Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

### Supplementary Information for

#### A Simple and Efficient Fluorescent Sensor for Histidine

Zeng Huang,<sup>a</sup> Jiao Du,<sup>a</sup> Jing Zhang,<sup>a</sup> Xiao-Qi Yu<sup>\*a</sup> and Lin Pu<sup>\*b</sup>

<sup>a</sup>Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China 610064. <sup>b</sup>Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904.

E-mail: xqyu@scu.edu.cn, lp6n@virginia.edu

#### I. General data

ESI-MS and HRMS spectral data were recorded on a Finnigan LCQ<sup>DECA</sup> and a Bruker Daltonics Bio TOF mass spectrometer, respectively. Fluorescence emission spectra were obtained using FluoroMax-4 Spectrofluorophotometer (HORIBA Jobin Yvon) at 298 K. Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. All the solvents were dried according to the standard methods prior to use. All of the solvents were either HPLC or spectroscopic grade in the optical spectroscopic studies.

#### II. Experimental procedures and characterizations

#### **Preparation and Characterization of the Tpy-Cu<sup>2+</sup> complex.**

A mixture of Tpy (233 mg, 1.0 mmol) and  $CuCl_2 2H_2O$  (205 mg, 1.2 mmol) was stirred in H<sub>2</sub>O (30 mL) at room temperature for 30 min until the solution became clear. Then the solution was concentrated to about 5 mL and which produced green precipitate. The green solid was collected by filtration and washed with CH<sub>3</sub>OH (5 mL). After dried under vacuum, TpyCuCl<sub>2</sub> was obtained. The HR-MS (ES+) spectrum of TpyCuCl<sub>2</sub> is included.

#### **CV** Measurement

Electrochemical measurements were performed with a CHI 660C instruments. All the measurements were carried out in a one-compartment cell under a nitrogen atmosphere at 25 °C equipped with Pt working electrode, a platinum counter electrode, and a  $Hg(1)/Hg_2Cl_2(s)$  reference electrode. The supported electrolyte was a 0.1 M NaCl solution. The host solution was mixed with different equivalent of amino acids or imidazole at room temperature in a volumetric flask and diluted to the desired concentration. The resulting solutions were allowed to stand at room temperature for 2 h before measurement. The electrodes were soaked in 2N HNO<sub>3</sub> for 15 min and then washed with distilled water before each measurement.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012



Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

**Figure S1.** Fluorescence spectra of Tpy and the isolated TpyCuCl<sub>2</sub> ( $2.0 \times 10^{-5}$  M in 25 mM hepes buffer solution, pH = 7.35) ( $\lambda_{exc}$ =298nm, slits: 5 nm/5 nm).



**Figure S2.** Fluorescence responses of TpyCu<sup>2+</sup> ( $2.0 \times 10^{-5}$  M in 25 mM hepes buffer solution, pH = 7.35) toward L-cysteine (0, 0.5. 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.5, 12.0, 12.5 and 13.0 equiv) ( $\lambda_{exc} = 298$  nm, slits: 5 nm/5 nm).



**Figure S3.** Fluorescence responses of TpyCu<sup>2+</sup> ( $2.0 \times 10^{-5}$  M in 25 mM hepes buffer solution, pH = 7.35) toward L-cystine (0, 0.5. 1.0, 2.0, 3.0, 4.0 and 5.0 equiv) ( $\lambda_{exc} = 298$  nm, slits: 5 nm/5 nm).



**Figure S4.** Fluorescence responses of TpyCu<sup>2+</sup> ( $2.0 \times 10^{-5}$  M in 25 mM hepes buffer solution, pH = 7.35) toward L-histidine at  $\lambda = 352$  nm ( $\lambda_{exc} = 298$  nm, slits: 5 nm/5 nm).

S5



We calculated the binding constant of  $TpyCu^{2+}$  with L-histidine by using the linear Benesi-Hilderand expression:

$$\frac{I_0}{I - I_0} = \frac{b}{a - b} \left\{ \frac{1}{K[M]} + 1 \right\}$$



 $1/K = 0.00749 \ge 10^{-5}/6.66917 \ge 10^{-4}$ The binding constant of TpyCu<sup>2+</sup> with histidine is 8.944  $\ge 10^{3}$ 

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

**Figure S5.** Fluorescence excitation spectra of Tpy, L-Trp, L-Tyr at the same concentration (25 mM HEPES, pH 7.35).



|       | Maximum emission wavelength | The wavelength range that can be | Maximum<br>excitation |  |
|-------|-----------------------------|----------------------------------|-----------------------|--|
|       |                             | used for excitation              | wavelength            |  |
| Тру   | 352nm                       | 239nm-345nm                      | 331nm                 |  |
| L-Trp | 357nm                       | 240nm-311.4nm                    | 278nm                 |  |
| L-Tyr | 304nm                       | 250nm-293nm                      | 286nm                 |  |

**Figure S6.** Fluorescence response of Tpy-CuCl<sub>2</sub> ( $2.0 \times 10^{-5}$ M in 25mM hepes buffer solution, pH=7.35) toward L-His, L-Trp and L-Tyr ( $\lambda_{exc}$ = 320 nm, slits: 5nm/5nm)

**S**7



**Figure S7.** Fluorescence reponse of Tpy-Cu ( $2.0 \times 10^{-5}$ M in 25 mM hepes buffer solution, pH=7.35) towards L-His, L-Trp and L-Tyr at 352.4 nm ( $1.0 \times 10^{-4}$  M in H<sub>2</sub>O) ( $\lambda_{exc}$ = 320 nm, slits: 5nm/5nm)



**Figure S8.** Fluorescence Responses of Tpy-CuCl<sub>2</sub> ( $2.0 \times 10^{-5}$  M in hepes buffer solution, pH =7.35) toward L-Histidine (0, 0.5. 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.5, 12.0 ando 13.0 equiv) ( $\lambda_{exc}$ =320nm, slits: 5nm/5nm)



**Figure S9.** Fluorescence Responses of Tpy-CuCl<sub>2</sub> ( $2.0 \times 10^{-5}$  M in hepes buffer solution, pH=7.35) toward L-Trp (0, 1.0, 2.0, 3.0, 4.0 and 5.0 equiv) ( $\lambda_{exc}$ =320nm, slits: 5nm/5nm).



**Figure S10.** Fluorescence Responses of Tpy-CuCl<sub>2</sub> ( $2.0 \times 10^{-5}$  M in hepes buffer solution, pH=7.35) toward L-Tyr (0, 1.0, 2.0, 3.0, 4.0 and 5.0 equiv) ( $\lambda_{exc}$ =320nm, slits: 5nm/5nm)



**Figure S11.** Fluorescence of L-Trp in hepes buffer solution (25 mM, pH=7.35) at 0, C ( $2.0x10^{-5}$  M), 2C, 3C, 4C and 5C ( $\lambda_{exc}$ =320nm, slits: 5nm/5nm)



# Table S1. Fluorescence quantum yields of Tpy (5x10-6M) and Tpy-Cu2++12eqL-His (5x10-6M)[ Fluorescent reference material: quinine bisulfate (5x10-6M)]

$$Y_u = Y_s \cdot \frac{F_u}{F_s} \cdot \frac{A_s}{A_u}$$

|                               | λexc (slits:<br>5/5 nm) | <b>F</b><br>(Integral<br>fluorescence<br>intensity) | A<br>(Absorbance<br>at 298nm) | Integration<br>range | Y<br>(Fluorescence<br>quantum<br>yield ) |
|-------------------------------|-------------------------|-----------------------------------------------------|-------------------------------|----------------------|------------------------------------------|
| quinine bisulfate             | 298 nm                  | 637673285                                           | 0.015                         | 370-580nm            | 0.55                                     |
| Тру                           | 298 nm                  | 144062710                                           | 0.045                         | 325-500nm            | 0.041                                    |
| Tpy-Cu <sup>2+</sup> +12eqHis | 298 nm                  | 68793865                                            | 0.033                         | 325-500nm            | 0.027                                    |

#### IV. Distinguish Histidine from Cysteine by Using the Fluorescence Response of TpyCuCl<sub>2</sub>

**Oxidation of Cysteine to Cystine:** To a solution of L-Cysteine (7.3 mg,0.06 mmol) in 10 mL H<sub>2</sub>O was added NaI (0.09 mg, 1 mol %) and 50% H<sub>2</sub>O<sub>2</sub>(2.91  $\mu$ L,0.06 mmol). Stirring the mixture at room temperature for 0.5 h gave L-cystine precipitate.

**Figure S12.** Fluorescence responses of TpyCuCl<sub>2</sub> ( $2.0 \times 10^{-5}$  M) at  $\lambda_{emi} = 352$  nm to L-Cysteine upon treatment with H<sub>2</sub>O<sub>2</sub> and NaI in aqueous buffered solution (25 mM HEPES, p =7.35) ( $\lambda$ exc = 298 nm, slits: 5 nm/5 nm).



**Figure S13.** Fluorescence response of TpyCuCl<sub>2</sub> ( $2.0 \times 10^{-5}$  M) at  $\lambda_{emi} = 352$  nm to L-Cysteine and L-Histidine upon treatment with H<sub>2</sub>O<sub>2</sub> and NaI in aqueous buffered solution (25 mM HEPES, pH 7.35) ( $\lambda exc = 298$  nm, slits: 5 nm/5 nm).



**Figure S14.** Fluorescence spectra of TpyCuCl<sub>2</sub> ( $2.0 \times 10^{-5}$  M) to L-Cysteine and L-Histidine upon treatment with H<sub>2</sub>O<sub>2</sub> and NaI in aqueous solution (25 mM HEPES buffered, pH 7.35) ( $\lambda$ exc = 298 nm, slits: 5 nm/5 nm).



#### V. Supplementary CV Plots

**Figure S15.** CV titration profile of  $\text{TpyCu}^{2+}$  (1 mM) with various amount of imidazole. Reference electrode: saturated Hg(l)/Hg<sub>2</sub>Cl<sub>2</sub>(s); supporting electrolyte : 0.1 M NaCl solution; scan rate = 50 mV S<sup>-1</sup>.



**Figure S16.** Comparison of the CV titration profile of  $\text{TpyCu}^{2+}$  (1 mM) with 1 eq L-histidine, 1 eq L-alanine and 1 eq imidazole. Reference electrode: saturated  $\text{Hg}(1)/\text{Hg}_2\text{Cl}_2(s)$ ; supporting electrolyte: 0.1M NaCl solution; scan rate = 50 mV S<sup>-1</sup>.



**Figure S17.** The CV titration profile of  $Cu^{2+}$  (1 mM) with 0.5, 1.0, 2.0 and 3.0 equiv L-histidine. Reference electrode = saturated Hg(l)/Hg<sub>2</sub>Cl<sub>2</sub>(s); supporting electrolyte: 0.1M NaCl solution; scan rate = 50 mV S<sup>-1</sup>.



**Figure S18.** Comparison of the CV titration profile of  $\text{TpyCu}^{2+}(1 \text{ mM})$ ,  $\text{TpyCu}^{2+}-1.0 \text{ eq }L\text{-histidine }(1 \text{ mM})$ , Tpy (1 mM with 5% THF to increase its solubility),  $\text{Cu}^{2+}-1.0 \text{ eq }L\text{-histidine }(1 \text{ mM})$ . Reference electrode = saturated Hg(l)/Hg<sub>2</sub>Cl<sub>2</sub>(s); supporting electrolyte: 0.1 M NaCl solution; scan rate = 50 mV S<sup>-1</sup>



#### VI. Supplementary UV Spectra

**Figure S19.** UV Titration of Tpy  $(2.0 \times 10^{-5} \text{M in } 25 \text{ mM hepes buffer solution, pH} = 7.35)$  with CuCl<sub>2</sub>.2H<sub>2</sub>O to generate TpyCu<sup>2+</sup>.



**Figure S20.** The UV spectra of TpyCu<sup>2+</sup> ( $2.0 \times 10^{-5}$  M in 25 mM hepes buffer solution, pH=7.35) with/without 1.0 equiv L-cysteine.



Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

#### VII. High Resolution Mass Spectrum (ES+) of TpyCuCl<sub>2</sub>

Figure S21. High Resolution Mass Spectrum (ES+) of TpyCuCl<sub>2</sub>

Ν Ň ⊳N CuCl

Chemical Formula: C<sub>15</sub>H<sub>11</sub>ClCuN<sub>3</sub> Exact Mass: 330.9938



#### VIII. Mass Spectroscopic Analysis of the Mixture of TpyCu<sup>2+</sup> with L-Histidine.

**Figure S22.** For the mixture of TpyCuCl<sub>2</sub>:L-histidine = 1:10 in pure water, the following ions were observed in the mass spectrum:





Chemical Formula: C<sub>15</sub>H<sub>12</sub>N<sub>3</sub><sup>+</sup> Exact Mass: 234.1026

 $\oplus$ 

Na Chemical Formula: C<sub>15</sub>H<sub>11</sub>N<sub>3</sub>Na<sup>+</sup> Exact Mass: 256.0845

⊕ K

Chemical Formula: C<sub>15</sub>H<sub>11</sub>KN<sub>3</sub><sup>+</sup> Exact Mass: 272.0585

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

#### Figure S23. The mass spectrum of the mixture of TpyCuCl<sub>2</sub>: L-histidine = 1:10



Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2012

## **Figure S24.** Following peaks were observed in the mass spectrum of the mixture of TpyCuCl<sub>2</sub>:L-histidine=1:1



Chemical Formula:  $C_6H_{10}N_3O_2^+$ Exact Mass: 156.0768





Chemical Formula: C<sub>12</sub>H<sub>19</sub>N<sub>6</sub>O<sub>4</sub><sup>+</sup> Exact Mass: 311.1462



Chemical Formula: C<sub>15</sub>H<sub>13</sub>ClCuN<sub>3</sub>O Exact Mass: 349.0143



Chemical Formula: C<sub>21</sub>H<sub>22</sub>ClCuN<sub>6</sub>O<sub>3</sub><sup>+</sup>

Exact Mass: 504.0838

Chemical Formula: C<sub>12</sub>H<sub>18</sub>CuN<sub>6</sub>O<sub>4</sub> Chemical Formula: C<sub>12</sub>H<sub>17</sub>CuKN<sub>6</sub>O<sub>4</sub> Exact Mass: 373.0686 Exact Mass: 411.0244



Chemical Formula: C<sub>21</sub>H<sub>21</sub>ClCuKN<sub>6</sub>O<sub>3</sub><sup>+</sup> Exact Mass: 542.0397 Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

#### Figure S25. The mass spectrum of the mixture of TpyCuCl<sub>2</sub>:L-histidine=1:1

