Electronic Supplementary Information for

Mismatched pyrrolo-dC-modified duplex DNA as a novel probe for sensitive detection of silver ions

Ki Soo Park, Joon Young Lee, and Hyun Gyu Park*

Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

* Corresponding author. Tel.: +82-42-350-3932; Fax: +82-42-350-3910; E-mail: hgpark@kaist.ac.kr

EXPERIMENTAL SECTION

Materials. All DNA oligonucucleotides, including pyrrolo-deoxycytosine (pyrrolo-dC)-incorporated DNA, were synthesized and HPLC purified by Genotech Co. (Daejeon, Korea).¹⁻³ The glutathione (GSH), glutathione disulfide (GSSG) and metal salts (Hg(NO₃)₂, AgNO₃, Zn(NO₃)₂, CaCl₂, Pb(NO₃)₂, Mn(NO₃)₂, FeCl₃, Ni(NO₃)₂, Co(NO₃)₂, Cd(NO₃)₂, (CH₃COO)₂Mg, CuCl₂, CH₃COOK) used in this study were purchased from Sigma-Aldrich (St. Louis, MO, USA). All other chemicals were of analytical grade and used without further purification. Aqueous solutions were prepared using ultrapure DNase/RNase-free distilled water purchased from Invitrogen.

Silver ion detection procedure. A solution containing 0.1 μ M pyrrolo-dC modified oligonucleotide and 0.12 μ M complementary oligonucleotide in a binding buffer (pH 7.9), containing 50 mM potassium acetate, 10 mM magnesium acetate, and 20 mM Tris-acetate, was heated at 80 °C for 5 min, cooled

slowly to 30 °C, and incubated at 30 °C for 20 min to form duplex DNA containing the mismatch site.

To this solution were added different concentrations of Ag^+ from a stock solution, which was then incubated at 30 °C for 20 min. The selectivity for Ag^+ was confirmed by adding other metal ions instead of Ag^+ following the same procedure. For GSH detection, GSH stock solution was added to the above prepared final solution containing 100 nM Ag^+ , which was then incubated for 20 min to remove Ag^+ from the C- Ag^+ -PdC base pairs. The concentration of GSH was 250 nM, which is much lower than that naturally found in human plasma (4 μ M) to confirm that our method possesses much higher detection sensitivity than is required for real clinical or diagnostic application.^[4]

Instrumentation. Fluorescence intensities were measured using a Tecan Infinite M200 pro microplate reader (Mnnedorf, Switzerland) and black, 384-well Greiner Bio-One microplates (ref: 781077, Courtaboeuf, France). Excitation was at 350 nm and emission was at 450 nm.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Table S1. DNA sequences studied in this work

Strand name	DNA sequence $(5' \rightarrow 3')$
 Oligonucleotides used in Figure 1A, B, 2 and S3 	
PdC-modified DNA	GCT TTA GAG T <mark>C <u>P</u> C</mark> TG AGA TTT CTG
Complementary DNA (C) ^[a]	CAG AAA TCT CAG C GA CTC TAA AGC
 Oligonucleotides used in Figure 1B and S1 	
Complementary DNA (A) ^[a]	CAG AAA TCT CAG A GA CTC TAA AGC
Complementary DNA (T) ^[a]	CAG AAA TCT CAG T GA CTC TAA AGC
Complementary DNA (G) ^[a]	CAG AAA TCT CAG G GA CTC TAA AGC
 Oligonucleotides used in Figure 1C and S2 	
PdC-modified DNA (C) ^[b]	PdC-modified DNA
Complementary DNA	Complementary DNA (C)
PdC-modified DNA (T) ^[b]	GCT TTA GAG TT <u>P</u> TTG AGA TTT CTG
Complementary DNA	CAG AAA TCT CAA C AA CTC TAA AGC
PdC-modified DNA (A) ^[b]	GCT TTA GAG TA $\underline{\mathbf{P}}$ ATG AGA TTT CTG
Complementary DNA	CAG AAA TCT CAT C TA CTC TAA AGC
PdC-modified DNA (G) ^[b]	GCT TTA GAG T <mark>G P</mark> GTG AGA TTT CTG
Complementary DNA	CAG AAA TCT CAC C CA CTC TAA AGC

[a]: Opposite nucleobase paired with PdC in duplex DNA, which is in blue color.

[b]: Flanking nucleobases around the PdC in duplex DNA, which are in red color.

PdC is in bold and underlined. P: pyrrolo-dC (PdC)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Fig. S1. Fluorescence intensities of duplex DNAs containing PdC paired with four different nucleobases (C, A, T, or G) in the absence and presence of silver ions (100 nM).

Fig. S2. Fluorescence intensities from duplex DNAs containing PdC-C mismatched base pair with different flanking nucleobases (C: CC, T: TT, A: AA, or G: GG) around the PdC, in the absence and presence of silver ions (100 nM).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Fig. S3. Detection of biological thiols. (A) Schematic illustration of the detection strategy for glutathione (GSH), a model biothiol. (B) Fluorescence spectra from mismatched PdC-C modified duplex DNAs in the absence (0) and presence (1) of Ag^+ . GSH (2) or GSSG (3) was additionally added to the duplex DNA mixed with Ag^+ . (C) Degree of fluorescence recovery in a histogram form. The degree of fluorescence recovery was defined as $[(F-F_1)/(F_0-F_1)]$ multiplied by 100, where F_0 and F_1 are originally high fluorescence in the absence of Ag^+ and Ag^+ -induced quenched fluorescence in the presence (1) of Ag^+ , respectively. F is the fluorescence intensity at 450 nm in the presence of GSH (2) or GSSG (3) together with Ag^+ . The concentration of Ag^+ , GSH and GSSG was 100 nM, 250 nM and 250 nM, respectively.

References

- 1. R. Z. Fu, T. H. Li, S. S. Lee, H. G. Park, Anal. Chem. 2011, 83, 494.
- 2. R. Fu, K. Jeon, C. Jung, H. G. Park, Chem. Commun. 2011, 47, 9876.
- 3. W. Y. Chung, Y. L. Jung, K. S. Park, C. Jung, S. C. Shin, S. J. Hwang, D. Y. Cho, S. H. Cha, S. K. Lim, H. G. Park, *Biosens. Bioelectron*. 2011, **26**, 4314.
- 4. W. A. Kleinman, J. P. Richie, Biochem. Pharmacol. 2000, 60, 19.