\circ} \mathrm{C}(70 \%) ;$ c) $\mathrm{ArB}(\mathrm{OH})_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, Tol/EtOH/aq, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, rt. (95\%); d) LiAlH4, THF, (99\%); e) $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Pyr},-78^{\circ} \mathrm{C}$ - rt (99\%); f) NaH , Mel, THF (95\%); g) LiHBEt_{3}, THF, $40^{\circ} \mathrm{C}$ (93-99\%); h) TBAF, THF (95\%).

(R, R)-S6
(S,S)-1,4-di(methoxycarbonyl)-2,5-di(trifluromethysulfonyloxy)bicyclo

[2.2.2]octan-2,5-diene (bis enol triflate intermediate, after step b, Scheme S1) ${ }^{1}$

Diketone (S, S)-S2 ($254 \mathrm{mg}, 1 \mathrm{mmol}$) was added to a 25 mL flask containing anhydrous THF (5 mL). The solution was stirred, cooled to $-78^{\circ} \mathrm{C}$ and LHMDS (2.2, $\mathrm{mL}, 1.06 \mathrm{M}, 2.33 \mathrm{mmol}$) was added. The reaction mixture was stirred for 30 min and triflic anhydride ($648 \mathrm{mg}, 2.3 \mathrm{mmol}$) was added in one portion. The reaction finished instantaneously and was quenched with saturated NaHCO_{3} aqueous solution (10 mL) then transferred to a separating funnel. The mixture was extracted with EtOAc (3×15 mL), extracts were combined and washed with water and brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation the crude product was purified by flash column chromatography (Hexane:EtOAc; 9:1) to give pure product ($(S, S$)-bisenol triflate ($362 \mathrm{mg}, 70 \%$ yield) as colorless oil.
${ }^{1} \mathrm{H}$ NMR $\delta 6.62(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 2.32-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.97(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 168.1,152.2,121.0,118.7(\mathrm{q}, ~ J=320 \mathrm{~Hz}), 54.9,53.8,31.0$.

HRMS ESI+: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{Na}^{+}\left\{[\mathrm{M}+\mathrm{Na}]^{+}\right\}$, Calc.: 540.9674, Found: 540.9695.

(S,S)-(+)-1,4-di(methoxycarbonyl)-2,5-diphenylbicyclo[2.2.2]octan-2,5-diene

 (L4a) ${ }^{1}$
(S, S)-bis enol triflate ($570 \mathrm{mg}, 1.1 \mathrm{mmol}$) was dissolved in toluene $(20 \mathrm{~mL})$ and EtOH (7 mL) in a 100 ml flask. To this solution, phenylboronic acid ($360 \mathrm{mg}, 3.0 \mathrm{mmol}$), of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution $(4.5 \mathrm{~mL}, 2.0 \mathrm{M}, 9 \mathrm{mmol})$ and tetrakis-
(triphenylphosphine)palladium ($63 \mathrm{mg}, 55 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) were added in turn. The resulting mixture was degassed, charged with nitrogen and then stirred at room temperature for 6 h for full conversion. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ and washed with water and brine. After being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the organic solution was filtered and evaporation of the solvents gave crude product which was purified by flash column chromatography (hexane:EtOAc; 5:1) to give pure product (S, S)-(+)-L4a as white solid ($390 \mathrm{mg}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR $\delta 7.25-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}), 2.12-2.18$ (m, 2H), 1.87-1.92 (m, 2H), ${ }^{13} \mathrm{C}$ NMR δ 174.4, 148.0, 138.4, 131.9, 128.5, 127.7, 126.9, 57.4, 52.3, 30.6, HRMS ESI+: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}^{+}\left\{[\mathrm{M}+\mathrm{Na}]^{+}\right\}$, Calc.: 397.1416, Found: 397.1418; $[\alpha]_{\mathrm{D}}{ }^{20}=+60.8\left(c 0.44, \mathrm{CHCl}_{3}\right)$.

(S,S)-(+)-1,4-di(methoxycarbonyl)-2,5-di\{3',4',5’-tri(methoxyl)phenyl\}bicyclo

[2.2.2]octan -2,5-diene (L4h)

This compound was made according to the procedure for compound $(S, S)-(+)$-L4a above to give pure product ($(S, S)-(+)$-L4h as a white solid (152 mg of $\mathbf{S} \mathbf{2}$ gave 200 mg of $\mathbf{4 h}, 60 \%$ overall yield for 2 steps).
${ }^{1} \mathrm{H}$ NMR $\delta 6.64$ (s, 2H), 6.39 (s, 4H), 3.85 (s, 12H), 3.84 (s, 6H), 3.58 (s, 6H), 2.13$2.18(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.2,153.0,147.6,137.3,133.5,131.1$, 103.4, 60.9, 57.1, 56.1, 52.2, 30.4; HRMS ESI+: $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{10} \mathrm{Na}^{+}\left\{[\mathrm{M}+\mathrm{Na}]^{+}\right\}$, Calc.: 577.2050, Found: 577.2048; $[\alpha]_{\mathrm{D}}{ }^{20}=+36\left(c 0.37, \mathrm{CHCl}_{3}\right)$
$(S, S)-(+)-1,4-d i($ hydroxymethyl $)-2,5-d i p h e n y l b i c y c l o[2.2 .2]$ octan-2,5-diene (L6a) ${ }^{1}$

The $(S, S)-(+)-L 4 a(171 \mathrm{mg}, 0.45 \mathrm{mmol})$ was dissolved in THF $(5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5$ mL). To this solution $\mathrm{LiAlH}_{4}(38 \mathrm{mg}, 1 \mathrm{mmol})$ was added under nitrogen. The reaction finished in 5 min after the addition of LiAlH_{4}. The reaction was quenched by adding EtOAc (5 mL) and then water (ca. 30 mL) until there was no further effervescence. The resultant mixture was transferred to a separating funnel and extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). All extracts were combined and washed with 1 N HCl aq. solution, water, sat. NaHCO_{3} solution and brine then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and removal of the solvent gave a colorless oil. Flash column chromatography (hexane:EtOAc; 3:1) gave pure product as sticky oil (145 $\mathrm{mg}, 99 \%) .{ }^{1} \mathrm{H}$ NMR $\delta 7.20-7.40(\mathrm{~m}, 10 \mathrm{H}), 6.27(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=$ $6 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{dd}, J=11.5, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.65(\mathrm{~m}, 2 \mathrm{H})$, 1.17-1.26 (m, 2H, -OH); ${ }^{13} \mathrm{C}$ NMR $\delta 149.6,139.6,136.0,128.8,128.1,127.6,65.8$, 52.1, 31.0; HRMS ESI+: $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}^{+}\left\{[\mathrm{M}+\mathrm{Na}]^{+}\right\}$, Calc.: 341.1517, Found: $341.1513 ;[\alpha]_{\mathrm{D}}{ }^{20}=+44.4\left(c 0.53, \mathrm{CHCl}_{3}\right)$
(S, S)-1,4-di(hydroxymethyl)-2,5-di\{3',4',5'-tri(methoxyl)phenyl\}bicyclo
[2.2.2]octan -2,5-diene (S3)

This compound was made using the same procedure as used for $(S, S)-(+)-$ L6a. 150
mg starting material gave product (S, S)-(+)-S3 (134mg 99\%).
${ }^{1} \mathrm{H}$ NMR $\delta 6.43(\mathrm{~s}, 4 \mathrm{H}), 6.29(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.87(\mathrm{~s}, 12 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 1.63-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{brs}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 153.5,149.5,137.7,135.8,135.0,105.1,66.9,61.3,56.6,52.2,31.1$; HRMS ESI+: $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Na}^{+}\left\{[\mathrm{M}+\mathrm{Na}]^{+}\right\}$, Calc.: 521.2151, Found: 521.2160.
(S,S)-(+)-1,4-Di(methoxyl)-2,5-diphenylbicyclo[2.2.2]octan-2,5-diene (L7a)

The (S, S)- diol L6a ($300 \mathrm{mg}, 0.94 \mathrm{mmol}$) was dissolved in anhydrous THF (10 ml) in a Schlenck reaction tube and stirred at room temperature. To this solution, $\mathrm{NaH}(200$ $\mathrm{mg}, 60 \mathrm{wt} \%$ in mineral oil, 5 mmol) was added followed by addition of MeI (1.42 g , $0.62 \mathrm{~mL}, 10 \mathrm{mmol}$) and then stirred at $40^{\circ} \mathrm{C}$ for 1 hr . The reaction was quenched with water then extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic solution was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and removal of solvents by rotary evaporation gave crude product which was purified by flash column chromatography (hexane:EtOAc; $4: 1$) to give product $\mathbf{L} 7 \mathrm{a}(308 \mathrm{mg}, 95 \%)$.
$[\alpha]_{\mathrm{D}}{ }^{20}=+71.8^{\circ}\left(c 0.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.11-7.33(\mathrm{~m}, 10 \mathrm{H}), 6.25(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 6 \mathrm{H}), 1.69-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.61$ (m, 2H), ${ }^{13} \mathrm{C}$ NMR $\delta 149.7,139.8,135.3,128.6,128.0,127.0,75.8,59.5,50.0,31.1$; HRMS ESI+: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}^{+}\left\{[\mathrm{M}+\mathrm{Na}]^{+}\right\}$, Calc.: 369.1831, Found: 369.1827. diene (S4) ${ }^{1}$

Diol L6a ($572 \mathrm{mg}, 0.93 \mathrm{mmol}$) was added to a 50 ml flask containing DCM (10 mL) and pyridine $(2 \mathrm{~mL})$. The solution was cooled to $-78^{\circ} \mathrm{C}$ and triflic anhydride $(787 \mathrm{mg}$, 2.8 mmol) was added. The reaction was then allowed to warm to room temperature and transferred to a separating funnel to which ice-water (40 mL) was subsequently added. The mixture was extracted with DCM (3 X 40 mL). The combined organic extracts were washed with 1 N HCl aq. solution, water and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and removal of solvents by rotary evaporation gave crude product, which was purified by flash column chromatography (Hexane:EtOAc 5:1) to give product (S, S) - S4 ($1.02 \mathrm{~g}, 99 \%$) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR $\delta 7.32-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.24(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=10 \mathrm{~Hz}$, $2 \mathrm{H}), 4.73(\mathrm{~d}, J=10 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.90(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 149.1,136.9,128.9$, 128.4, 128.2, 78.3, 49.1, 30.6; HRMS ESI $+: \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Na}^{+},\left\{[\mathrm{M}+\mathrm{Na}]^{+}\right\}$, Calc.: 605.0503, Found: 605.0530. (Due to the instability of this compound the $[\alpha]_{D}$ value was not measured.)

(S,S)-(+)-1,4-di(fluoromethyl)-2,5-diphenylbicyclo[2.2.2]octan-2,5-diene (L8a)

The (S, S)-S4 $(50 \mathrm{mg}, 86 \mu \mathrm{~mol})$ was dissolved in anhydrous THF $(5 \mathrm{ml})$ and stirred at room temperature. To this solution TBAF (tetra-nbutylammonium fluoride THF solution, $0.43 \mathrm{~mL}, 430 \mu \mathrm{~mol}$) was added in one portion and the reaction mixture allowed to warm $40^{\circ} \mathrm{C}$ for 3 hrs . To this reaction mixture ca. 2 g of silica gel was added and resultant mixture was subjected to rotary evaporation to remove all solvent to give silica powder with product absorbed. This was loaded onto a short silica pad and washed with pure hexane to give pure product (S, S)-(+)-L8a (26mg, 95\% yield).
${ }^{1} \mathrm{H}$ NMR δ 7.17-7.35 $(\mathrm{m}, 10 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H}), ~ 4.62-4.91$ (doublet of a AB quartets, $J_{\mathrm{H}-\mathrm{F}}$ $=47 \mathrm{~Hz}, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.63-1.78(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 149.3,138.5,134.0(\mathrm{~d}, J=$ $26 \mathrm{~Hz}), 138.5,127.7,85.8(\mathrm{~d}, J=678 \mathrm{~Hz}), 50.3(\mathrm{~d}, J=73 \mathrm{~Hz}), 29.9(\mathrm{~d}, J=23 \mathrm{~Hz}) ;$

HRMS EI: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{2}\left\{[\mathrm{M}+\mathrm{H}]^{+}\right\}$, Calc. 323.1606, Found: 323.1601; $[\alpha]_{\mathrm{D}}{ }^{20}=+125.9(c$ $0.37, \mathrm{CHCl}_{3}$)

(R, R)-(+)1,4-dimethyl-2,5-diphenylbicyclo[2.2.2]octan-2,5-diene (L5h) ${ }^{1}$

The bis triflate (S, S)- $\mathbf{S 4}(582 \mathrm{mg}, 1.0 \mathrm{mmol})$ was dissolved in anhydrous THF (20 ml) and cooled to $-78^{\circ} \mathrm{C}$. To this a stirred solution $\mathrm{LiHBEt}_{3}(5 \mathrm{~mL}, 5.0 \mathrm{mmol})$ was added in one portion and the reaction mixture allowed to warm to room temperature. The reaction was stirred for a further 30 min and around 10 g of silica gel was added which was pre-cooled in an ice-water bath. Removal of the solvent gave a silica gel powder with product absorbed, which was loaded onto a short silica column and washed with pure hexane to give pure product (R, R) - $\mathbf{L 5 h}$ as colorless oil ($370 \mathrm{mg}, 99 \%$).
${ }^{1} \mathrm{H}$ NMR δ 7.13-7.32 (m, 10H), $5.97(\mathrm{~s}, 2 \mathrm{H}), 1.58-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.54(\mathrm{~m}, 2 \mathrm{H})$, 1.42 (s, 6H); ${ }^{13} \mathrm{C}$ NMR $\delta 151.6,140.2,139.0,128.7,128.1,126.8,45.2,37.5,22.6 ;$ HRMS: $\mathrm{C}_{22} \mathrm{H}_{23},\left\{[\mathrm{M}+\mathrm{H}]^{+}\right\}$Calc.: 287.1794, Found: 287.1794; $[\alpha]_{\mathrm{D}}{ }^{20}=+127.2$ (c $0.46, \mathrm{CHCl}_{3}$).

($\boldsymbol{S}, \boldsymbol{S}$)-1,4-di(trifluoromethanesulfonyloxy)-2,5-di\{3',4’,5’-tri(methoxyl)

 phenyl\}bicyclo [2.2.2]octan -2,5-diene (S5)

The triflate derivative was made using the same procedures as described for compound S4. The resulting bistriflate was unstable and used without
characterization for the subsequent reaction

$(R, R)-(+)-1,4-d i(h y d r o x y m e t h y l)-2,5-d i\left\{3^{\prime}, 4^{\prime}, 5 ’\right.$-tri(methoxyl)phenyl\}bicyclo

[2.2.2]octan -2,5-diene (L5h)

The bis triflate (S, S)-S5 ($75 \mathrm{mg}, 0.16 \mathrm{mmol}$) was dissolved in anhydrous THF (3 ml) and cooled to $-78^{\circ} \mathrm{C}$. To this a stirred solution $\mathrm{LiHBEt}_{3}(0.16 \mathrm{~mL}, 0.8 \mathrm{mmol}, 5 \mathrm{eq})$ was added in one portion and the reaction mixture allowed to warm to room temperature. The reaction was stirred for a further 30 min and around 2 g of silica gel was added which was pre-cooled in an ice-water bath. Removal of the solvent gave a silica gel powder with product absorbed, which was loaded onto a short silica column and washed with pure hexane to give pure product $66 \mathrm{mg}(94 \%$ yield $)(R, R)-L 5 h$ as white solid. ${ }^{1} \mathrm{H}$ NMR $\delta 6.34$ (s, 4H), 5.99 (s, 2H), 3.87 (s, 12H), 3.86 (s, 6H), 1.59-1.65 (m, 2H), 1.49-1.54 (m, 2H), 1.47 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 152.9,151.6,138.6,137.2,135.6$, $105.8,61.3,56.5,45.3,37.6,22.7 ;[\alpha]_{\mathrm{D}}{ }^{20}=+95.5\left(c 0.69, \mathrm{CHCl}_{3}\right)$

$(R, R)-(+)-2,5-d i[4$-(methoxycarbonyl)phenyl]bicyclo[2.2.2]octan-2,5-diene (9i)

This compound was prepared according to ref. [4b] from $(R, R)-(-)-$ bicyclo[2.2.2] octan-2,5-dione. ${ }^{1} \mathrm{H}$ NMR $\delta 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 4 H), 6.79 (dd, $J=6.4 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ (s, 6H), 1.59
(s, 4H) ${ }^{13} \mathrm{C}$ NMR $\delta 166.9,145.9,142.2,131.6,139.9,128.3,124.5,52.1,39.9,25.5 ;$

HRMS ESI $+: \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}^{+}\left\{[\mathrm{M}+\mathrm{Na}]^{+}\right\}$, Calc.: 397.1416, Found: 397.1418; $[\alpha]_{\mathrm{D}}{ }^{20}=$ $+22.5\left(c 0.28, \mathrm{CHCl}_{3}\right)$,

$(R, R)-(-)-2,5-d i\left\{\mathbf{3}^{\prime}, \mathbf{4}^{\prime}, \mathbf{5}^{\prime}\right.$ '-tri(methoxyl)phenyl\}bicyclo[2.2.2]octan-2,5-diene (9h)

This compound was prepared according to ref. [4b] from $(R, R)-(-)-$ bicyclo[2.2.2] octan-2,5-dione. ${ }^{1} \mathrm{H}$ NMR $\delta 6.65(\mathrm{~s}, 4 \mathrm{H}), 6.59(\mathrm{dd}, J=6.4 \mathrm{~Hz}, J=$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 12 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 1,58(\mathrm{~s}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 153.2,146.9,137.3,134.0,128.8,101.9,60.9,56.1,40.3,25.8 ;$ HRMS ESI+: $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}^{+}\left\{[\mathrm{M}+\mathrm{Na}]^{+}\right\}$, Calc.: 461.1940, Found: 461.1944; [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}=-16.5$ (c 0.35, CHCl_{3})
4. Chiral Analysis of Asymmetric Conjugate Addition Products

(S)-3-phenylnonan-2-one (3) ${ }^{1}$

The ee was determined on a Daicel Chiralcel OD-H column with hexane: 2-propanol $=99.9: 0.1$, flow $=1.0 \mathrm{~mL} / \mathrm{min}$. Retention times: $20.1 \mathrm{~min}[(S)$-enantiomer], 21.9 min $\left[(R)\right.$-enantiomer]. L5a gave 52% ee, $[\alpha]_{\mathrm{D}}{ }^{20}=+9.90^{\circ}\left(\mathrm{c} 0.72, \mathrm{CHCl}_{3}\right)$; lit ${ }^{3}\left([\alpha]_{\mathrm{D}}{ }^{20}=\right.$ $+17.15^{\circ}$ (c 1.30, CHCl_{3}) 92% ee).
${ }^{1} \mathrm{H}$ NMR δ 7.27-7.29 (m, 2H), 7.15-7.20 (m, 3H), 3.06-3.14 (m, 1H), $2.71(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.21(\mathrm{~m}$, $7 \mathrm{H}), 0.82$ ($\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR: 208.49, 145.02, 128.85, 127.87, 126.70,
51.36, 41.72, 36.84, 32.13, 31.05, 27.44, 22.89, 14.20; HRMS CI: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{1}{ }^{+} \mathrm{N}_{1}$ $\left\{\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right\}$, Calc.: 236.2009, Found: 236.2012;

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		20.110	7936424	49.08	217472	bb	
2		21.902	8233182	50.92	213077	bb	

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		19.131	15511309	75.99	392281	BV	
2		20.995	4899859	24.01	126613	Vb	

Due to the poor reproducibility of the resolution of this compound, the remaining entries were resolved by reacting the compound with methylmagnesium chloride to give the alcohol derivative (S7) and subjecting to chiral HPLC with chiralcel OD-H column.

Protocol for alcohol S7:
To a 10 ml reaction flask, a diethyl ether solution of ketone $3(2 \mathrm{ml}, 5 \mathrm{mgs} / \mathrm{ml}$, $46 \mu \mathrm{~mol}$) was added and stirred at room temperature. To this solution, methyl magnesium chloride THF solution ($22 \mu \mathrm{~L}, 68.8 \mu \mathrm{~mol}, 3 \mathrm{~mol} / \mathrm{L}$) was added and stirred for 5 mins . The reaction was quenched by adding 1 ml water to the solution and extracted with diethyl ether (10 ml), then dried over anhydrous magnesium sulphate. Filtration followed by evaporation gave the crude product which was purified by preparative TLC ($5 \mathrm{mg}, 93 \%$).

This compound can be resolved on a chiralcel OD-H column with very good reproducibility. Hexane : IPA $=99.5: 0.5,0.5 \mathrm{ml} / \mathrm{min}$, Retention times: $41 \mathrm{~min}[(R)-$ enantiomer], 44 min [(S)-enantiomer].

Data for compound $\mathbf{S 7}$
${ }^{1} \mathrm{H}$ NMR δ 7.32-7.17 (m, 3H), 7.23-7.17 (m, 2H), 2.78-2.68 (m, 1H), 1.98 (dd, $J=$ $14.2 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=14.2 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 4 \mathrm{H})$, 1.36-1.17 (m, 4H), $1.13(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.03$ (brs, 1 H), $0.83(\mathrm{t}, J=6.80 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13}$ C NMR: 146.4, 128.5, 127.8, 126.1, 71.5, 50.0, 42.2, 39.1, 31.8, 30.1, 29.7, 27.1, 22.5, 14.0; HRMS CI: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{1}{ }^{+} \mathrm{N}_{1}\left\{\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right\}$, Calc.: 236.2009, Found: 236.2012;

HPLC spectra for $\mathbf{S 7}$ from Ligands tested

Racemic S7

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		41.739	7313383	49.07	130817	bb	
2		44.938	7589528	16.32	128815	bb	

Ligand 4a

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		44.303	11301914	87.21	219050	Bv	
2		47.308	1656787	12.79	28522	vb	

e.e. 74\%

Ligand 4b

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		43.028	3819922	92.67	68429	bb	
2		46.269	302303	7.33	5220	bb	

e.e. 85\%

Ligand 4c

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		42.605	6580837	86.54	134892	bb	
2		45.810	1023385	13.46	19701	bb	

e.e. 73\%

Ligand 4d

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		43.140	2755837	90.31	55920	bb	
2		46.008	295553	9.69	6048	bb	

e.e. 81%

Ligand 4 e

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		42.242	3038425	87.79	56340	Bv	
2		45.297	422451	12.21	7301	vB	

e.e. 76\%

Ligand 4f

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		40.624	4631373	93.09	93545	bb	
2		43.550	343618	6.91	6733	bb	

e.e. 86%

Ligand 4g

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		41.170	3342165	85.34	62947	bb	
2		44.182	574192	14.66	10318	bb	

e.e. 71%

Ligand 4h

	Name	Retention Time	Area	$\%$ Area	Height	Int Type	Peak Codes
1		42.986	13688000	86.10	278389	bb	
2		46.085	2210640	13.90	41003	bb	

e.e. 72\%

Ligand 5h

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		41.140	4900524	74.67	91320	Bv	
2		44.268	1662761	25.33	27805	vb	

e.e. 49%

Ligand 6a

	Name	Retention Time	Area	$\%$ Area	Height	Int Type	Peak Codes
1		41.855	11852962	83.68	229801	Bv	
2		44.854	2311387	16.32	40371	vB	

e.e. 67%

Ligand 7a

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		43.478	14072619	78.55	257816	bb	
2		46.831	3842010	21.45	69042	bb	

e.e. 57%

Ligand 8a

e.e. 61%

Ligand 9i

	Name	Retention Time	Area	$\%$ Area	Height	Int Type	Peak Codes
1		42.105	11462220	96.02	223582	bb	
2		45.240	475632	3.98	9773	bb	

e.e. 92%

Ligand 9h

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		42.529	5644446	91.44	102506	bb	
2		45.978	528220	8.56	8213	bb	

e.e. 83%

Ligand 10

	Name	Retention Time	Area	\% Area	Height	Int Type	Peak Codes
1		44.441	18583584	95.29	353881	bV	
2		47.454	918510	4.71	15688	VB	

e.e. 91%

5. QSPR Modelling

Quantitative structure-property relationship (QSAR) models were developed for the experimentally measured e.e.s for the ligands described in the paper. Three dimensional structures of the ligands were generated using Spartan 08^{3} and energy minimised using the MMFF94 forcefield. In total 37630,1 and 2-dimensional molecular descriptors/properties were calculated for the set of compounds using DRAGON Version 6.0. ${ }^{4}$ To reduce redundancy and remove low-information descriptors, descriptors were removed that had a standard deviation less than 0.001, contained at least one missing value or excluded a descriptor from a pair that had a correlation larger than or equal to 0.95 . Descriptors were removed that contained the same values for 80% or more of the training set and the Chorchop procedure was performed to reduce the number of descriptors whilst retaining the intrinsic information content. ${ }^{5}$ The multiple linear regression machine learning method coupled with genetic algorithm subjective descriptor selection (GA-MLR) as implemented in the PHAKISO program was used to relate the activities (Y) of a set compounds to their molecular descriptors (X) using a linear equation. ${ }^{6}$ The genetic algorithm was set to have population size 50 , replacement rate 0.6 , cross-over rate 1.0 and maximum number of generations 100 . The maximum number of descriptors allowed was set to 3 , in order to follow the recommended 5:1 to ratio of number of descriptors to molecule so minimise the occurrence of chance correlations. ${ }^{7}$ The subjective fitness function for descriptor selection in this case was chosen to be the adjusted r^{2} for the training set. Internal validation statistics were calculated using R^{8} with libraries boot ${ }^{9}$ and DAAG. ${ }^{10}$

The QPSR model is reliable as confirmed by various diagnostic plots (Figure S1) that indicate that the assumptions on which MLR is based are true for this data set. The plot of residual vs fitted indicates that the residuals do not have a significant trend. The normal $\mathrm{Q}-\mathrm{Q}$ plot is close to linear indicating the residuals are normally distributed. None of the standardized residuals are greater than 2 . None of the data points have a Cook's distance >1.

Figure S1 Plots in support of the validity of QSPR model

References

1. Y. Luo and A. J. Carnell, Angew. Chem. Int. Ed., 2010, 49, 2750.
2. Y. Otomaru, K. Okamoto, R. Shintani and T. Hayashi, J. Org. Chem. 2005, 70, 2503.
3. http://www.wavefun.com/
4. Talete srl, DRAGON (Software for Molecular Descriptor Calculation) Version 6.0 - 2010 - http://www.talete.mi.it/
5. D. J. Livingstone, E. Rahr, Quant. Struct.-Act. Relat., 1989, 8, 103.
6. http://www.phakiso.com/
7. J. G. Topliss, R. P. Edwards, J. Med. Chem.1979, 22, 1238.
8. http://cran.r-project.org/
9. http://cran.r-project.org/web/packages/boot/index.html
10. http://cran.r-project.org/web/packages/DAAG/index.html

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Expanded spectrum of $\mathbf{S} 7$ from $0.5-2.2 \mathrm{ppm}$

Electronic Supplementary Material (ESI) for Chemical Communications

