Supporting Information

Phosphine-free Pd catalyst for the selective double carbonylation of aryl iodides.

Verónica de la Fuente, Cyril Godard, Ennio Zangrando, Carmen Claver*, and Sergio Castillón*

Table	of C	ontents
-------	------	---------

General Methods	S2
General procedure for Pd-catalysed double carbonylation of aryl iodides	S2
Pd-catalysed double-carbonylation of aryl iodides with primary amines	S2
Pd-catalysed double-carbonylation of aryl iodides with secondary amines	S2
Synthesis of N-butyl-2-(4-methoxyphenyl)-2-oxoacetamide (3a)	S3
Synthesis of N-ethyl-2-(4-methoxyphenyl)-2-oxoacetamide (3m)	S3
Synthesis of 2-(4-methoxyphenyl)-2-oxo-N-propylacetamide (3n)	S3
Synthesis of 2-(4-methoxyphenyl)-2-oxo-N-(1-phenylethyl)acetamide (3p)	S3
Synthesis of N,N-diethyl-2-(4-methoxyphenyl)-2-oxoacetamide (3q)	S4
Synthesis of $PdCl_2(DBU)_2$ (5)	S4
Table S1. Double carbonylation of different aryl iodides with <i>n</i> -butylamine at 80°C	S5
Table S2. Double carbonylation of 1-iodo- <i>p</i> -methoxybenzene with different nucleophiles at 80°C	S 6
GC-MS chromatograms	S 7
Figure 1. ¹ H NMR of N- butyl-2-(4-methoxyphenyl)-2-oxoacetamide	
reaction crude (3a)	S27
Figure 2. ¹ H NMR of <i>N</i> - butyl-2-(4-methoxyphenyl)-2-oxoacetamide (3a)	S27
Figure 3. ${}^{13}C-{}^{1}H$ NMR of <i>N</i> - butyl-2-(4-methoxyphenyl)-2-oxoacetamide (3a)	S28
Figure 4. ¹ H NMR of <i>N</i> -ethyl-2-(4-methoxyphenyl)-2-oxoacetamide (3m)	S28
Figure 5. ${}^{13}C-{}^{1}H$ NMR of <i>N</i> -ethyl-2-(4-methoxyphenyl)-2-oxoacetamide (3m)	S29
Figure 6. ¹ H NMR of 2-(4-methoxyphenyl)-2-oxo- <i>N</i> -propylacetamide (3n)	S29
Figure 7. ¹³ C-{ ¹ H} NMR of 2-(4-methoxyphenyl)-2-oxo- <i>N</i> -propylacetamide (3n)	S30
Figure 8. ¹ H NMR of 2-(4-methoxyphenyl)-2-oxo- <i>N</i> -(1-phenylethyl)acetamide (3p)	S30
Figure 9. ¹³ C-{ ¹ H} NMR of 2-(4-methoxyphenyl)-2-oxo- <i>N</i> -(1-phenylethyl)acetamide (3p)	S31
Figure 10. ¹ H NMR of <i>N</i> , <i>N</i> -diethyl-2-(4-methoxyphenyl)-2-oxoacetamide (3q)	S31
Figure 11. ¹³ C-{ ¹ H} NMR of <i>N</i> , <i>N</i> -diethyl-2-(4-methoxyphenyl)-2-oxoacetamide ($3q$)	S32
Figure 12. ¹ H NMR of complex (5)	S32
Figure 13. ${}^{13}C-\{{}^{1}H\}$ NMR of complex (5)	S33
Figure 14. $^{13}C-\{^{1}H\}$ NMR spectrum of the reaction of $PdCl_2(DBU)_2$ with 1-iodo-4-methoxybenzen	e
and DBU under atmospheric ¹³ CO pressure	S33
X- ray data for complex 6	S34

General Methods:

All reactions were carried out under an argon atmosphere using Standard Schlenk techniques. Solvents were distilled and degassed prior to use. ¹H, ¹³C{¹H}, ³¹P{¹H} and ¹⁹F{¹H} NMR spectra were recorded on a Varian Gemini spectrometer at 300 and 400 MHz. Chemical shifts were reported relative to tetramethylsilane for ¹H and ¹³C{¹H} as internal reference, H₃PO₄ 85% for ³¹P{¹H}, and trichlorofluoromethane for ¹⁹F{¹H} as external references. Elemental analyses were carried out on a Carlo Erba Microanalyser EA 1108. VG-Autospect equipment was used for FAB mass spectral analyses with 3-nitrobenzylalcohol as matrix. EI mass spectra were obtained on an HP 5989 A spectrometer at an ionizing voltage of 70eV. Conversion and chemoselectivity was measured by NMR spectrometry and GC-MS spectra. HP-FFAP Column of polyethylene glycol (30 m x 0.25 mm x 0.25 µm). T^a= 250 °C injector. Flow 1.5ml/min. Initial T^a= 50°C, for 3 min. 10°C/min until 230°C, for 15 min, 15°C/min until 240°C, for 40 min. Analysis time 76.67 min. m/z acquisition range: 43-600.

General procedure for Pd-catalysed double carbonylation of aryl iodide:

Primary amines:

A tube of multireactor was charged with the corresponding aryl iodide (0.5 mmol), $[Pd(\eta^3 - C_3H_5)Cl]_2$ (0.005 mmol), DBU (1 mmol) and the primary amine desired (1.2 mmol) in toluene (5 mL). Then, the tube was pressurized with 1 bar of carbon monoxide. The reaction was stirred at 80°C for 1 hour. After the reaction, the mixture was filtered over Celite, and washed with water (3x5 mL). The organic phase was dried over anhydrous MgSO₄. The drying agent was filtered off and the solvent was removed under reduced pressure. The conversion and chemoselectivity was determined by GC-MS chromatography.

Secondary amines:

A tube of multireactor was charged with the corresponding aryl iodide (0.5 mmol), $[Pd(\eta^3 - C_3H_5)Cl]_2$ (0.005 mmol), DBU (1 mmol) and the secondary amine desired (1.2 mmol) in toluene (5 mL). Then, the tube was pressurized with 1 bar of carbon monoxide. The reaction was stirred at 60°C for 14 hour. After the reaction, the mixture was filtered over Celite, and washed with water (3x5 mL). The organic phase was dried over anhydrous MgSO₄. The drying agent was filtered off and the solvent was removed under reduced pressure. The conversion and chemoselectivity was determined by GC-MS chromatography.

N-butyl-2-(4-methoxyphenyl)-2-oxoacetamide (3a)

Following the general procedure for the synthesis of α -ketoamides using

primary amines, compound **3a** was obtained in 87% yield. ¹**H NMR** (CDCl₃, 400 MHz, δ ppm): 8.40 (d, ³J=9.2Hz, 2H, arom), 7.12 (br, 1H, NH), 6.93 (d, ³J=9.2Hz, 2H, arom), 3.87 (s, 3H, CH₃), 3.37 (m, 2H, CH₂), 1.57 (m, 2H, CH₂), 1.39 (m, 2H, CH₂), 0.94 (t, ³J=7.2Hz, 3H, CH₃). ¹³C{¹H} **NMR** (CDCl₃, 100.6 MHz, δ ppm): 186.1 (C=O), 164.6 (C, arom), 162.5 (C=O), 134.2 (CH, arom), 126.5 (C, arom), 113.9 (CH, arom), 56.8 (CH₃), 39.4 (CH₂), 31.5 (CH₂), 20.2 (CH₂), 13.9 (CH₃). **HRMS** (ESI-TOF): *m/z*=197.1290, calcd for [M]⁺: 197.1287.

N-ethyl-2-(4-methoxyphenyl)-2-oxoacetamide (3m)

Following the general procedure for the synthesis of α -ketoamides using

primary amines, compound **3m** was obtained in 78% yield. ¹H **NMR** (CDCl₃, 400 MHz, δ ppm): 8.39 (d, ³J=8.8Hz, 2H, arom), 7.18 (br, 1H, NH), 6.92 (d, ³J=8.8Hz, 2H, arom), 3.86 (s, 3H, CH₃), 3.40 (m, 2H, CH₂), 1.22 (t, ³J=7.6Hz, 3H, CH₃). ¹³C{¹H} **NMR** (CDCl₃, 100.6 MHz, δ ppm): 186.1 (C=O), 164.8 (C, arom), 162.4 (C=O), 134.1 (CH, arom), 126.6 (C, arom), 114.0 (CH, arom), 55.7 (CH₃), 34.4 (CH₂), 14.6 (CH₃).

2-(4-methoxyphenyl)-2-oxo-N-propylacetamide (3n)

Following the general procedure for the synthesis of α -ketoamides using primary amines, compound **3n** was obtained in 84% yield. ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.39 (d, ³J=9.2Hz, 2H, arom), 7.19 (br, 1H, NH), 6.92 (d, ³J=9.2Hz, 2H, arom), 3.87 (s, 3H, CH₃), 3.33 (m, 2H, CH₂), 1.60 (q, ³J=7.2Hz, 2H, CH₂), 0.96 (t, ³J=3.8Hz, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, 100.6 MHz, δ ppm): 185.9 (C=O), 164.6 (C, arom), 162.3 (C=O), 133.9 (CH, arom), 126.4 (C, arom), 113.8 (CH, arom), 55.5 (CH₃), 41.0 (CH₂), 22.6(CH₂), 14.6 (CH₃).

2-(4-methoxyphenyl)-2-oxo-*N*-(1-phenylethyl)acetamide (3p)

Following the general procedure for the synthesis of α -ketoamides using

primary amines, compound **3p** was obtained in 81% yield. ¹**H NMR** (CDCl₃, 400 MHz, δ ppm): 8.42 (d, ³J=9.2Hz, 2H, arom), 7.4 (br, 1H, NH), 7.37 (br, 2H, arom), 7.35 (br, 3H, arom), 6.93 (d, ³J=9.2Hz, 2H, arom), 5.16 (m, 1H, CH), 3.88 (s, 3H, CH₃), 1.59 (d, ³J=6.8Hz, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, 100.6 MHz, δ ppm): 185.8 (C=O), 164.8 (C, arom), 161.5 (C=O), 142.6

(C, arom), 134.1 (CH, arom), 131.8 (C, arom), 128.9 (CH, arom), 127.7 (CH, arom), 126.3 (CH, arom), 113.9 (CH, arom), 55.7 (CH₃), 49.2 (CH), 21.9 (CH₃).

N,*N*-diethyl-2-(4-methoxyphenyl)-2-oxoacetamide (3q)

Following the general procedure for the synthesis of α -ketoamides using $\boxed{MeO^{-1}O^{-$

ppm): 7.9 (d, ³J=8.8Hz, 2H, arom), 6.97 (d, ³J=8.8Hz, 2H, arom), 3.87 (s, 3H, CH₃), 3.55 (q, ³J=7.6Hz, 2H, CH₂), 3.23 (q, ³J=7.6Hz, 2H, CH₂), 1.27 (t, ³J=7.6Hz, 3H, CH₃), 1.14 (t, ³J=7.6Hz, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, 100.6 MHz, δ ppm): 190.5 (C=O), 167.2 (C, arom), 164.8 (C=O), 132.2 (CH, arom), 128.4 (C, arom), 114.4 (CH, arom), 55.7 (CH₃), 42.2 (CH₂), 38.8 (CH₂), 14.2 (CH₃), 12.9 (CH₃).

PdCl₂(DBU)₂ (5)

To a solution of $PdCl_2(PhCN)_2$ (300 mg, 0.79 mmol) in toluene was added 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine (DBU) (1.65 mmol). The solution was stirred overnight at room temperature. A yellow precipitate was

formed which was filtered and washed with fresh toluene. The complex **5** was obtained in 71% yield (269 mg). ¹H NMR (CDCl₃, 400 MHz, δ ppm): 3.57-3.56 (m, 4H, CH₂), 3.46-3.31 (m, 4H, CH₂), 3.20-3.18 (m, 4H, CH₂), 3.25-3.12 (m, 4 H, CH₂), 1.90 (br s, 4 H, CH₂), 1.78 (m, 4H, CH₂), 1.64 (br s, 4H, CH₂), 1.51 (br s, 4H, CH₂). ¹³C{¹H} NMR (CDCl₃, 100.6 MHz, δ ppm): 163.5 (C=N), 53.8 (CH₂), 47.8 (CH₂), 38.9 (CH₂), 38.1 (CH₂), 29.6 (CH₂), 27.9 (CH₂), 24.4 (CH₂), 22.3 (CH₂). HRMS (ESI-TOF): *m/z*=486.1617, calcd for [(M-Cl)+CH₃CN]⁺: 486.1611. Anal. Calcd for C₁₈H₃₂Cl₂N₄Pd: C, 44.87; H, 6.69; Cl, 14.72; N, 11.63; Pd, 22.09. Found: C, 44.76; H, 7.01; N, 11.69.

Table with the results obtained at 80°C:

Table S1. Double carbonylation of different aryl iodies with *n*-butylamine.^[a]

R' 1a-j	l ₂ N 2a	 <u>[Pd(η³-C₃H₅)Cl]</u> DBU Toluene 	l₂→ R' 3a-j	H F	о Ч Ч 4a-j
	Entry	Aryl iodide	Conversion [%] ^[b]	Selecitivity 3a-j [%] ^[c]	-
	1	MeO 1a	99	98	
	2	OMe I 1b	93	2	
	3	MeO I	95	65	
	4	MeO 1d OMe	95	8	
	5	l 1e	96	53	
	6	If If	91	76	
	7	المراجع	93	81	
	8		94	87	
	9	1j	71	81	

[a] $[Pd(\eta^3-C_3H_5)Cl]_2$ (0.005 mmol), aryl iodide (0.5 mmol), DBU (1 mmol), butylamine (1.2 mmol), toluene (5mL), CO (1 bar), 80°C, 1h. [b] Determined by ¹H-NMR and GC-Mass spectroscopy.

MeO 1a	+ CO + Nu 2	J [Pd(η ³ -C ₃ H ₅)Cl DBU Toluene	MeO	Nu O 3k-r	O Nu 4k-r
	Entry	Nucleophile	Conversion [%] ^{b]}	Product 3a,k-r Selecitivity [%] ^{c]}	
	1	H ₂ N 2a	99	3 a, [98]	
	2	H ₂ N 2 b	90	3k, [98]	
	3	H ₂ N ~~~ 2c	93	3I , [94]	
	4	NH ₂ 2e	99	3n, [83]	
	5	∕_N∕_ H 2d	81	30, [60]	
	6	↓ ↓ H 2f	-	-	
	7	⟨_N H 2g	98	3 p, [54]	
	8	N H 2h	98	3q , [80]	
	9	() H 2i	99	3r , [77]	

Table S2. Double carbonylation of 1-iodo-*p*-methoxybenzene with different nucleophiles at 80° C.^[a]

[a] $[Pd(\eta^3-C_3H_5)Cl]_2$ (0.005 mmol), 1-iodo-*p*-methoxybenzene (0.5 mmol), DBU (1 mmol), nucleophile (1.2 mmol), toluene (5mL), CO (1 bar), 80°C, 1h. [b] Determined by ¹H-NMR and GC-Mass spectroscopy.

GC-MS chromatographs:

Compound 3a

Compound 3c (Temperature=80°C)

Compound 3c (Temperature=60°C)

Compound 3e

Compound 3f

Compound 3h

Compound 3i

S13

Compound 3j

Compound 3m

Compound 3n

Compound 3p

Compound 3q

Compound 3r

Compound 3s

Compound 3t

Compound 4b

Compound 4d

S23

Compound 4r

Compound 4s

Compound 4t

Figure 1. ¹H NMR of *N*-butyl-2-(4-methoxyphenyl)-2-oxoacetamide reaction crude (**3a**).

Figure 2. ¹H NMR of *N*-butyl-2-(4-methoxyphenyl)-2-oxoacetamide (3a).

Figure 3. ¹³C-{¹H} NMR of *N*-butyl-2-(4-methoxyphenyl)-2-oxoacetamide (**3a**).

Figure 4. ¹H NMR of *N*-ethyl-2-(4-methoxyphenyl)-2-oxoacetamide (**3m**).

Figure 5. ¹³C-{¹H} NMR of *N*-ethyl-2-(4-methoxyphenyl)-2-oxoacetamide (**3m**).

Figure 6. ¹H NMR of 2-(4-methoxyphenyl)-2-oxo-*N*-propylacetamide (**3n**).

Figure 7. ¹³C-{¹H} NMR of 2-(4-methoxyphenyl)-2-oxo-*N*-propylacetamide (**3n**).

Figure 8. ¹H NMR of 2-(4-methoxyphenyl)-2-oxo-*N*-(1-phenylethyl)acetamide (**3p**).

Figure 9. ¹³C-{¹H} NMR of 2-(4-methoxyphenyl)-2-oxo-*N*-(1-phenylethyl)acetamide (**3p**).

Figure 10. ¹H NMR of *N*,*N*-diethyl-2-(4-methoxyphenyl)-2-oxoacetamide (**3**q).

Figure 11. ¹³C-{¹H} NMR of *N*,*N*-diethyl-2-(4-methoxyphenyl)-2-oxoacetamide (**3q**).

Figure 12. ¹H NMR of complex PdCl₂(DBU)₂ (5).

Figure 13. $^{13}C-\{^{1}H\}$ NMR of complex PdCl₂(DBU)₂ (5).

Figure 14. ¹³C-{¹H} NMR spectrum of the reaction of PdCl₂(DBU)₂ with 1-iodo-4methoxybenzene and DBU under atmospheric ¹³CO pressure.

X-Ray Data:

Complex 6

Table S3. Crystal data and structure refinement for structure 6.

Empirical formula	$C_{18} H_{32} I_2 N_4 Pd$
Formula weight	664.68
Temperature	293(2) K
Wavelength	1.54180 A
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	a = 7.1690(9) A alpha = 90 deg.
	b = 11.1380(11) A beta = 100.49(2) deg.
	c = 14.9310(12) A gamma = 90 deg.
Volume 11	72.3(2) A^3
Z, Calculated density	2, 1.883 Mg/m^3
Absorption coefficient	27.115 mm^-1
F(000) 640	
Theta range for data collect	ion 4.99 to 63.33 deg.
Limiting indices	-8<=h<=8, -12<=k<=12, -17<=l<=17
Reflections collected / unique	ue $1745 / 2044 [R(int) = 0.0000]$
Completeness to theta $= 63$.	33 96.0 %
Absorption correction	Empirical (SHELXA)
Max. and min. transmission	0.0210 and 0.0060
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3 1745 / 30 / 118
Goodness-of-fit on F^2	1.051
Final R indices [I>2sigma(I)] $R1 = 0.0768$, wR2 = 0.2125
R indices (all data)	R1 = 0.0923, $wR2 = 0.2320$
Extinction coefficient	0.0034(7)
Largest diff. peak and hole	0.978 and -1.298 e.A^-3

	x y	Z	U(eq)	
Pd	0	5000	0 59	9(1)
I(1)	1869(2)	3024(1)	478(1)	85(1)
N(1)	1730(15)	5914(9)	970(6)	66(3)
N(2)	2846(16)	6626(12)	2466(6)	76(3)
C(1)	1522(17)	6063(11)	1822(8)	60(3)
C(2)	-200(20)	5619(15)	2118(9)	85(4)
C(3)	80(30)	4567(17)	2760(11)	101(5)
C(4)	950(40)	4850(20)	3734(15)	133(7)
C(5)	2740(30)	5440(20)	3908(14)	126(6)
C(6)	2620(30)	6668(18)	3397(12)	109(6)
C(7)	4610(30)	7047(19)	2234(13)	110(6)
C(8)	4440(40)	7330(30)	1276(18)	155(9)
C(9)	3450(20)	6377(18)	701(9)	95(5)

Table S4. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10^3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table S5. Bond lengths [A] and angles [deg].

Pd-N(1)#1	2.004(9)
Pd-N(1)	2.004(9)
Pd-I(1)	2.6077(10)
Pd-I(1)#1	2.6077(10)
N(1)-C(1)	1.318(14)
N(1)-C(9)	1.455(18)
N(2)-C(1)	1.374(15)
N(2)-C(6)	1.429(19)
N(2)-C(7)	1.45(2)
C(1)-C(2)	1.47(2)
C(2)-C(3)	1.50(2)
C(3)-C(4)	1.51(2)
C(4)-C(5)	1.42(3)
C(5)-C(6)	1.56(3)
C(7)-C(8)	1.45(3)
C(8)-C(9)	1.46(3)
N(1)#1-Pd-N(1)	180.0(6)
N(1)#1-Pd-I(1)	89.3(3)
N(1)-Pd-I(1)	90.7(3)
835	~ /

N(1)#1-Pd-I(1)#1	90.7(3)
N(1)-Pd-I(1)#1	89.3(3)
I(1)-Pd-I(1)#1	180.0
C(1)-N(1)-C(9)	118.1(10)
C(1)-N(1)-Pd	126.7(9)
C(9)-N(1)-Pd	115.1(7)
C(1)-N(2)-C(6)	120.6(13)
C(1)-N(2)-C(7)	120.1(11)
C(6)-N(2)-C(7)	118.8(13)
N(1)-C(1)-N(2)	123.3(11)
N(1)-C(1)-C(2)	119.8(11)
N(2)-C(1)-C(2)	116.9(11)
C(1)-C(2)-C(3)	115.7(14)
C(2)-C(3)-C(4)	115.8(16)
C(5)-C(4)-C(3)	118(2)
C(4)-C(5)-C(6)	110.3(18)
N(2)-C(6)-C(5)	116.2(15)
N(2)-C(7)-C(8)	112.8(16)
C(7)-C(8)-C(9)	112(2)
N(1)-C(9)-C(8)	116.1(14)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z

Table S6. Anisotropic displacement parameters (A² x 10³) for vfm4. The anisotropic displacement factor exponent takes the form: $-2 \operatorname{pi}^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

		U11	U22	U33	U23	U13	U12
		//>				• (1)	- // \
	Pd	72(1)	67(1)	33(1)	-4(1)	-3(1)	-7(1)
	I(1)	103(1)	81(1)	66(1)	2(1)	4(1)	13(1)
	N(1)	82(7)	74(6)	39(5)	-14(4)	6(5)	-10(5)
	N(2)	75(7)	112(8)	33(5)	-23(5)	-11(5)	-7(7)
	C(1)	64(7)	69(7)	44(6)	5(5)	3(5)	12(6)
	C(2)	120(13)	85(9)	53(7)	-6(7)	22(8)	-10(9)
	C(3)	135(10)	85(8)	88(8)	6(7)	33(7)	-9(7)
C	C(4)	163(11)	117(10)	119(10)	21(8)	26(9)	14(8)
	C(5)	143(10)	134(10)	95(9)	-3(8)	8(8)	28(9)
C	(6) 1	50(17)	105(12)	78(11)	-34(9)	34(11)	-14(12)
	C(7)	105(9)	122(10)	99(9)	-33(7)	9(7)	-10(7)
C	2(8)	156(12)	160(12)	154(12)	-10(9)	45(9)	-23(9)
C	2(9) 1	105(12)	135(14)	47(7)	-31(8)	17(8)	-40(11)

N(1)#1-Pd-N(1)-C(1)	83(77)
I(1)-Pd-N(1)-C(1)	-88.4(11)
I(1)#1-Pd-N(1)-C(1)	91.6(11)
N(1)#1-Pd-N(1)-C(9)	-102(77)
I(1)-Pd-N(1)-C(9)	87.0(11)
I(1)#1-Pd-N(1)-C(9)	-93.0(11)
C(9)-N(1)-C(1)-N(2)	0(2)
Pd-N(1)-C(1)-N(2)	174.9(9)
C(9)-N(1)-C(1)-C(2)	179.4(14)
Pd-N(1)-C(1)-C(2)	-5.3(18)
C(6)-N(2)-C(1)-N(1)	-174.5(14)
C(7)-N(2)-C(1)-N(1)	-3(2)
C(6)-N(2)-C(1)-C(2)	6(2)
C(7)-N(2)-C(1)-C(2)	177.7(14)
N(1)-C(1)-C(2)-C(3)	110.7(15)
N(2)-C(1)-C(2)-C(3)	-69.5(17)
C(1)-C(2)-C(3)-C(4)	76(2)
C(2)-C(3)-C(4)-C(5)	-56(3)
C(3)-C(4)-C(5)-C(6)	59(3)
C(1)-N(2)-C(6)-C(5)	66(2)
C(7)-N(2)-C(6)-C(5)	-106(2)
C(4)-C(5)-C(6)-N(2)	-84(2)
C(1)-N(2)-C(7)-C(8)	27(3)
C(6)-N(2)-C(7)-C(8)	-161(2)
N(2)-C(7)-C(8)-C(9)	-47(3)
C(1)-N(1)-C(9)-C(8)	-22(3)
Pd-N(1)-C(9)-C(8)	162.4(18)
C(7)-C(8)-C(9)-N(1)	45(3)

Table S7. Torsion angles [deg].